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Algebraic model of a wall acoustic impedance constructed using an experimental data

In the context of a research devoted to the construction of a wall acoustic impedance model for a soundproofing scheme constituted of a porous medium inserted between two thin plates, an experimental data basis was carried out. In this paper, we present a probabilistic algebraic model of a wall acoustic impedance, constructed using this experimental data basis and allowing such a soundproofing scheme to be modeled. This kind of probabilistic algebraic model can be used for validating finite element model of such a soundproofing scheme whose equations are derived from the Biot theory, or for validating theoretical model, adapted to medium and high frequency ranges, deduced from Biot's equations. This probabilistic algebraic model is constructed by using the general mathematical properties of wall acoustic impedance operators (symmetry, odd and even functions with respect to the frequency, decreasing functions when frequency goes to infinity, behavior when frequency goes to zero and so onã). The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis.

Introduction

The modeling of a multilayer system containing poroelastic materials is very important for noise control in aircrafts, automobiles, buildings, etc. Lots of studies use numerical techniques such as the finite element method. Three-dimensional finite element numerical models have recently been developed [START_REF] Panneton | An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics[END_REF][START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF]. An alternative to the three-dimensional finite element models is the use of an equivalent wall acoustic impedance modeling the multilayer system. In this paper, we propose a probabilistic algebraic model for such a wall acoustic impedance based on theoretical developments. The unknown parameters of this model are fitted using an experiment recently carried out at ONERA [START_REF] Guillaumie | Wall acoustic impedance. Experimental identification[END_REF]. The studied multilayer system is constituted of a poroelastic material inserted between two thin plates. In a first section, the wall acoustic impedance experiment is described. The second section presents the construction of the basic algebraic model for this wall acoustic impedance constructed using general mathematical properties of wall acoustic impedance operators. In a third section, the mean values of the model parameters are fitted with experimental data basis. We then obtain the mean algebraic model. Finally, the last section deals with the construction of the probabilistic model.

Description of a wall acoustic impedance experiment

An experiment [START_REF] Guillaumie | Wall acoustic impedance. Experimental identification[END_REF] was carried out in an anechoic room in order to measure the wall acoustic impedance of a multilayer system constituted of a three-dimensional poroelastic medium inserted between two thin plates in aluminium, denoted as P 1 and P 2 (see figure 1). Normal concentrated forces are successively applied to the 25 points in plate P 1 defined in figure 2. The measured responses are the normal accelerations at the 25 points in plate P 1 and at the corresponding 25 points in plate P 2 . Let F exp k (ω) be the Fourier transform of the normal concentrated force applied to the point M k belonging to the 25 points in plate P 1 . Let V P1 exp jk and V P2 exp jk be the Fourier transform of the normal velocities at the point M j belonging to the 25 points in plate P 1 and at the corresponding point in plate P 2 . The experiment consisted in identifying the 25 frequency response functions defined by

F exp k (ω) →           V P1 exp 1k (ω) -V P2 exp 1k (ω) . . . . . V P1 exp N k (ω) -V P2 exp N k (ω)           , (1) 
for k equal 1 to 25, N =25, and over the frequency band [30,1600] Hz.

Construction of the basic algebraic model for a wall acoustic impedance density function

Setting the problem

The theoretical problem considered introduces an applied pressure acting on plate P 1 . Let vP2 (x ′ , ω) be the normal velocity to plate P 2 at the point x ′ of the middle surface S of plate P 2 . Let vP1 (x ′ , ω) be the normal velocity to plate P 1 at the corresponding point x ′ (see figure 3). x ω ( , ) p ^2 P 1
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Figure 3: Frequency response function : normal velocities vP1 (x ′ , ω) on plate P 1 and vP2 (x ′ , ω) on plate P 2 when a pressure is applied to plate P 1 .

