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Une nouvelle approche probabiliste non paramétrique est présentée pour modéliser les incertitudes aléatoires en élastodynamique linéaire transitoire. L'information utilisée ne demande pas une description des paramètres locaux du système mécanique. Le modèle probabiliste est construit dans les coordonnées généralisées associées aux modes propres élastiques. L'information utilisable est constituée des propriétés algébriques des matrices généralisées de masse, de dissipation et de raideur qui doivent être définies positives, et de la connaissance de ces matrices pour le modèle matriciel réduit moyen. La convergence de la solution stochastique par rapport à la dimension du modèle matriciel réduit probabiliste est étudiée.

[ M n ] qn (t) + [ D n ] qn (t) + [ K n ] q n (t) = F n (t) for t in I with zero initial conditions. The mean generalized mass, damping and stiffness matrices [ M n ], [ D n ] and [ K n ] are in the set Å + n (Ê) of all the positive-definite symmetric (n× n) real matrices.

Random uncertainties in elastodynamics are usually modeled using parametric models. This means that the uncertain parameters (geometrical and mechanical parameters) have to be identified and appropriate probabilistic models of these uncertain parameters have to be constructed. In this paper we present a new approach, that we will call a nonparametric model of random uncertainties. Reference [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] is devoted to the vibration problem in finite dimension; here, the transient reponse problem is presented and convergence properties are studied when dimension n approaches infinity. The nonparametric model proposed consists in introducing a random reduced matrix model whose mean values of the random generalized matrices with values in Å + n (Ê) are the generalized matrices of the mean reduced matrix model. For n fixed in AE, the random reduced matrix model is written as [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] in using the entropy optimization principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] which allows only the available information to be used, that is to say Eqs. ( 2) and (3). It is proved [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] that random 

U n (x, t) = n α=1 Q n α (t) α (x) in which {Q n (t) = (Q n 1 (t), . . . , Q n n (t)) , t ∈ I} is an Ê n -
[M n ], [D n ], [K n ]} with values in Å + n (Ê)×Å + n (Ê)×Å + n (Ê) are constructed
matrices [M n ], [D n ] and [K n ] are independent. If [A n ] denotes [M n ], [D n ] or [K n ], then [ A n ] = E{[A n ]} denotes [ M n ], [ D n ] or [ K n ]. Matrix [A n ] ∈ Å + n (Ê) can be written as [A n ] = [L An ] T [L An ]. It is proved [2] that random matrix [A n ] can be written as [A n ] = [L An ] T [G An ] [L An ] in which [G An ] is C. Soize -
dG n = 2 n(n-1)/4 Π 1≤i≤j≤n d[G n ] ij on the set Å S
n (Ê) of all the symmetric (n×n) real matrices is given by Eq. ( 4). This probability distribution is not a Wishart distribution when ℓ A (n) is not an integer. Random matrices are defined on probability space (A, T , P ). Since [G An ] is a random matrix with values in Å + n (Ê), this matrix is almost surely invertible. For ω fixed in A, the norm of matrix [G An (ω)] -1 is defined by

[G An (ω)] -1 = sup q∈Ê n , q =1 [G An (ω)] -1 q .
Then, fundamental Eq. ( 5) is proved and allows the convergence result defined by Eq. ( 6) to be obtained as the dimension n approaches infinity.

Position du problème

On considère le problème aux limites d'évolution, dit modèle moyen, de la réponse dynamique transitoire linéarisée, pour t ∈ I = [0 , T ], d'un milieu viscoélastique à mémoire instantanée qui occupe un domaine ouvert borné Ω de Ê 3 , de point générique x = (x 1 , x 2 , x 3 ), de frontière ∂Ω = Γ 0 ∪ Γ régulière, avec condition de Dirichlet u(t) = 0 sur Γ 0 où u(t) : Ω → Ê 3 est le champ de déplacement à l'instant t, avec conditions initiales nulles u(0) = u(0) = 0, où u = ∂u/∂t et soumis à des champs de forces extérieures 

