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Abstract

Mathematical justi®cations are given for a Monte Carlo simulation technique based on memoryless transformations of Gaussian processes.

Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve

the functional equation yielding the underlying Gaussian process autocorrelation function.q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to the formidable progress of computer technology,

Monte Carlo simulation !MCS) methods are leaving their

benchmark method status to become fully effective methods

which are more and more integrated in industrial codes.

Consequently, industry is relying more heavily on MCS

methods for decreasing the design and construction costs

of their products, performing for instance damage and

fatigue optimization. In that context, they need to use

stochastic loads which match real-life loads which, as

many examples have shown, are typically non-Gaussian

rather than Gaussian processes.

Various methods have been proposed for generating

simulated paths of non-Gaussian processes [8

10,15,16,19 21,27]. The main conceptual dif®culty lies in

the characterization of the process: unlike Gaussian processes

which are determined solely through their ®rst- and second-

order probabilistic characteristics, one must know the entire

family of joint distributions {L�Xt1
;¼;Xtn

�; n $ 1; ti [ R}:

Of course, such a data is never available !at least for real-life

processes), and one has to deal with a truncated characteriza-

tion of the non-Gaussian process. The reasonable minimum

amount of information used to `approach' the real behavior

of the non-Gaussian process should at least include the one-

dimensionmarginal probability distribution and the correlation

function. However, even the one-dimensionmarginal distribu-

tion is not available and one has to deal instead with a given

number of statistical moments often.

Another essential aspect of MCSmethods which has to be

considered in order to ensure the soundness of the method,

as it is done for Gaussian simulation [18], is the conver-

gence behavior of approximation.

The goal of this paper is to propose a general method to

generate simulated paths of non-Gaussian homogeneous

random ®elds, based, as it is done for instance in Refs.

[3,20,21], on a Hermite polynomial expansion, given the

spectral measure of the random ®eld and either the one-

dimension marginal distribution or a ®xed number of statis-

tical moments. Different types of convergence will be given

for the approximating sequence. It will be shown how the

problem of determining the autocorrelation function of the

underlying Gaussian process can be approached by an opti-

mization problem. Two formulations will be given, whether

the underlying Gaussian process is generated using a

spectral approach method or a Markovian representation

method. Finally, results of applications including the

various aspects of the method will be given.

2. Method description

Let �V;A;P� be a probability space. For any x [ R;

Hermite polynomials are de®ned by:

H0�x� 1; Hn�x� � 1�n ex2=2 dn

dxn
e� x

2
=2�;

n [ N
p
:

�1�



2.1. Data

It is aimed to simulate the paths of a strictly stationary

non-Gaussian process �Yt; t [ R
1� whose statistical

description is reduced either to a ®nite number of moments

or to its one-dimension marginal distribution. Two sets of

data will therefore be considered:

Case 1.

!i) Let m1;m2;¼;mN !N . 1) be real numbers which are

statistical moments of a random variable. We can assume

in the following that m1 0; m2 1:

!ii) Let R : R ! R be a function in L
2�R; dx� such that

R�0� 1; R is nonnegative de®nite.

Case 2.

!i) A cumulative distribution function FY of a random

variable Y is given, with E�Y2� 1:

!ii) Let R : R ! R be a function in L
2�R; dx� such that

R�0� 1; R is nonnegative de®nite.

Gaussian simulation methods are well known

[4,7,11,12,18,22,25] and very simple to utilize. That

explains why many methods use nonlinear transformations

of Gaussian process in order to simulate non-Gaussian ones.

Moreover, the family ��
���

n!
p

� 1
Hn�n[N is an orthonormal

base of L
2�R; ��e� x

2
=2�
=
����

2p
p

��dx�: It is then natural to

construct a strictly stationary process �Yt; t [ R
1� de®ned

by the relation

Yt

X1

n�1

fnHn�Gt�; �2�

where Hn is the Hermite polynomial of degree n, �Gt; t [

R
1� is a standard stationary Gaussian process !i.e. for every

®xed t, Gt has a zero-mean, unit variance Gaussian distribu-

tion), such that either E�Yn
t � mn ;n [ {1;¼;N}; !case 1)

or for every ®xed t, the random variables Yt and Y have the

same distribution !case 2), and such that the autocorrelation

function RY of �Yt; t [ R
1� is close to R in the Hilbert space

L
2�R; dx�:
Whether the ®rst statistical moments or the marginal

distribution are given, different assumptions must be veri-

®ed. However, at the end, it is the same general method

which is used: ®nd a function f and a Gaussian process Gt

such that

Yt ; f �Gt�: �3�
Eq. !3) means that the two processes have the same given

statistical data.

