
HAL Id: hal-00686285
https://hal.science/hal-00686285

Submitted on 9 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transient responses of dynamical systems with random
uncertainties
Christian Soize

To cite this version:
Christian Soize. Transient responses of dynamical systems with random uncertainties. Probabilistic
Engineering Mechanics, 2001, 16 (4), pp.363-372. �10.1016/S0266-8920(01)00026-1�. �hal-00686285�

https://hal.science/hal-00686285
https://hal.archives-ouvertes.fr


Transient Responses of Dynamical Systems

with Random Uncertainties

C. Soize
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Abstract

A new approach is presented for modeling random uncertainties by a nonparametric model allowing

transient responses of mechanical systems submitted to impulsive loads to be predicted in the context of

linear structural dynamics. The probability model is deduced from the use of the entropy optimization

principle whose available information is constituted of the algebraic properties related to the generalized

mass, damping and stiffness matrices which have to be positive-definite symmetric matrices, and the

knowledge of these matrices for the mean reduced matrix model. An explicit construction and represen-

tation of the probability model have been obtained and are very well suited to algebraic calculus and to

Monte Carlo numerical simulation in order to compute the transient responses of structures submitted to

impulsive loads. Finally, a simple example is presented.

Keywords: Random uncertainties; dynamical systems; structural dynamics; transient response; impulsive

load; entropy optimization principle

1. Introduction

This paper deals with predicting the transient responses of structures submitted to impulsive loads in

linear structural dynamics. In general, this kind of prediction is relatively difficult because the structural

models have to be adapted to large, medium and small vibrational wavelengths which correspond to

the low-, medium- and high-frequency ranges. Here, we are interested in the case where the impulsive

load under consideration has an energy which is almost entirely distributed over a broad low-frequency

band and for which prediction of the impulsive load response can be obtained with a reduced matrix

model constructed using the generalized coordinates of the mode-superposition method associated with

the structural modes corresponding to the  lowest eigenfrequencies of the structure. Under the above
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assumptions and for a complex structure, dimension  of the reduced matrix model generally has to

be high (several dozen or hundred structural modes may be necessary to predict transient responses).

However, it is known that the higher the eigenfrequency of a structural mode, the lower its accuracy

because the uncertainties in themodel increase (in linear structural dynamics and vibrations, the effects of

uncertainties on the model increase with the frequency and it should be kept in mind that the mechanical

model and the finite element model of a complex structure tend to be less reliable in predicting the higher

structural modes). This is why random uncertainties in the mechanical model have to be taken into

account. This is a fundamental problem in structural dynamics when the mechanical model has to be

adapted to predict a transient response for which not only the low-frequency band is mainly concerned,

but also the upper part of this low-frequency band and maybe the medium-frequency-band have to

be taken into account. Random uncertainties in finite element models are usually modeled by using

parametric models. Concerning such a parametric approach, for general developments, we refer the

reader to Refs. [1-7] and for aspects related to stochastic finite elements, we refer the reader to Refs.

[8-13]. The structural modes corresponding to the  lowest eigenfrequencies of the complex structure

are calculated using the finite element method (see for instance Refs. [14-18]). This paper presents a

new nonparametric probabilistic model of random uncertainties for reduced matrix models of structures

in order to predict transient responses due to impulsive loads. The information used does not require

the description of the local parameters of the mechanical model. This nonparametric model of random

uncertainties is based on a probability model introduced in Refs. [19,20] for symmetric positive-definite

real random matrices deduced from the entropy optimization principle. The available information is

only constituted of the mean value of the generalized mass, damping and stiffness matrices of the mean

reduced matrix model which is deduced from the mean finite element model.

2. A probability model for symmetric positive-definite random matrices

In this section, we recall the main results established in Refs. [19,20] concerning the construction of a

probability model for random matrices with values in the set     !! of all the     ! real symmetric
positive-definite matrices using the entropy optimization principle which allows only the available in-

formation to be used. It should be noted that the results obtained and presented below differ from the

known results concerning the Gaussian and circular ensembles for random matrices such as orthogonal

(GOE), sympletic, unitary and antisymmetric hermitian ensembles which have been extensively studied

in the literature (see for instance Ref. [21]). In addition, we complete the construction given in Refs.