g surf (t)
Î = {u ∈ À , ∂u/∂x j ∈ À , u = 0 sur Γ 0 }, tel que m(ü, v) + d( u, v) + k(u, v) = g(v ; t) pour tout v ∈ Î et t dans I, avec les conditions initiales nulles, où À = { u = (u 1 , u 2 , u 3 ) , u j ∈ L 2 (Ω) } est l'espace de Hilbert muni du produit scalaire (u , v) À = Ω u(x) • v(x) dx et de la norme associée u À = (u , u) 1/2 À , et où l'espace de Hilbert Î est muni du produit scalaire (u , v) Î = (u , v) À + 3 j=1 (∂u/∂x j , ∂v/∂x j ) À et de la norme associée u Î = (u , u)
g(v ; t) = Γ g surf (x, t)•v(x) ds(x)+ Ω g vol (x, t)•v(x) dx est continue sur Î et il existe donc f(t) dans le dual continu Î ′ de Î tel que g(v ; t) =< f(t) , v > Î ′ ,Î pour tout v dans Î, où < . , . > Î ′ ,
propres 0 < ω 1 ≤ . . . ≤ ω n , qui vérifient m( α , β ) = µ α δ αβ et k( α , β ) = µ α ω 2 α δ αβ . On écrit u n (x, t) = n α=1 q n α (t) α (x) avec q n (t) = (q n 1 (t), . . . ,
[ M n ] αβ = µ α δ αβ , [ D n ] αβ = d( β , α ) et [ K n ] αβ = µ α ω 2 α δ αβ .
Classiquement, la modélisation paramétrique des incertitudes de modélisation en élastodynamique consiste à identifier les paramètres (géométriques et mécaniques) locaux incertains du modèle moyen, puis à construire le modèle probabiliste de ces paramètres sur un espace ad hoc. Nous proposons ici une nouvelle approche que nous appelerons par opposition à l'approche usuelle, modélisation non paramétrique des incertitudes en élastodynamique.

La référence [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] est consacrée aux vibrations en dimension finie; le présent travail est une extension aux réponses transitoires et en dimension infinie.

Principes de construction du modèle non paramétrique des incertitudes en élastodynamique

Dans toute la suite, les variables aléatoires sont définies sur le même espace probabilisé (A, T , P ), 

l
(x, t) = n α=1 Q n α (t) α (x) où {Q n (t) = (Q n 1 (t), . . . , Q n n (t))
, t ∈ I} est un processus stochastique à valeurs dans Ê n tel que 

[M n ] Qn (t) + [D n ] Qn (t) + [K n ] Q n (t) = F n (t) , t ∈ I , (1) 
E{[M n ]} = [ M n ] , E{[D n ]} = [ D n ] , E{[K n ]} = [ K n ] , (2) 
E [M n ] -1 2 F < +∞ , E [D n ] -1 2 F < +∞ , E [K n ] -1 2 F < +∞ , (3) 
où . F est la norme de Frobenius. Pour chaque valeur de n fixé, la loi de probabilité de la v.a [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] en appliquant le principe du maximum d'entropie [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] 

{[M n ], [D n ], [K n ]} est construite
Å + n (Ê) × Å + n (Ê) × Å + n (Ê).
Enfin, on étudie la convergence de la suite de processus stochastiques {U n (x, t), x ∈ Ω, t ∈ I} n ainsi construits lorsque n → +∞.

Modèle matriciel réduit probabiliste

En utilisant [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] et les Eqs. ( 2)-( 3), on montre que les matrices aléatoires

[M n ], [D n ] et [K n ], à valeurs dans Å + n (Ê), sont indépendantes dans leur ensemble. Dans la suite, [A n ] désigne [M n ], [D n ] ou [K n ] et donc, [ A n ] = E{[A n ]} désigne [ M n ], [ D n ] ou [ K n ]. Comme [A n ] ∈ Å + n (Ê), elle peut s'écrire [A n ] = [L An ] T [L An ]. On montre [2] que [A n ] = [L An ] T [G An ] [L An ], où [G An ]
est une matrice aléatoire à valeurs dans Å + n (Ê) ayant une densité de probabilité par rapport à la mesure [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF]. La fonction n → ℓ A (n) de AE dans Ê + est un paramètre de la loi de probabilité qui est lié à l'Eq. ( 3) et est définie ci-après.