Definition of the wall acoustic impedance density function

For all ω in Ê, the wall acoustic impedance operator describing the acoustic insulated system is the integral operator (ω) defined by a density function z(x, x ′ , ω) with complex values such that [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF][START_REF] Pierce | Acoustics : An Introduction to its Physical Principles and Applications[END_REF] :

p(x, ω) ={ (ω) (v P1 (., ω) -vP2 (., ω))}(x) = x ′ ∈S z(x, x ′ , ω) (v P1 (x ′ , ω) -vP2 (x ′ , ω)) dS x ′ , (2) 
in which (x, x ′ ) → z(x, x ′ , ω) is called the wall acoustic impedance density function. It should be noted that operator (ω) is defined by the complex bilinear form

< (ω) u, v >= S S z(x, x ′ , ω) u(x ′ ) v(x) dS x dS x ′ .
(3)

It is assumed that the reciprocity principles can be applied. Therefore, complex operator (ω) is symmetric and consequently, z(x, x ′ , ω) satisfies the following symmetry property,

z(x, x ′ , ω) = z(x ′ , x, ω) .
(4) Moreover, the system considered being a physical system, we have the property (-ω) = (ω) which yields

z(x, x ′ , -ω) = z(x, x ′ , ω) , (5) 
where a denotes the conjugate of complex number a. Introducing the real part and the imaginary part of the wall acoustic impedance density function as follows z(x, x ′ , ω) = z R (x, x ′ , ω) + i z I (x, x ′ , ω) , [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF] from Eqs. (4) and (5), we deduce that

z R (x, x ′ , ω) = z R (x ′ , x, ω) , z I (x, x ′ , ω) = z I (x ′ , x, ω) , (7) z R (x, x ′ , -ω) = z R (x, x ′ , ω) , z I (x, x ′ , -ω) = -z I (x, x ′ , ω) .
(8)

Local wall acoustic impedance density function

The local wall acoustic impedance density function z loc is defined by From Eqs. (2) and (9), we deduce that the local wall acoustic impedance density function is then written as z(x, x ′ , ω) = z loc (x, ω) δ 0 (xx ′ ) , (10) in which, for all x ′ inside S, δ 0 (xx ′ ) is the Dirac function such as

p(x, ω) = z loc (x, ω) (v P1 (x, ω) -vP2 (x, ω)) , ∀x ∈ S .
S φ(x) δ 0 (x -x ′ ) dS x = φ(x ′ ) . ( 11 
)
It should be noted that z loc (x, ω) differs from z(x, x ′ , ω) by a surface element. Introducing the real part and the imaginary part of the local wall acoustic impedance density function such that

z loc (x, ω) = z loc R (x, ω) + i z loc I (x, ω) , (12) 
from Eq.(8), we deduce that

z loc R (x, -ω) = z loc R (x, ω) , z loc I (x, -ω) = -z loc I (x, ω) . (13) 
For all x in S, the local wall acoustic impedance density function satisfies [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] 

z loc R (x, ω) > 0 , ∀ω ∈ Ê , -ω z loc I (x, ω) ≥ 0 , ∀ω ∈ [-ω 0 , ω 0 ] in which ω 0 > 0 , ( 14 
) lim ω→0 (-ω z loc I (x, ω)) = α(x) ≥ α min > 0 , (15) 
in which α min is a given real positive constant and x → α(x) is a positive-valued function defined on S. Equation (15) means that

z loc I (x, ω) ∼ -α(x)/ω if ω → 0 . ( 16 
)
For all x in S, function ω → z loc R (x, ω) is a continuous function on Ê and we have

lim ω→0 (ω z loc R (x, ω)) = 0 . ( 17 
)
From Eq.( 14), we deduce that

z loc (x, ω) = 0 , ∀x ∈ S , ∀ω ∈ Ê , (18) 
and from Eqs. ( 15) and (17), we deduce that

{i ω z loc (x, ω)} ω=0 = {-ω z loc I (x, ω)} ω=0 = α(x) > 0 . ( 19 
)
The real part corresponds to the dissipative part of z loc (x, ω) (acoustic impedance resistance). The imaginary part corresponds to the conservative part of z loc (x, ω) (acoustic impedance reactance). Let ∆û(x, ω) = ûP1 (x, ω) -ûP2 (x, ω) be the difference between the normal displacements of the two plates and let be ∆v(x, ω) = vP1 (x, ω) -vP2 (x, ω). We then have ∆v(x, ω) = i ω ∆û(x, ω) .