[19,20] in order to obtain a consistent probabilistic model which allows the convergence properties to be
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studied when dimension  approaches infinity.
2.1. Probability density function on the space of positive-definite symmetric real matrices and charac-

teristic function

Let   ! !! be the set of all the     ! real symmetric matrices. Let "A℄ be a random matrix with values

in   !  !! !   ! !! whose probability distribution!!A℄ $ "!A℄ "# ℄!  $#  %!
is defined by a probability density function "# ℄ "# "!A℄ "# ℄! from   !  !! into ! $ "& %'$" with
respect to the measure (volume element)  $# on   ! !! defined [19,20] by $# $ (!#! $%"&)$!#!$!! $"# ℄#$ &  (!
This probability density function is such that!   #!% "!A℄ "# ℄!  $# $ % &  *!
For all "+℄ in   ! !!, the characteristic function of random matrix "A℄ with values in   !  !! !   ! !! is
defined by ,!A℄ "+℄! $ '"-./ (% "+℄ % "A℄&!# in which% "+℄ % "A℄&$ tr'"+℄ "A℄%( $ tr'"+℄ "A℄(
where tr denotes the trace of matrices and where "A℄% denotes the transpose of matrix "A℄. We then have,!A℄ "+℄! $ !   #!% -./ (% "+℄ % "# ℄&! "!A℄ "# ℄!  $# &  0!
2.2. Available information for construction of the probability model

We are interested in the construction of the probability distribution of a second-order random variable"A℄ with values in   !  !! for which the available information is the mean value "# ℄ of random matrix"A℄, ''"A℄( $ !   #!% "# ℄ "!A℄ "# ℄!  $# $ "# ℄ %  1!
in which ' denotes the mathematical expectation and where mean value "# ℄ is given in   !  !!. In

addition, we assume that random matrix "A℄ is such that''23 det"A℄!( $ ) with ))) * '$ &  4!
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We proved in Refs. [19,20] that the constraint defined by Eq. (6) allows us to obtain the existence of

moments related to the inverse random matrix  A℄  ,    A℄    !! ! "! " #$%
in which # " & is a positive integer and where   $ ℄  ! ' "

tr# $ ℄  $ ℄"$# #! is the Frobenius norm of

matrix  $ ℄ in  $#!% (the set of all the #%%%% real matrices). Consequently, from Eqs. (3), (5) and (6),

we deduce that the constraints imposed for the construction of the probability model of random matrix A℄ with values in  "$ #!% are $   #!$ &%A℄# $ ℄% %'$ ' & " #(%$   #!$  $ ℄ &%A℄# $ ℄% %'$ '  $ ℄ &  "$ #!% " #)%$   #!$ *+#det A℄% &%A℄# $ ℄% %'$ ' ( " #&,%
in which '(' ! "!.

2.3. Probability model using the maximum entropy principle

The measure of entropy [22] and the maximum entropy principle [23,24] are introduced to construct the

probability model of random matrix  A℄ with values in  "$ #!% based only on the use of the available
information defined by Eqs. (8)-(10). Let )% be the real parameter such that & ( )% is the Lagrange

multiplier corresponding to the constraints defined by Eq. (10). It can then be proved [19,20] that, for)% * , and  -℄ &  &$#!%, probability density function &%A℄# $ ℄% and characteristic function .%A℄# -℄%
of positive-definite random matrix  A℄ are written as&%A℄# $ ℄% ' "   #!$# $ ℄%%
%%"det $ ℄#'!  % /01&( #%( & " 2)%%2 tr# $ ℄   $ ℄$' " #&&%.%A℄# -℄%' 

det
" ,$℄ ( 2-#%( & " 2)%%  $ ℄  -℄#! #$  "!'!$#!" #&2%

in which det is the determinant of the matrices,  ,$℄ is the #%% %% unity matrix and where "   #!$# $ ℄%
is equal to 1 if  $ ℄ &  "$ #!% and is equal to zero if  $ ℄ .&  "$ #!%. When )% is an integer, the probability

distribution defined by Eq. (11) or (12) coincides with a Wishart distribution [25]. If )% is not an integer,

then the probability distribution defined by Eq. (11) or (12) is not a Wishart distribution. In Eq. (11),

positive constant 
% is written as
% ' #2/% $#$  $#' "$  "!'!! #$#$  "!'!$#! 3$(( 4"$ ("!'!! #!#det $ ℄%#$  "!'!$#! " #&5%
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where  ! " is the gamma function defined for  !  " # by  ! " $    ! # !" !!! $#. The range of

parameter %" satisfying Eq. (7) in which & ! % is a positive integer has to be determined. For & ! %, it
can be proved that %" " & & % $" '!#'A℄!"##$" ( &$ ) & ! % * !%)"
In addition, we have %" " # $" '!#'A℄#%$" ( &$ ) %+ " # * !%*"
Equation (15) means that for %" " #, all the moments of random matrix 'A℄ exist (+ is any positive