dG n = 2 n(n-1)/4 Π 1≤i≤j≤n d[G n ] ij sur Å S n (Ê), qui s'écrit p [GA n ] ([G n ]) = ½ Å + n (Ê) ([G n ])×C An × det[G n ] ℓA(n)-1 × exp - (n-1+2ℓ A (n)) 2 tr[G n ] . ( 4 
)
La constante C An > 0 est telle que Å + n (Ê) p [Gn] ([G n ]) dG n = 1 et est connue explicitement
La moyenne de la v.a

[G An ] est [G An ] = E{[G An ]} = [ I n ] (la matrice unité), et la covariance des v.a [G An ] jk et [G An ] j ′ k ′ est égale à (n-1+2ℓ A (n)) -1 (δ j ′ k δ jk ′ +δ jj ′ δ kk ′ ). Soit δ A > 0 le paramètre permettant de contrôler la dispersion de la matrice aléatoire [G An ], défini par δ 2 A = [G An ] -2 F E{ [G An ]-[G An ] 2 F }. Il s'écrit δ 2 A = (n + 1)/(n -1 + 2ℓ A (n)). Soit n 0 ≥ 1 un entier fixé. Le paramètre δ A doit être choisi indépendant de n et tel que 0 < δ 2 A < (n 0 + 1)/(n 0 + 5). Alors, pour tout n ≥ n 0 , on a ℓ A (n) = an + b + 1 > 3 avec a = (1 -δ 2 A )/(2δ 2 A ) > 0 et b = 1/(2δ 2 
A ). Quand ℓ A (n) est un entier positif, la densité définie par l'Eq. ( 4) coïncide avec une loi Wishart, sinon, l'assertion est fausse.

Convergence lorsque la dimension tend vers l'infini

Pour n ≥ n 0 fixé, le processus stochastique {U n (x, t), x ∈ Ω, t ∈ I}, défini sur (A, T , P ), à valeurs dans

Ê n est construit comme indiqué aux § 2 et 3. Si Q = (Q 1 , . . . , Q n ) est une v.a du second ordre à valeurs dans Ê n , alors |||Q||| = (E{ Q 2 }) 1/2 < +∞ avec Q 2 =< Q , Q > où < .
, . > est le produit scalaire euclidien sur Ê n . Soit À (resp. Î ) l'ensemble des v.a du second ordre à valeurs dans l'espace À (resp. Î). Si ω fixé dans A, la norme de la matrice aléatoire [G An (ω)] -1 , induite par la norme euclidienne de Ê n , est définie par

U ∈ À (resp. U ∈ Î ), alors |||U||| À = (E{ U 2 À }) 1/2 < +∞ (resp. |||U||| Î = (E{ U 2 Î }) 1/2 < +∞).
[G An (ω)] -1 = sup q∈Ê n , q =1 [G An (ω)] -1 q , et peut s'écrire [G An (ω)] -1 = 1/ Σ 1 (ω)
où Σ 1 (ω) > 0 est la plus petite valeur propre de la matrice [G An (ω)] ∈ Å + n (Ê). On démontre le résultat suivant :

∀n ≥ n 0 ≥ 1 , E{ [G An ] -1 2 } ≤ C δA < +∞ , (5) 
où C δA est une constante positive finie indépendante de n, mais qui dépend de δ A . Les grandes lignes de la preuve sont les suivantes. Soient Σ 1 , . . . , Σ n les valeurs propres aléatoires de [G An ]. En partant de l'Eq. ( 4), il est prouvé dans [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] que la densité de probabilité p Ë (×) par rapport à d× = dσ 1 . . . dσ n de la v.a Ë = (Σ 1 , . . . , Σ n ) à valeurs dans