(20) From ( 9) and (20), we deduce that

p(x, ω) =z loc (x, ω) ∆v(x, ω) =i ω z loc (x, ω) ∆û(x, ω) =[-ω z loc I (x, ω) + i ω z loc R (x, ω)] ∆û(x, ω) .( 21 
)
Figure 4 displays a typical graph [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] for functions 

ω → z loc R (x, ω) and ω → z loc I (x, ω). 0 ω 0 ω - 0 ω

Model for the wall acoustic impedance density function

Let ζ(x, ω) defined as ζ(x, ω) = z(x, x, ω) . ( 22 
)
We introduce the real part and the imaginary part of 

ζ(x, ω), ζ(x, ω) = ζ R (x, ω) + i ζ I (x, ω) .
R (x, x ′ , ω) = z R (x, x ′ , ω) ζ R (x, ω) ζ R (x ′ , ω) .
(24)

For the imaginary part, there are ω such that ζ I (x, ω) = 0. Consequently, the normalization of the imaginary part is defined by

ρ I (x, x ′ , ω) = z I (x, x ′ , ω) |ζ(x, ω)| |ζ(x ′ , ω)| . ( 25 
)
We then obtain

z(x, x ′ , ω) = |ζ(x, ω)| |ζ(x ′ , ω)| ρ R (x, x ′ , ω) × ζ R (x, ω) |ζ(x, ω)| ζ R (x ′ , ω) |ζ(x ′ , ω)| + i ρ I (x, x ′ , ω) . ( 26 
)

Basic algebraic model

A detailed analysis of the experimental data basis was carried out. For the experiment under consideration, it can be considered that (1) the wall acoustic impedance can be considered as local in space for frequencies greater than 300 Hz (the local wall acoustic impedance assumption is not verified below 300 Hz); nevertheless, below, we present the results for all the frequency band; (2) for frequencies greater than 300 Hz, the wall acoustic impedance density function can be considered as homogeneous and isotropic. Consequently, z(x, x ′ , ω) depends only on ||xx ′ || and is rewritten as z(||xx ′ ||, ω). Therefore, ζ(x, ω) does not depend on x,

ζ(x, ω) = ζ(ω) . (27) 
Equation ( 26) is then rewritten as

z(||x -x ′ ||, ω) = |ζ(ω)| ρ R (||x -x ′ ||, ω) ζ R (ω) |ζ(ω)| +i ρ I (||x -x ′ ||, ω) . ( 28 
)
For the function ρ R (||xx ′ ||, ω), we propose the following algebraic model,

ρ R (||x -x ′ ||, ω) = e - ||x-x ′ || L R (ω) cos 2 π λ R (ω) ||x -x ′ || , (29) 
and

for ρ I (||x -x ′ ||, ω), ρ I (||x -x ′ ||, ω) = e - ||x-x ′ || L I (ω) cos 2 π λ I (ω) ||x -x ′ || +φ I (ω) .
(30)

Estimating the mean values of the basic algebraic model parameters using the experimental data basis

The objective is to estimate (1) the values of ζ R (ω), ζ I (ω), |ζ(ω)| and φ I (ω) and (2) a mean value of basic algebraic model parameters L R , λ R , L I , λ I and φ I denoted as L R , λ R , L I , λ I and φ I .

Estimation of ζ R (ω)

Since experimental values of ζ R (x j , ω) on all 25 measured points x j , j = 1 to 25, are close together, the assumption introduced concerning the space homogeneity is satisfied. Consequently, we introduce

ζ exp R (ω) = 1 25 25 j=1 ζ R (x j , ω)
which represents the experimental mean value. Figure 5 The model we propose for ζ R (ω) is defined by

ζ R (ω) = ζ R 0 + (ζ R max -ζ R 0 ) |ω| ω R0 γR e -aR |ω| ω R0 -1 b R , (31) 
in which the estimation of the parameters

ζ R 0 , ζ R max , ω R0 , γ R , a R and b R yields ζ R 0 = 1.678 × 10 6 Pa.s.m -3 , ζ R max = 4.717 × 10 6 Pa.s.m -3 , ω R0 = 5303 rad.s -1 , γ R = 2 , a R = 46 , b R = 2 .
(32) 

Intern
ζ I (ω) = a I ω b I ω 4 + c I ω 2 -1 + d I (ω 2 -ω 2 I0 ) 2 + e I ω 2 , (33) 

Calculation of modulus |ζ(ω)| and experimental comparison

Using Eqs(31) to (34), modulus |ζ(ω)| is calculated by

|ζ(ω)| = ζ R (ω) 2 + ζ I (ω) 2 , ( 35 
)
and the corresponding experimental value is 

|ζ exp (ω)| = ζ exp R (ω) 2 + ζ exp I (ω) 2 .