integer). The covariance ,"&'(& ' $ '!!'A℄&' & '- ℄&'"!'A℄& ' & '- ℄& ' "" of random variables 'A℄&'
and 'A℄& ' is written as,"&'(& ' $ !.& % & +%""!"!'- ℄& ''- ℄&' & '- ℄&& '- ℄'' " ) !%,"
and the variance / "&' $ ,"&'(&' of random variable 'A℄&' is such that / "&' $ !.& % & +%""!"!'- ℄#&' &'- ℄&& '- ℄''".
Since '-℄ is a positive-definite real matrix, there is an upper triangular matrix '0"℄ in  )!!" such that'-℄ $ '0"℄* '0"℄ ) !%-"
which corresponds to the Cholesky factorization of matrix '-℄. Considering Eq. (17), random matrix'A℄ can be written as 'A℄ $ '0"℄* 'G"℄ '0"℄ ) !%."
in which matrix 'G"℄ is a random variable with values in   ) !!". From Eqs. (5) and (18), we deduce

that the mean value '1"℄ of random matrix 'G"℄ is such that'1"℄ $ '''G"℄( $ ' 2)℄ * !%/"
The probability density function 3$G ℄!'1℄" with respect to measure #$1 on  +)!!" of random matrix'G"℄ with values in   ) !!" is given by Eqs. (11) and (13) in which '-℄ has to be replaced by ' 2)℄. We

then have3$G ℄!'1℄" $ "  ! &!'!'1℄"),, )$
det'1℄%- !" ) 012&& !.&%&+%""+ tr'1℄' ) !+#"

in which positive constant ,, is such that,, $ !+4"!)&)!"'.( $)!" #- # %)&)!" #- '.#!3)&)" $)!& #- # %" * !+%"
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FromEqs. (16) and (18), we deduce that the covariance  !"#! " of randomvariables  G$℄!" and  G$℄! " ,
defined by   !"#! " " ! # G$℄!"   "$℄!"$# G$℄! "   "$℄! " $!, is written as  !"#! " " ## % & '$$$    "$℄! " "$℄!" &  "$℄!!  "$℄"" ! % #''$
Since  "$℄ "  &%℄, the variance '  !" "   !"#!" of random variable  G$℄!" is such that'  !" " ## % & '$$$  #% & Æ!"$ ) #'($
in which Æ!" " ) if * !" + and Æ!! " %. Let Æ$ , ) be defined byÆ$ " "!"#  G$℄  "$℄ #!& $#  "$℄ #!& # '! % #'*$
Equation (23) yields !"#  G$℄   "$℄ #!&$ " $!$" '  !" " ### & %$##  % & '$$$  and since#  "$℄ #!& " #  &%℄ #!& " #, we deduce thatÆ$ " " #& %# % & '$$# '! ) #'+$
and consequently, $$ " -$##$ ) #',$
in which # %& -$##$ is the mapping defined on the set  ! of all positive integers such that-$##$ " % Æ!$'Æ!$ #& % & Æ!$'Æ!$ % #'-$
From Eqs. (14) and (25), we deduce that parameter Æ$ has to be such that) . Æ$ .% #& %#& % & '/ . % ) / ' % ) (# ' % % #'.$
Equation (28) shows that / has to be chosen as small as possible in order to increase the domain of

possible values for Æ$. From convergence considerations when # & &) and from Eq. (28), it can be

deduced that / " ' is an optimal value (see Ref. [26]). Let #" ' % be a fixed integer. Taking the value/ " ', we then deduce that, if parameter Æ$ satisfies) . Æ$ .%#" & %#" & + ) #'/$
then, (# ' #", we have $$ " -$##$ , / & % " ( and consequently, Eq. (14) holds. These equations

will be used as follows. The lower bound #" of positive integer # is fixed. Then, the dispersion of

the probability model is fixed by giving parameter Æ$, independent of #, a value such that Eq. (29) is
satisfied. For each value of integer # ' #", parameter $$ " -$##$ is then calculated by using Eq. (27).
Consequently, $$ " -$##$ appears as a function of #.
C. Soize - Submitted to Proba. Eng. Mech. - Revised version - April 2001 ,



2.4. Monte Carlo simulation of random matrix  A℄ when   is an integer

When   " ! #"$ is a positive integer, we introduce the positive integer# such that# #"$ " " % & '! #"$ $ #()$
Substituting Eq. (27) in the right-hand side of Eq. (30) yields# #"$ " #"& %$%Æ  $ #(%$
Since# #"$ is a positive integer, it can be verified that the probability distribution defined by Eq. (11)
or (12) is a Wishart distribution [25] and that random matrix  A℄ can be written [19,20] as A℄ " %# #"$ ! !"" ##$ ! ' ℄$ X#" ! ' ℄$ X#"$ (  !"#
in which $  ℄ is the upper triangular matrix defined by Eq. (17) and where X ! " " " !X! !"" are

independent random vectors, each vectorX# being an "-valued second-order Gaussian random variable,

centered and whose covariance matrix is $#X! ℄ & $ X#X$# ! & $ %"℄. Consequently, Eq. (32) gives an
efficient procedure for the Monte Carlo simulation of random matrix $A℄.
2.5. Monte Carlo simulation of random matrix $A℄ when & is a not an integer