2.2. Necessary condition and suf®cient condition for

�m1;¼;mN�

The considered simulation method for the case 1 requires

the determination of a continuous !necessary condition

to construct the cumulative distribution function) distribu-

tion having the ®rst N moments equal to �m1;¼;mN�:
Let �mn�n[Np be a sequence of real numbers such that

~mn U �n1 1�mn; for all n [ {1;¼;N}: The continuous

distribution will be constructed as the product of a

discrete distribution with moments ~mn by an independent

uniform distribution. Not all ®nite sequence of real numbers

can be de®ned as the moments of a distribution, a condition

must be ful®lled, which is recalled below. In fact, the above

product gives a random variable with an unimodal

distribution.

2.2.1. Necessary condition

Theorem 2.1 [23]. If there exists a random variable ~Y

such that E� ~Y k� ~mk for all k [ N
p
; then for all k [ N

p

Dk U det

1 ~m1
¼ ~mk

~m1 ~m2
¼ ~mk11

.

.

. .
.
.

]
.
.
.

~mk ~mk11
¼ ~m2k

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

$ 0 �4�

2.2.2. Suf®cient condition

Theorem 2.2 [23]. Using the notations of Theorem 2.1, if

there exists K such that

;k # K Dk . 0;

;k . K Dk 0;

 

�5�

then there exists a discrete random variable ~Y !unique in

distribution) such that its distribution has �K 1 1� atoms

and E� ~Yk� ~mk for all k [ N
p
:

Remark 2.3. There exist various techniques to generate

such a random variable, see for instance Devroye's book

[5]: the atoms of ~Y are then determined as well as the

attached probabilities. Finally, the statistical moments of

the random variable Y U ~Y ; where U has an uniform prob-

ability distribution over �0; 1� and which is independent of
~Y ; are �m1;¼;mN�: The probability distribution of Y is

absolutely continuous with respect to the Lebesgue measure

!'pY [ L
1�R; dx�;FY �x�

R
x
1
pY �x�dx). Its cumulative

distribution function can be obtained analytically.

2.3. Utilization of Hermite polynomials

The ®rst step is to identify the nonlinear function f

appearing in the memoryless transformation !3). This func-

tion is constructed using the cumulative distribution

functions of the given non-Gaussian process Yt and of a

standard normal random variable. In what follows, the

function FY denotes either the cumulative distribution
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function of the random variable Y described in Section 2.1

for case 1, or the data itself for case 2.

The inverse of the cumulative distribution function FY is

de®ned by

F
1

Y �y� inf{x [ R=FY �x� $ y} �6�

!where inf�Y� 11). The cumulative distribution function

of F 1
Y �U�; where U is a random variable with an uniform

probability distribution over �0; 1�; is FY : IfG is the standard

normal random variable N�0; 1� and FG its cumulative

distribution function, FG�G� has an uniform distribution

over �0; 1�: So the cumulative distribution function of the

random variable F
1

Y +FG�G� is FY : Thus the following

hypothesis is considered:

F
1

Y +FG [ L
2

R;
e

�x2=2�
����

2p
p dx

! #

: �7�

If this assumption is true, then the function F
1

Y +FG can be

projected on the base ��
���

n!
p 1�Hn�n[N : there exists a real

sequence � fn�n such that

;x [ R; F
1

Y +FG�x�
X1

n�0

fnHn�x�; �8�

where

fn �n!� 1
Z

R

F
1

Y +FG�x�Hn�x�
e

�x2=2�
����

2p
p dx; �9�

the series being convergent in L
2�R; �e �x2=2�

=
����

2p
p

�dx�:

Proposition 2.4. Let �Gt; t [ R
1� be a standard station-

ary Gaussian process and RG its autocorrelation function.