Calculation of φ I (ω) and experimental comparison

Phase φ I (ω) is deduced from Eqs.(25) and (30) (take x = x ′ ) and is written as

cos(φ I (ω)) = ζ I (ω) |ζ(ω)| . ( 36 
)
The correponding experimental value is such that

cos(φ exp I (ω)) = ζ exp I (ω)
|ζ exp (ω)| . Figure 8 shows the comparison of φ exp I (ω) with φ I (ω) defined by Eq.(36) over the frequency band [100,1600] Hz. 

Fitting the algebraic model of

ρ R (||x -x ′ ||, ω)
The algebraic model proposed for ρ R (||xx ′ ||, ω) is defined by Eq.(29). Many analyses were conducted to fit the experimental data basis with this algebraic model. The conclusions were that the best fitting is obtained when L R (ω) and λ R (ω) are taken as constants independant of ω. We then rewrite the algebraic model as

ρ R (||x -x ′ ||) = e - ||x-x ′ || L R cos 2 π λ R ||x -x ′ || , ( 37 
)
in which L R and λ R are independant of ω. From the fitting, we obtain the following values

L R = 0.0664 , λ R = 0.0771 . (38)
Consequently, concerning the experimental data, we introduce the function Figure 10 shows that the assumption introduced concerning the independance of L R and λ R with the frequency is acceptable taking into account that the final model is a probabilistic model. In figure 10, the dotted lines correspond to the graphs ω → ρ exp R (η, ω) for η = 0.075 m (in the experimental data basis, there are several couples of points (x, x ′ ) having the same distance η = ||xx ′ ||). For this value of η, the solid line represents ρ R (η) given by Eq.(37) with Eq.( 38). 

η → ρ exp R (η) = 1 |B| × B ρ exp R (η, ω) dω in which B is the frequency band and η = ||x -x ′ ||.

Expression of the parameters of the model of ρ

I (x -x ′ , ω)
The algebraic model proposed for ρ I (||xx ′ ||, ω) is given by Eq.( 30). Similarly, L I (ω) and λ I (ω) are taken as constants independant of ω. We then rewrite the algebraic model as

ρ I (η) = e -η L I cos 2 π λ I η + φ I , (39) 
in which L I and λ I are independant of ω and in which φ I is the average value such as

φ I = 1 |B| B φ I (ω) dω.
The average value φ I is given by Figure 11 shows the graph of η → ρ I (η) (solide line) and the graph of η → ρ exp I (η) (cross symbols). Figure 12 shows that the assumption introduced concerning the independance of L I and λ I with the frequency is acceptable taking into account that the final model is a probabilistic model. In figure 12, the dotted lines correspond to the graphs ω → ρ exp I (η, ω) for η = 0.075 m. For this value of η, the solid line represents ρ I (η) given by Eq.(39) with Eqs.( 40) and (41). A detailed analysis has been carried out in order to define the parameters of the basic algebraic model which had to be modeled by a random variable. The retained model is the basic algebraic model in which ζ R and |ζ| are modeled by the mean values estimated in sections 4.1 and 4.3, L R and L I are modeled by L R and L I estimated in sections 4.5 and 4.6 and where λ R , λ I and φ I are modeled by mutually independent random variables Λ R , Λ I and Φ I respectively, independent of frequency ω. By construction, the mean values of these three random variables are mean values λ R , λ I and φ I estimated in sections 4.5 and 4.6.

φ I = 1.1697 rad . (40) 

Estimating the probability distributions of the random parameters

Random variables Λ R and Λ I are positive-valued random variables and Φ I is a random variable with values in [0, 2 π]. We choose the maximum entropy distribution [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF] for each random variable Λ R , Λ I and Φ I . First, consider the case of Λ R (respectively Λ I ). The entropy S of an absolutely continuous distribution with probability density function p ΛR (λ) (resp. p ΛI (λ)) is defined by

S(p ΛR (λ)) = - Ê + p ΛR (λ) ln(p ΛR (λ)) dλ , (42) 
resp. S(p ΛI (λ)) = -

Ê + p ΛI (λ) ln(p ΛI (λ)) dλ .( 43 
)
The maximization of S, subject to the moment constraints,