Let us now assume that & & '  (#, given by Eq. (27), is a positive real number (the particular case for
which & is a positive integer is presented above in Section 2.4). Since $G ℄ defined by Eq. (18), is a
random matrix with values in !#"   #, the Cholesky factorization allows us to write$G ℄ & $L ℄$ $L ℄ a.s. !  !!#
in which $L ℄ is an upper triangular random matrix with values in !"  #. The following results, which
allow a procedure for the Monte Carlo simulation of randommatrix $A℄ to be defined, are proved [19,20]:
(1) Random variables  $L ℄## ! ) " ) ! are independent.
(2) For ) * ) , real-valued random variable $L ℄## can be written as $L ℄## & "! %$ $ L ℄## in which$ L ℄## is a real-valued Gaussian random variable with zero mean and variance given by+ & "  (# ' ( "'  (##! "  !)#
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(3) For     , positive-valued random variable !L ℄!! can be written as !L ℄!!   !Y! in which ! is
given by Eq. (34) and where Y! is a positive-valued gamma random variable whose probability density

function with respect to "# is given by#!$#%    !""! $#%#!#"!"#$ $#%# " #  ! "!"#  !##" "& $"% % $&'%
(4) We have !G ℄  !L ℄& !L ℄ and !A℄  !& ℄& !G ℄ !& ℄.
2.6 . Probability model of a set of positive-definite symmetric real random matrices

Let us consider ' randommatrices !A&℄( % % % ( !A'℄with values in!"# $"% such that for each  in  (( % % % ( '!,
the probability density function of random matrix !A! ℄ satisfies Eqs. (8)-(10). This means that only

the mean values of the random matrices are known. Applying the maximum entropy principle, it can

be proved that the probability density function $!)&℄( % % % ( !)' ℄% "# * A$℄"(((" A$ ℄$!)&℄( % % % ( !)'℄% from!"# $"% $ % % % $ !"# $"% into "" with respect to the measure (volume element) #")& $ % % % $ #")' on!)#$"%$ % % %$ !)#$"% is written as* A$℄"(((" A$ ℄$!)&℄( % % % ( !)'℄%  * A$℄$!)&℄%$ % % %$ * A$ ℄$!)' ℄% ( $&)%
which means that !A&℄( % % % ( !A' ℄ are independent random matrices.

3. Transient responses of structural dynamical systems with random uncertainties

3.1. Introduction of the mean finite element model for transient responses to impulsive loads

Let us consider the linear transient reponse of a damped fixed structure around a static equilibrium

configuration considered as a natural state without prestresses, submitted to an impulsive load. We

introduce the finite element model considered as the “mean finite element model” of this mechanical

system. The transient response  y$+% ( + % *! of this mean finite element model is the solution of the
following time evolution problem!! ℄ +y$+% , !# ℄ -y$+% , !$ ℄ y$+%  x$+% ( + % * ( $&.%
with the initial conditions,

y$*%  y! ( -y$*%  y& ( $&/%
in which y  $#&( % % % ( #*% is the transient response vector of the , DOFs (displacements and/or

rotations), x  $-&( % % % ( -*% is the impulsive load vector of the , inputs (forces and/or moments), y!
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and y are the given initial conditions for displacement and velocity vectors y and  y respectively. The
mass, damping and stiffness matrices ! ℄, !! ℄ and !" ℄ are positive-definite symmetric #   $ real
matrices (the structure being assumed to be fixed, there are no rigid body displacements). Note that

underlined quantities refer to the “mean finite element model”.

3.2. Introduction of the mean reduced matrix model

The mean reduced matrix model is constructed using the mode-superposition method. We consider

the generalized eigenvalue problem !" ℄ % ! ! ℄ associated with the mean finite element model.

Since !" ℄ is a positive-definite matrix, we have & " ! ! !! ! # # # and the associated eigenvectors"  $ !$ # # ## are such that " ! ℄  $ !%% & Æ ! and " !" ℄  $ !%% & (! Æ ! , in which ( % ! is the eigenfrequency of structural mode   whose normalization is defined by the generalized

mass & and where "y $ x%% ) * ' # # #' )" *".
The mean reduced matrix model related to structural modes "  $ # # # $ ## with + $  is then written

as

y##,$ % ! ( ℄ q#,$ % #! " - #,$  $ #)*$
in which ! ( ℄ is the #  +$ real matrix whose columns are constituted of structural modes "  $ # # # $ ##
and where q#,$ % #- #,$$ # # # $ -##,$$ is an + real vector of the generalized coordinates which is the

unique solution of the time evolution mean reduced matrix problem,!. ℄ +q#,$ ' !/ ℄  q#,$ ' !0 ℄ q#,$ % F#,$ $ , % & $ #,&$
with the initial conditions,

q#&$ % q# $  q#&$ % q $ #,-$
in which the generalized force F#,$ is an + real vector such that