Then the process �Yt; t [ R
1� de®ned by

Yt F
1

Y +FG�Gt� �10�

is strictly stationary, and

E Y
n
t

ÿ �

mn; ;n [ {1;¼;N}: �11�

Proof. As it was remarked above, Yt F
1

Y +FG�Gt� has
FY for cumulative distribution function and has then

�m1;¼;mN� for ®rst moments. The second step is to identify

the underlying Gaussian process Gt used in relation !3). Its

autocorrelation function is solution of a functional equation:

RY �t�
X1

n�1

�n!�f 2n RG�t�n: �12�

This is the dif®cult point in this method because it is not

guaranteed that Eq. !12) has a solution, and even if a solu-

tion exists, it has to be a nonnegative de®nite function. Two

numerical methods based on an optimization technique will

be further given in order to construct an autocorrelation

function `approaching' a solution of Eq. !12).

3. Convergence results

Let �YM
t �M be the sequence de®ned by

Y
M
t

XM

n�1

fnHn�Gt�: �13�

Our goal is to study the convergence of the sequence �YM
t �M

towards Yt as M ! 1: Various convergence results of the

truncated sum sequence will be given.

3.1. Mean-square convergence

Proposition 3.1. For any ®xed t, the sequence �YM
t �M[N

p

converges uniformly in t towards Yt in the space

L
2�V;A;P�:

Proof. Owing to the transport of measure, the coef®cients

� fn� are given by

fn �n!� 1
E�YtHn�Gt��; �14�

�n!� 1
E F

1
Y +FG�Gt�Hn�Gt�

� �

�15�

!f0 0:)

Since Gt is stationary, fn does not depend on t. Therefore

for any ®xed t, we have

Yt F
1

Y +FG�Gt�; �16�

Yt

X1

�1

fnHn�Gt� �17�

in L
2�V;A;P�:

We will now prove that the autocorrelation function of

the truncated sum converges towards the target autocorrela-

tion function.

Proposition 3.2. Let RM denotes the autocorrelation func-

tion of �YM
t ; t [ R

1� and RY the autocorrelation function of

�Yt; t [ R�
RM�t� !

M!1

RY �t�; ;t [ R: �18�

Lemma 3.3 !Mehler Formula Formula [3]). Let �Gt; t [

R
1� a zero-mean Gaussian process such that E�G2

t � 1 for

all t [ R
1
and let RG�t; s� be its autocorrelation function.

Then

E�Hn�Gt�Hm�Gs�� n!�RG�t; s��ndnm �19�
!where d denotes the Kronecker symbol).

Using Mehler's formula:

RY �t s� E�YtYs�; �20�
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RY �t s� E F
1
Y +FG�Gt�F 1

Y +FG�Gs�
� �

; �21�

RY �t s�
X

m;n

fmfnE�Hn�Gt�Hm�Gt��; �22�

RY �t s�
X

n

�n!�f 2n RG�t s�n; �23�

RY �t s� lim
M!1

XM

n�1

�n!�f 2n RG�t s�n; �24�

RY �t s� lim
M!1

E Y
M
t Y

M
s

� �

; �25�

RY �t s� lim
M!1

RM�t s�: �26�

3.2. Error evaluation

By assuming some decreasing conditions for the co-

ef®cients fn; an evaluation of the error due to the truncation

can be obtained.

Proposition 3.4. If there exists a constant C . 0 such that

for any n

f
2
n #

C

�n!�2 ; �27�

then for any ®xed t

uRY �t� RM�t�u #
C

MM!
uRG�t�uM11

; �28�

uRY �t� RM�t�u #
C

MM!
: �29�

Remark 3.5. If the function f U F
1

Y +FG is a C1 function

which nth derivatives are uniformly bounded in n by a

positive constant K . 0; then the assumption is checked.