D n = (]0 , +∞[) n ⊂ Ê n s'écrit p Ë (×) = ½ Dn (×)× c Σ × (σ 1 × . . .× σ n ) ℓA(n)-1 {Π α<β |σ β -σ α |} e -1 2 (n-1+2ℓA(n))(σ1+...+σn) avec c Σ > 0 tel que Dn p Ë (×) d× = 1.
En introduisant la statistique ordonnée

Ë = ( Σ 1 , . . . , Σ n ) de Ë = (Σ 1 , . . . , Σ n ), telle que 0 < Σ 1 ≤ Σ 2 ≤ . . . ≤ Σ n , on montre que pour tout ε > 0 on a E{ [G An ] -1 2 } ≤ ε -2 + H n (ε) avec H n (ε) = {n ε 0 dσ 1 +∞ 0 dσ 2 . . . +∞ 0 dσ n σ -2 1 h(×)}{ +∞ 0 dσ 1 +∞ 0 dσ 2 . . . +∞ 0 dσ n h(×)} -1 où h(×) = (σ 1 × . . .×σ n ) a(n+1) {Π α<β |σ β -σ α |} e -b ( 
n+1)(σ1+...+σn) , les constantes a et b étant définies au § 3. En utilisant un raisonnement analogue à celui de la preuve du lemme 4.4, page 196 de [START_REF] Johansson | On fluctuations of eigenvalues of random Hermitian matrices[END_REF], on montre que pour ε > 0 pris suffisamment petit et indépendant de n, on a lim n→+∞ H n (ε) = 0, ce qui termine la preuve de l'Eq. ( 5).

La Fig. 1 montre, pour n ≥ n 0 = 2, les graphes de la fonction n → E{ [G An ] -1 2 } pour δ A = 0.1, 0.3 et 0.5, construits par la méthode de simulation numérique de Monte Carlo avec 100 tirages. Ces résultats numériques illustrent l'Eq. ( 5) qui est prouvée mathématiquement. Maintenant, si

T 0 f(τ ) 2 Î ′ dτ < +∞, alors on démontre que ∀ n ≥ n 0 , ∀ t ∈ I , |||U n (t)||| 2 Î ≤ C 1 < +∞ , ||| Un (t)||| 2 À ≤ C 2 < +∞ , (6) 
où C 1 > 0 et C 2 > 0 sont des constantes finies indépendantes de n et t qui s'écrivent 

C 1 = (c -2 k C δK + c -2 d C δD ) T 0 f(τ ) 2 Î ′ dτ et C 2 = (c -2 m C δM + c -2 d C δD ) T 0 f(τ ) 2 Î ′ dτ ,

  valued stochastic process verifying Eq. (1) with zero initial conditions. Random matrices [M n ], [D n ] and [K n ] are second-order random variables with values in Å + n (Ê) such that Eqs. (2) and (3) are satisfied. The probability distribution of random matrices {

1 / 2 Î 2 À

 122 . La forme bilinéaire m(u, v) de masse est symétrique, définie positive, continue sur À×À et telle que m(u, u) ≥ c m u avec c m une constante positive. Les formes bilinéaires d(u, v) et k(u, v) de dissipation et de raideur sont symétriques, définies positives, continues sur Î×Î et telles que d(u, u) ≥ c d u 2 Î et k(u, u) ≥ c k u 2 Î avec c d et c k des constantes positives. La forme linéaire

  avec les conditions initiales Q n (0) = Qn (0) = 0. Les matrices aléatoires [M n ], [D n ] et [K n ] sont des v.a du second ordre, à valeurs dans Å + n (Ê), telles que

  Comme la matrice aléatoire [G An ] est à valeurs dans Å + n (Ê), elle est inversible presque sûrement. Pour tout C. Soize -Janvier 2001 -Version originale du 06/11/00 avec addition d'une version abrégée en anglais
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 1111 Fig. 1 FIG. 1. Graphe de la fonction n → E{ [G An ] -1 2 } pour δ A = 0.1, 0.3 et 0.5. FIG. 1. Graph of function n → E{ [G An ] -1 2 } for δ A = 0.1, 0.3 and 0.5.