F#,$ % ! ( ℄$ x#,$ # #,.$
The generalized mass, damping and stiffness matrices !. ℄, !/℄ and !0℄ are positive-definite symmetric#+ +$ real matrices such that !. ℄ ! % & Æ ! , !/℄ ! %" !! ℄ !$  % and !0℄ ! % & (! Æ ! .
The initial conditions q# and q are such that q# % !. ℄  ! ( ℄$ ! ℄ y# and q % !. ℄  ! ( ℄$ ! ℄ y .
It is assumed that + is such that y##,$, given by themean reduced matrix model defined by Eqs. (39)-(42),
is a good approximation of y#,$ given by the mean finite element model defined by Eqs. (37)-(38).
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The response ratio    !! at time !, associated with the elastic energy of transient response y  !! of the
mean model and calculated with the mean reduced matrix model, is defined by   !! " " # ℄y !! # y !!$ !!" # ℄y" # y"$  !!" " #% ℄q !! # q !!$ !!" # ℄y" # y"$  !! #  %&!
in which y" " # ℄  xmax with xmax " '()#!" x !!, corresponds to the maximum of the quasi-static

response constructed with the mean finite elemnt model. The dynamic magnification factor & of the

mean model (associated with the elastic energy) is defined by& " '()#!"    !! '  %%!
For ( " ),  $ !! is the response ratio associated with transient response  y !!# ! ! *" of the mean

finite element model (see Eqs. (37)-(38) and is written as $ !! "" # ℄y !! # y !!$ !!" # ℄y" # y"$  !! '  %+!
The convergence with respect to ( can be analyzed in studying response ratio    !! at time ! and dynamic
magnification factor & .
3.3. Construction of a nonparametric model of random uncertainties for the reduced matrix model

In this section, we introduce the principle of construction of a nonparametric model of random uncer-

tainties, the available information being constituted of the mean reduced matrix model of the structure.

It should be noted that the mean finite element model defined by Eqs. (37)-(38) is not able to predict

the transient response due to impulsive load whose energy is distributed over a very broad frequency

band, i.e. over the low-, medium- and high-frequency ranges (for instance, if there is energy in the

medium-frequency range, more advanced probabilistic mechanical models such as the fuzzy structure

theory have to be used to take into account the role played by the structural complexity [14]); the most

that this kind of deterministic mean finite element model is able to predict is the transient response due

to impulsive loads whose energy is mainly distributed over a broad low-frequency range for which the

mean reduced matrix model defined by Eqs. (39)-(42) is suitable and allows the transient response to

be predicted with good accuracy. This means that the mean finite element model does not constitute

available information for constructing the nonparametric model of random uncertainties. However, the

mean reduced matrix model defined by Eqs. (39)-(42) (with ( not too large) does constitute the available
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information for constructing the transient response of the mean model, then constructing the probability

model of random uncertainties. This probabilistic model is a nonparametric model of random uncer-

tainties because the sources of random uncertainties in the mechanical model which are due to uncertain

mechanical parameters such as geometrical parameters, boundary conditions, junction stiffness, mass

density, Young’s modulus, etc., are not directly modeled by random variables or stochastic fields. These

random uncertain geometrical and mechanical parameters mean that the generalized mass, damping and

stiffness matrices of the reduced matrix model are randommatrices. The nonparametric model of random

uncertainties which is proposed consists in introducing a direct construction of a probabilistic model of

these random generalized matrices. This random reduced matrix model associated with themean reduced

matrix model is then written as

Y   ! " #$ ℄Q  ! "   ! !   !!  "  "#!
in which Q !! $     !!" # # # "  ! !!! and where  Q !! " ! ! %" is an  !-valued stochatic process such
that &M℄ (Q !! ) &D℄ *Q !! ) &K℄Q !! $ F !! " ! ! % "  "+!

Q %! $ q! " *Q %! $ q "  ",!
in which generalized force F !! is the  !-valued vector defined by Eq. (42), where initial conditions
q! and q have been previously defined and where &M℄, &D℄ and &K℄ are the random generalized mass,

damping and stiffness matrices with values in space !"!   !. The basic available information is the mean
reduced matrix model which is constituted of mean generalized mass, damping and stiffness matrices&$ ℄, &% ℄ and && ℄ defined in Section 3.2 and which belong to !"!   !. Random generalized mass,

damping and stiffness matrices &M℄, &D℄ and &K℄ are second-order random variables with values in!"!   !
such that ' &M℄" $ &$ ℄ " ' &D℄" $ &% ℄ " ' &K℄" $ && ℄ #  "-!
In addition, in order to obtain a consistent probabilistic model and in particular, to obtain convergence

properties of stochastic transient response  Y! !!" ! ! %" when dimension ( approaches infinity, we

need to introduce information relative to the existence of moments of random variables &M℄  , &D℄  
and &K℄  (such as second-order moments). It should be noted that since random matrices &M℄, &D℄
and &K℄ are almost surely positive definite, the inverse matrices exist almost surely, but the existence of
second-order moments does not follow. We therefore introduce the following constraints,' #&M℄  ##"! ) )$ " ' #&D℄  ##"! ) )$ " ' #&K℄  ##"! ) )$ #  .%!
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We then have to construct a probability model for symmetric positive-definite real random matrices  M℄, D℄ and  K℄ with the available information defined by Eqs. (49)-(50). This construction is performed
using the results presented in Section 2.