As a matter of fact, using integration by parts, we have

fn �n!� 1
E f

�n��Gt�
� �

: �30�

Thus

f
2
n #

K
2

n!2
: �31�

Proof. The autocorrelation functions are given, respec-

tively, by

RY �t�
X1

n�1

�n!�f 2n RG�t�n �32�

and

RM�t�
XM

n�1

�n!�f 2n RG�t�n: �33�

On the other hand, using Cauchy Schwarz inequality and

using the fact that, for any t, the Gt distribution is N�0; 1�
uRG�t�u E�G0Gt�; �34�

uRG�t�u # E G
2
0

� �1=2
E G

2
t

� �1=2
; �35�

uRG�t�u # 1: �36�
Therefore

uRY �t� RM�t�u
X1

n�M1 1

�n!�f 2n RG�t�n
�
�
�
�
�

�
�
�
�
�
; �37�

uRY �t� RM�t�u #
X1

n�M1 1

�n!�f 2n uRG�t�uM11
; �38�

uRY �t� RM�t�u # C
X1

n�M1 1

�n!� 1uRG�t�uM11
; �39�

uRY �t� RM�t�u #
C

MM!
uRG�t�uM11

; �40�

uRY �t� RM�t�u #
C

MM!
: �41�

The last but one inequality is of course ®ner than the last.

But the quantity uRG�t�u is unknown.

Corollary 3.6. Under assumption of Remark 3.5 and for

any t

E Yt Y
M
t

� �2
� �

#
C

MM!
: �42�

Proof.

E Yt Y
M
t

� �2
� �

E Y
2
t

� �

2E YtY
M
t

� �

1 E Y
M
t

� �2
� �

; �43�

E Yt Y
M
t

� �2
� �

E Y
2
t

� �

E Y
M
t

� �2
� ��

�
�
�

�
�
�
�; �44�

E Yt Y
M
t

� �2
� �

uRY �0� RM�0�u: �45�

The proof is concluded using Remark 3.5 with t 0:

3.3. Almost sure convergence

Assuming now a stronger condition on the sequence � fn�;
almost sure convergence can be proved.

Proposition 3.7. If

X1

n�1

�ln�n��2f 2n �n!� , 1; �46�
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then for any ®xed t, the sequence �YM
t �M[N

p converges a.s.

towards Yt:

Lemma 3.8 [13]. Let �Zn�n be a sequence of second-order
random variables which are orthogonal. If
X

n[Np

�ln n�2E Z
2
n

� �

, 1; �47�

then the sum
P

n[Np Zn converges almost surely.

�Hn�Gt�n[N
p is a sequence of random variables which are

orthogonal in L
2�V;A;P�; so Proposition 3.7 is proved by

using Lemma 3.8 to the sequence �Hn�Gt�n[Np :

4. Simulation techniques

Two effective methods will be given here in order to

construct simulated paths of a stationary non-Gaussian

process. A common ingredient of these two methods is the

simulation of a particular stationary Gaussian process for

which two methods have been examined: the spectral

method [4,18,25] and the Markovian model method

[2,11,12]. As it will be shown later, the choice of the method

has some incidence on the method ef®ciency.

The ®rst stage is to generate the stationary Gaussian

process �Gt; t [ R
1� with marginal distribution N�0; 1�

and autocorrelation function RG: The second stage is to

generate the random process �YM
t ; t [ R

1� given by Y
M
tPM

n�1 fnHn�Gt� !M is ®xed a priori), where the coef®cients

� fn� are obtained either by numerical integration !9) or by

Monte-Carlo simulation !14).

4.1. Determination of RG

The goal is to ®nd a nonnegative de®nite function RG

which minimizes the quantity

iR�t� RM�t�iL2�R;dx� R�t�
XM

n�1

�n!�f 2n �RG�t��n





















L2�R;dx�

:

�48�
The constraint of nonnegative de®nite property for the auto-

correlation function is rather tricky to include numerically

in the minimization algorithm. It can be replaced by a

simpler constraint by introducing the spectral density

using Bochner theorem. Actually, denoting SG the spectral

density function of �Gt; t [ R
1� !assuming the density

exists), the problem becomes:

Minimize the quantity

iR�t� RM�t�iL2�R;dx�

R�t�
XM

n�1

�n!�f 2n
Z

R

SG�v�eivt dv
� �

n





















L2�R;dx�

; �49�

under the following constraints:

!i) SG nonnegative,

!ii) SG even,

!iii)
R

R SG�v�dv 1:

4.2. Autocorrelation function determination for the spectral

method

The minimization is here achieved by discretizing in a

®rst step each integral, and using then a global stochastic

recursive approximation algorithm !see Ref. [6]):

min
sk$0

X

l

R�tl�
XM

n�1

�n!�f 2n Dv

X

k

sk e
ivk tl

! #
n

! #2

: �50�

The minimization solution �sk�k is obtained using for

instance a simulated annealing algorithm or any other

method as genetic algorithm.