Ê+ λ r p ΛR (λ) dλ = m R r , r = 0, 1, 2 , (44) resp. 
Ê+ λ r p ΛI (λ) dλ = m I r , r = 0, 1, 2 , (45) 
leads to

p ΛR (λ) = ½ Ê + (λ) C R 0 e -µ R 1 λ-µ R 2 λ 2 , (46) resp 
. p ΛI (λ) = ½ Ê + (λ) C I 0 e -µ I 1 λ-µ I 2 λ 2 , ( 47 
) in which C R 0 > 0, µ R
1 and µ R 2 > 0 (resp. C I 0 > 0, µ I 1 and µ I 2 > 0) have to be chosen such that the moment constraints be satisfied. Moments m R r , r = 0, 1, 2, (resp. m I r , r = 0, 1, 2) are defined by

m R 0 = 1 , m R 1 = λ R , m R 2 = λ R 2 + σ 2 ΛR , (48) resp. m 
I 0 = 1 , m I 1 = λ I , m I 2 = λ I 2 + σ 2 ΛI , (49) 
in which λ R (resp. λ I ) is the mean value and σ 2 ΛR (resp. σ 2 ΛI ) is the variance such that

E{Λ R } = λ R , σ 2 ΛR = E{(Λ R -λ R ) 2 } = E{Λ 2 R } -λ R 2 , (50) 
resp.

E{Λ I } = λ I , σ 2 ΛI = E{(Λ I -λ I ) 2 } = E{Λ 2 I } -λ I 2 .
(51)

Using the experimental data basis for estimating the parameters yields (62)

σ ΛR = 0.0324 , C R 0 = 0.926 > 0 , µ R 1 = -67.377 , µ R 2 = 442.809 > 0 , (52 
The mean value of random variable ρ R (η) and its variance are such that The upper envelope is constructed using Tchebychev's inequality [START_REF] Métivier | Notions Fondamentales de la Théorie des Probabilités[END_REF] for a real-valued centered random variable X,

E{ρ R (η)} = +∞ 0 p ΛR (λ) e -η L R cos 2 π λ η dλ , σ 2 ρR (η) = E{ρ R (η) 2 } -(E{ρ R (η)}) 2 . ( 63 
P(|X| ≥ ǫ) ≤ E{|X| 2 } ǫ 2 . ( 64 
)
We then have

P |ρ R (η) -E{ρ R (η)}| ≥ ǫ R (η) ≤ E{|ρ R (η) -E{ρ R (η)}| 2 } ǫ 2 R (η) . (65) 
Using Eq.(63) yields

P |ρ R (η) -E{ρ R (η)}| ≥ ǫ R (η) ≤ σ 2 ρR (η) ǫ 2 R (η) , (66) 
and consequently,

P |ρ R (η) -E{ρ R (η)}| ≤ ǫ R (η) ≥ P c , (67) 
Intern. Conf. on Noise and Vibration Engineering,ISMA 2002, Leuven, Belgium, Sept. [16][17][18]2002.

in which P c = 1 - σ 2 ρ R (η) ǫ 2 R (η) . Probability level P c being fixed, we obtain ǫ R (η) = σ ρR (η) √ 1 -P c . (68) 
Equation ( 67) is rewritten as

P -ǫ R (η) + E{ρ R (η)} ≤ ρ R (η) ≤ ǫ R (η) + E{ρ R (η)} ≥ P c . (69) 
Comparing Eq.( 69) with Eq.(61) yields

ρ + R (η) = E{ρ R (η)} + ǫ R (η) , (70) 
ρ - R (η) = E{ρ R (η)} -ǫ R (η) . (71) 
The confidence region corresponding to a probability level equal to 0.95 is shown in figure 13.