3.4. Nonparametric probability model of the reduced matrix model

In this section we complete the construction of the probability model introduced in Section 3.3 using the

developments of Section 2. Let    " be a fixed integer and     . We apply the results of Section 2

to the set of positive-definite symmetric real random matrices ! M℄!  D℄!  K℄" defined in Section 3.3, for
which the available information is described by Eqs. (49)-(50). As indicated in Section 2.3, the levels of

dispersion of randommatrices  M℄,  D℄ and  K℄ are controlled by parameters Æ , Æ! and Æ" respectively,

which are independent of  and are chosen such that (see Eq. (29)),# # Æ ! Æ! ! Æ" #   $ "  $ % $ &%"'
Parameters % , %! and %" are defined by Eq. (26),% ( & & ' ! %! ( &!& ' ! %" ( &"& ' ! &%)'
in which & & ', &!& ' and &"& ' are given by Eq. (27),& & ' ( "# Æ! )Æ!  $ " $ Æ! )Æ! ! &%*'&!& ' ( "# Æ!!)Æ!!  $ " $ Æ!!)Æ!! ! &%+'&"& ' ( "# Æ!")Æ!"  $ " $ Æ!")Æ!" $ &%%'
From Section 2.6, we deduce that random matrices  M℄,  D℄ and  K℄ are independent random variables

with values in  "# &!' and their probability density functions '#M℄& ( ℄', '#D℄& ) ℄' and '#K℄& * ℄' with
respect to the measures (volume elements) !+( , !+) and !+* on  $#&!' are given by Eqs. (11) and (13),
and their characteristic functions by Eq. (12).
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3.4. Construction of the stochastic transient response

For fixed positive integer     , we have to construct stochastic processes !Y  !!" !  "" defined by
Eqs. (46)-(48), stochastic process !#  !!" !  "" defined (see Eq. (43)) by#  !! # $ $ ℄Y  !! "Y  !!%!!"$ $ ℄y" " y"% !!"# $ $& ℄Q !! "Q !!%!!"$ $ ℄y" " y"% !!" "  &'!
and finally, random variable ' defined (see Eq. (44)) by' # ()*#! #  !! (  &+!
Below, we present a formulation which is adapted to Monte Carlo numerical simulation.

For given matrices $) ℄" $* ℄" $& ℄ in !#  "! let ! #$ q
F$q $q! !, $) ℄" $* ℄" $& ℄! be the solution from "#

into " of the deterministic second-order differential equation$) ℄ -q
F$q $q! !! . $* ℄ /q

F$q $q! !! . $& ℄ q
F$q $q! !! # F !! " !  " "  &0!

with the initial conditions

q
F$q $q! "! # q " /q

F$q $q! "! # q! (  &1!
We deduce that stochastic process !Q !!" !  "" which is the solution of the stochastic dynamical

problem defined by Eqs. (47)-(48), can be written as

Q !! # q
F$q $q! !, $M ℄" $D ℄" $K ℄! (  '"!

It should be noted that if q # q! # ", then Q !! can usually be written as
Q !! #  # $+ !%,!℄F ,! -, "  '2!

in which ! #$ $+ !!℄ is the matrix-valued impulse response function of the linear filter associated with
second-order differential Eq. (58). If q #$ $. q!℄ is a mapping from " into the set !%!$%" "! of all the /!&/"! real matrices, we have0!$. Q !!!℄" #   # $!%   # $!%   # $!%$. qF$q $q! !, $) ℄" $* ℄" $& ℄! !℄& 1&M℄ $) ℄!& 1&D℄ $* ℄!& 1&K℄ $& ℄! !-) !-* !-& (  '3!
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For instance,    !! defined by Eq. (56) can be written as    !! " #" Q !!!℄ with # " #! " %.
Calculation of the stochastic transient response of the dynamical system with random uncertainties

requires the numerical construction of mapping !  ! q
F!q !q! !& #$ ℄% #& ℄% #' ℄! ! as the solution of the