The spectral density SG is then approached by the step

function:

SG�v�
X

k

skI�vk ;vk11��v�: �51�

The spectral method is used to simulate the stationary

Gaussian process �Gt; t [ R
1�: Finally the process !YM

tPM
n�1 fnHn�Gt�) is simulated.

4.3. Autocorrelation function determination for the

Markovian model representation

The advantage of using a Markovian model is that it

yields a much smaller dimension minimization problem

than the former method. It is based on the following

assumption:

Suppose that
R

R �ln�SG�v��=�11 v2��dv . 1: Then it

implies that there exists H [ H
1�C� !Hardy space) such

that [2,12]

SG�v� H�iv�j j2: �52�
The function H�iv� [2,12,17,24] is either a rational function
itself or can be approached by a rational function:

F�iv�
C�iv� ; �53�

where

!i) F , C are real coef®cient polynomials !C is unitary),

!ii) deg F , deg C;

!iii) the roots of C lie in {Re�z� , 0}:

The goal is to minimize the quantity

R�t�
XM

n�1

�n!�f 2
n

Z

R

F�iv�
C�iv�

�
�
�
�

�
�
�
�

2

eivt dv

! #
n





















L2�R;dx�

; �54�

relatively to the coef®cients �fk�deg F
k�0 and �Ck�deg C

k�0 of poly-

nomials F and C , respectively, under the constraint that F

and C are described as above.
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Remark 4.1. The dimension of this new minimization

problem is equal to the number of coef®cients of F and

C while the dimension of the former minimization problem

is equal to the number of points used for calculating the

integrals in Eq. !50).

Once the polynomials F and C are determined, it

remains to simulate the underlying stationary Gaussian

process by the following method.

Let �j t; t [ R
1� a random process with values in R

deg C,

which is solution of the ItoÃ stochastic differential equation

dj t Aj t dt dZt; �55�
where A is the companion matrix of polynomial C , and

dZ t �0;¼; 0; dWt�T; and Wt is the standard Wiener

process.

Various schemes exist in order to construct its solution

�j�0� j0; j t; t [ R
1� [1,14,26].

Let �Gt; t [ R
1� be a scalar process de®ned by

Gt Bj t; �56�
where

B �f0;f1;¼;fdeg F; 0;¼; 0� [ R
deg C

: �57�

Then �Gt; t [ R� is a Gaussian process which spectral

measure has a density given by uF�iv�=C�iv�u 2:
As in the previous method, the simulation of the non-

Gaussian process Yt is achieved by constructing the

approaching truncated sum

Y
M
t

XM

n�1

fnHn�Gt�: �58�

5. Examples

As the aim of this paper is to prove the theoretical validity

of the proposed simulation methods, we give here just some

illustrations of these methods without qualitative comments.

Comparison between existing simulation methods of non-

Gaussian processes will be the object of a future work.

5.1. Data

!i) Five statistical moments are given

m1 0; m2 1; m3 2; m4 9;

m5 44;
�59�

!ii) the spectral density is given by

S�v� 1

2p

100

270

11 0:6558v2

�11 0:2459v2�11=6 : �60�

!iii) M 4, 1024 discretization points are used and 1000

simulations are performed.

Using the ergodic property of process Yt; the various

statistics are estimated using each point of simulated

trajectories.