Construction of the probabilistic algebraic model for ρ I (η)

Operating as in Section 5.2, the real-valued random variable ρ I (η) is defined by

ρ I (η) = e -η L I cos 2 π Λ I η + Φ I . (72) 
The confidence region of ρ I (η) is defined by

P(ρ - I (η) ≤ ρ I (η) ≤ ρ + I (η)) ≥ P c , (73) 
in which the upper envelope is written as

ρ + I (η) = E{ρ I (η)} + ǫ I (η) , (74) 
and the lower envelope is written as

ρ - I (η) = E{ρ I (η)} -ǫ I (η) , (75) 
in which ǫ I (η) is such that

ǫ I (η) = σ ρI (η) √ 1 -P c . ( 76 
)
The mean value of random variable ρ I (η) and its variance are such that 

Conclusion

In this paper, we have presented a probabilistic algebraic model for a wall acoustic impedance modeling a multilayer system constituted of a poroelastic material and of two thin plates. This construction is based on theoretical developments and on an experimental data basis allowing the introduced hypotheses to be verified and allowing the unknown parameters of the probabilistic algebraic model to be fitted. The probabilistic algebraic model is constituted of the mean algebraic model and of the probability distribution of the random model parameters. This work has been performed in order to construct an algebraic representation of a large experimental data basis, using a small number of parameters for the algebraic model.
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 4 Figure 4: Acoustic impedance resistance z loc R (solid line) and acoustic impedance reactance z loc I (dash line) for a local wall acoustic impedance density function z loc as a function of frequency ω.
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 5 Figure 5: Graphs of ζ R (ω) (solid line) and of ζ exp R (ω) (cross) over the frequency band [100,1600] Hz.
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 2 Estimation of ζ I (ω) Similarly, we introduce ζ exp I (ω) = 1 25 25 j=1 ζ I (x j , ω) which represents the experimental mean value. Figure 6 displays the comparison of ζ exp I (ω) with ζ I (ω) over the frequency band [100,1600] Hz. The model we propose for ζ I (ω) is defined by

  in which the estimation of the parameters ω I0 , a I , b I , c I , d I andt e I yields ω I0 = 4.86 10 3 rad.s -1 , a I = 4.7 10 9 , b I = 8 10 -16 , c I = 1 10 -25 , d I = 1.6 10 14 , e I = 2.4 10 6 .

Figure 6 :
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  Figure 9 shows the graph of η → ρ R (η) (solide line) and the graph of η → ρ exp R (η) (cross symbols).

Figure 9 :

 9 Figure 9: Graphs of the function η → ρ R (η) with η = ||xx ′ || the distance (solid line) and of its envelope (dash line). Graph of the function η → ρ exp R (η) (cross symbols)
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 10 Figure 10: Graphs of the function ω → ρ exp R (η, ω) (dotted lines) and graph of the function ω → ρ R (η) (solid line) for η = 0.075 m
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 13 Figure 13: Confidence region of the random algebraic model η → ρ R (η), defined by the upper envelope η → ρ + R (η) (upper thick solid line) and the lower envelope η → ρ - R (η) (lower thick solid line). The solid line represents the graph of the mean algebraic model η → ρ R (η) defined by (37) and (38). The dot symbols (appearing as vertical solid lines for each value of distance η) correspond to the experimental data. The circle symbols correspond to the mean value of these experimental data
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 214 Figure 14: Confidence region of the random algebraic model η → ρ I (η), defined by the upper envelope η → ρ + I (η) (upper thick solid line) and the lower envelope η → ρ - I (η) (lower thick solid line). The solid line represents the graph of the mean algebraic model η → ρ I (η) defined by Eqs.(39) to (41). The dot symbols (appearing as vertical solid lines for each value of distance η) correspond to the experimental data. The circle symbols correspond to the mean value of these experimental data
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resp.

σ ΛI = 0.0274 , C I 0 = 1.012 > 0 , µ I 1 = -81.157 , µ I 2 = 622.792 > 0 .

(53)

For random variable Φ I , the entropy S is written as

with probability density function p ΦI (φ) defined by

in which C φ 0 , µ φ 1 and µ φ 2 have to be chosen such that

Moments m φ r , r = 0, 1, 2, are defined by

in which φ I is the mean value given by Eq.( 40) and

ΦI is the variance such that

(

Using the experimental data basis for estimating the parameters yields σ ΦI = 0.3745 rad , C φ 0 = 10.776 µ φ 1 = 11.124 , µ φ 2 = -1.623 .

(59)

Construction of the probabilistic algebraic model for ρ R (η)

From the basic algebraic model and from the hypotheses introduced at the beginning of Section 5, the real-valued random variable ρ R (η) is defined by

For a fixed value η of the distance, the confidence region of ρ R (η), corresponding to a given probability level P c , is defined by the upper envelope ρ + R (η) and the lower envelope ρ - R (η) such that

in which