deterministic Eqs. (58)-(59). Since matrices #$ ℄, #& ℄ and #' ℄ are full matrices (not diagonal) as
samplings of random matrices #M℄, #D℄ and #K℄, any integral representation of Q !! (for instance such
as Eq. (61) when q" " q " ') is not really efficient but second-order differential Eq. (58) is solved
directly using an unconditionally stable implicit step-by-step integration method (such as the Newmark

integration scheme [16]) with initial conditions defined by Eq. (59). In addition, we have to calculate

multiple integrals in a higher dimension (see Eq. (62)) for which a well suited method consists in using

a Monte Carlo calculation with or without variance reduction procedures [27-30]. This method is very

efficient if there is a Monte Carlo simulation procedure for randommatrices #M℄, #D℄ and #K℄which is the
case of themethod presented in Sections 2.4 and 2.5. It should be noted that for many applications, integer( is sufficiently high that )" , )# and )$ can be considered as positive integers without introducing any

significant limitation in the model. Applying Eqs. (31)-(32) to random matrices #M℄, #D℄ and #K℄ yields#M℄ " %*"  (! % # $ &% !#+" ℄' X&" !#+" ℄' X&"' %  ()!#D℄ " %*# (! %!# $ &% !#+#℄' Y&" !#+#℄' Y&"' %  (*!#K℄ " %*$ (! %"# $ &% !#+$ ℄' Z&" !#+$ ℄' Z&"' %  (+!
in which*"  (! " Fix

#(, %Æ!" $ % *# (! " Fix

#(, %Æ!# $ % *$ (! " Fix

#(, %Æ!$ $ %  ((!
where Fix -! is equal to - when - is an integer and Fix -! rounds down - , % to the nearest integer

when - is not an integer. In Eqs. (63)-(65), #+" ℄, #+#℄ and #+$ ℄ are upper triangular matrices in    !!
corresponding to the Cholesky factorization of symmetric positive-definite matrices #$ ℄, #&℄ and #'℄:#$ ℄ " #+" ℄' #+" ℄ % #&℄ " #+#℄' #+#℄ % #'℄ " #+$ ℄' #+$ ℄ .  (-!
The set of all the components of vectors X % . . . %X% # $, Y % . . . %Y%!# $ and Z % . . . %Z%"# $ with
values in ! is constituted of*"  (!"(,*# (!"(,*$ (!"( independent random variables, each

of which is a real-valued second-order normalized Gaussian random variable (zero mean value and unit

variance).
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4. Simple example

The mean structure is constituted of a rectangular homogeneous and isotropic plate located in the plane  !" #! of a Cartesian coordinate system   !#$!, in bending mode (the outplane displacement is $),
with constant thickness "  #$  m, width $%"$ m, length $%%$ m, mass density &'$$ kg/m!, Young’s
modulus (%#  #$"" n/m# and Poisson ratio $%(). This plate is simply supported on 3 edges and free
on the fourth edge corresponding to # * $ (see Figure 1). The mean finite element model is constituted
of a regular rectangular mesh with a constant step size of $%$# m in ! and # (41 nodes in the width, 51
nodes in the length). Consequently, all the finite elements are the same and each one is a 4-nodes square

plate element. There are 2000 finite elements and & * +$$) degrees of freedom ($-translations and !-
and #-rotations). The eigenfrequencies ' * (() of the mean finite element model are )" * #%)",)# * #$%(', )! * #%%"&, % % %, )#$ * #+&%"", % % %, )%& * %(&%() Hz. The initial conditions defined by
Eq. (38) are such that y& * y" * $. External impulsive load vector x *! defined in Section 3.1 is written
as x *! * + *! g. Spatial part g *  ,"" % % % " ,!! !  ! is independent of time * and is such that ," * $
for all - in "#" % % % "&# except for the nine DOFs corresponding to the nodes whose  !" #! coordinates are $%,$" $%(%!,  $%,$" $%(+!,  $%,$" $%(&!,  $%,#" $%(%!,  $%,#" $%(+!,  $%,#" $%(&!,  $%,(" $%(%!,  $%,(" $%(+!
and  $%,(" $%(&!, for which ," * # (see Figure 1). Impulse function * $% + *! is the rectangular impulse
function defined by + *! * +max!'&#$ ℄ *! with +max * # and *" * $%" s, in which !'&#$ ℄ *! * # if* ! -$" *"℄ and !'&#$ ℄ *! * $ if * .! -$" *"℄. Figure 2 shows the graph of impulse function * $% + *! anf
Figure 3 shows the graph of the modulus of its Fourier transform. It can be seen in Figure 3 that the

main part of the energy of impulse function + is distributed over the -&#% " #%℄ Hz frequency band in
which there are 3 structural modes of the mean model. Consequently, only the first structural modes

significantly contribute in the dynamical response and the structural modes whose eigenfrequencies are

greater that #+' Hz (/ 0 (%) contribute mainly in the quasi-static response and not in the dynamical
response. The mean damping matrix is -" ℄ * ( 1/ref-# ℄ with /ref * ((  #$ and 1 * $%$$#. The
transient response of the mean finite element model is calculated by solving the time evolution problem

defined by Eqs. (37)-(38) with y $! * 0y $! * $ using an unconditionaly stable implicit step-by-step

integration method (Newmark integration scheme) with a time-step size 1* * #.#,$$ s. The maximum$%% 2 -3 ℄y% " y%0 of the quasi-static elastic energy of the mean finite element model is equal to (%%%(.
The dynamic magnification factor 4! * 234$!& 5! *!, in which 5! *! is calculated by Eq. (45), is
equal to #%%)%. For fixed positive integer /, the mean reduced matrix problem defined by Eqs. (40)-(41)

with q $! * 0q $! * $ is solved with the same Newmark integration scheme with the same time step size
C. Soize - Submitted to Proba. Eng. Mech. - Revised version - April 2001 #%



  ! "!"#$$ s. Figure 4 shows the convergence of the dynamic magnification factor " of the mean

model, defined by Eq. (44), as dimension # of the mean reduced matrix model increases. From Figure

4, it can be deduced that the transient response of the mean model is reasonably converged when # ! %$
for which " ! "$&%'. Figure 5 shows the graph of function   ! % ( ) for # ! %$.
Concerning the structure with random uncertainties, we choose # ! " which allows the convergence
analysis with respect to dimension # of the reduced matrix model with random uncertainties to be

performed for # " # ! ". The dispersions of the generalized mass, damping and stiffness random

matrices of the reduced matrix model with random uncertainties, are controlled by parameters Æ! , Æ"
and Æ# introduced in Section 3.4, which have to verify the constraints defined by Eq. (51),$ ' Æ! ( Æ"( Æ# ' $$*' $ (+%)
The numerical simulations presented below correspond to the valuesÆ! ! $$" ( Æ" ! $$" ( Æ# ! $$" ( (+,)
which verify Eq. (68). We are interested in the random response ratio) ( ) defined by Eq. (56) and the
random dynamic magnification factor * defined by Eq. (57). The transient response of the structure

with random uncertainties is calculated using the Monte Carlo numerical simulation method. For given

generalized mass, damping and stiffness matrices, the time evolution problem defined by Eqs. (58)-(59)

is solved with the same Newmark integration scheme and with the same time step size   ! "!"#$$ s.
The Monte Carlo numerical simulation is carried out with #$ ! "$$$ samples, denoted as +!( $ $ $ ( +  ,
for which the samples   ! ) ( - +!)( $ $ $ (   ! ) ( - +  ) are numerically calculated. For  fixed, the
mean value of random variable ) ( ) is estimated by,#) ( )$ % "#$    %"! ) ( - +%) $ ('$)
The samples of random variable * are such that* (+%) ! ./0&  ) ( - +%) $ ('")
The mean value of random variable * is estimated by,#* $ % "#$    %"!* (+%) $ ('1)
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Finally, we introduce the function   ! ! !max  !  " and the real number " !max  " defined by! !max  !  " # $%&" !!###!     ! ! "!" #  #$"$ "max  " % &'(! !"###"  $  "!" #  #)"
in which  %  "!# % % % # "  ". Figure 6 shows function &  ! '"$ # calculated by Eq. (72) and Figure
7 shows the function &  ! $ "max  " calculated by Eq. (74). Figures 6 and 7 show that a reasonable

convergence is obtained for & % *+ and for & % *+, the value of $ "max  " is ,%-#-. This value has to
be compared to the value for the mean model which is ,%)*#. Figure 8 is relative to & % *+ and shows
three curves: the lower irregular thin solid line corresponds to the graph of function !  ! (  !", the lower
smooth thick solid line to the graph of function !  ! '"   !"# calculated by Eq. (70) and the upper
irregular thin solid line to the graph of function !  !   "max ! !  " defined by Eq. (73).
5. Conclusion

We have presented a new approach allowing the random uncertainties to be modeled by a nonparametric

model for prediction of transient responses to impulsive loads in linear structural dynamics. The in-

formation used does not require the description of the local parameters of the mechanical model. The

probability model is deduced from the use of the entropy optimization principle whose available infor-

mation is constituted of the fundamental algebraic properties related to the generalized mass, damping

and stiffness matrices which have to be positive-definite symmetric matrices, and the knowledge of

these matrices for the mean reduced matrix model. An explicit construction and representation of the

probability model have been obtained and are very well suited to algebraic calculus and to Monte Carlo

numerical simulation in order to compute the transient responses of structures submitted to impulsive

loads. The numerical analysis related to the convergence of the stochastic solution with respect to the

dimension of the random reduced matrix model has been carried out.
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Figure 1. Geometry of the mean structure
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Figure 3. Graph of the modulus of the Fourier

transform of impulse function.
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