5.2. Case where the marginal distribution is given

We consider the case where the one-dimensional

marginal distribution of the non-Gaussian process is

given. Let X a random variable with the exponential

distribution exp�1� and let Y X 1; then

E�Y� 0; E�Y2� 1; E�Y3� 2; E�Y4� 9;

E�Y5� 44: !61)

The inverse of the cumulative distribution function of Y is

obtained easily:

F
1

Y �y� 1 ln�1 y�: �62�
The cumulative distribution function of the random variable

F
1

Y +FG�G� 1 ln�1 FG�G�� �63�
is FY : The coef®cients fn can be obtained by a numerical

integration:

fn �n!� 1
Z

R

� 1 ln�1 FG�x���Hm�t�
e �x2=2�
����

2p
p dx: �64�

5.2.1. Simulation using the spectral approach

The comparison between the target and the estimated

spectral density is shown on Fig. 1. The histogram of Yt
marginal distribution is compared to the target marginal

distribution, Fig. 2. The comparison between the target

and the estimated statistical moments is given in Table 1.

5.2.2. Simulation using the Markovian model

For this application F and C are de®ned by:

F�x� �a1 1 b1x��a2 1 b2x�; �65�

C�x� x
2
1 2g1d1x1 d21

� �

x
2
1 2g2d2x1 d22

� �

; �66�
where �a1;b1�; �a2;b2� [ R\{�0; 0�} and g 1, g 2, d 1, d 2 are

positive real numbers. As in Section 5.2.1, the same

comparisons can be found in Figs. 3 and 4 and Table 2.

Even if the Markovian model brings another level of

approximation, since the power spectral density is

approached by a rational function, the two approaches

give a very good estimate of the target power spectral

density.
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Table 1

Target and estimated statistical moments, marginal distribution given/spec

tral method

Moment Target Estimated

Order 2 1.00 1.00

Order 3 2.00 1.976

Order 4 9.00 8.80

Order 5 44.00 42.18
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Fig. 2. Histogram, comparison between target and simulated marginal distribution/spectral method.

Fig. 1. Comparison between target and estimated spectrum, marginal distribution given/spectral method.
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Fig. 3. Comparison between target and estimated spectrum, marginal distribution given/Markovian model.

Fig. 4. Histogram, comparison between target and simulated marginal distribution/Markovian model.



5.3. Case where a ®nite number of statistical moments are

given

In the case where only a number of statistical moments

are given, we have to generate a random variable Y with

given moments and which distribution is absolutely con-

tinuous with respect to the Lebesgue measure !see Section

2 and Ref. [5]). The inverse of the cumulative distribution

function of Y is then constructed numerically. Moreover,

contrary to the preceding case, the coef®cients fn appearing

in the approaching sequence are estimated using Monte-

Carlo simulations. The results concerning the spectral

density function are shown in Figs. 5 and 6 for, respectively,

the spectral and Markovian approach. Results concerning

moments are, in the same way, resumed in Tables 3 and

4. As in the preceding case, the agreement is excellent

between estimated and target quantities.

Looking at the optimization problem dimension, it is

obvious that the Markovian approach needs a lesser compu-

tational effort than the spectral approach: eight parameters

to optimize for the ®rst method versus 1024 parameters for

the spectral approach. Nevertheless, it appears that the opti-

mization procedure converges very rapidly in this last case

for this particular application. This can be explained by the

fact that the starting point !the target spectral density) of the

optimization procedure is `close' to the correct Gaussian

spectral density. This property was observed by the authors

of Ref. [20]. Mathematically, this is explained by the

convergence speed of RM towards RY ; given by relation

!28). Moreover, when only one term is kept in the

expansion, M 1 :

uRY �t� RG�t�u # uRG�t�u2 �67�
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Table 2

Target and estimated statistical moments, marginal distribution given/

Markovian model

Moment Target Estimated

Order 2 1.00 1.00

Order 3 2.00 1.99

Order 4 9.00 9.03

Order 5 44.00 45.48

Fig. 5. Comparison between target and estimated spectrum, ®xed moments/spectral method.

Table 3

Target and estimated statistical moments, ®xed moments/spectral method

Moment Target Estimated

Order 2 1.00 1.01

Order 3 2.00 2.05

Order 4 9.00 8.90

Order 5 44.00 41.13

Table 4

Target and estimated statistical moments, ®xed moments/Markovian model

Moment Target Estimated

Order 2 1.00 1.01

Order 3 2.00 2.03

Order 4 9.00 8.88

Order 5 44.00 41.38



with uRG�t�u # 1: A last comment considering the optimiza-

tion problem for the spectral approach is that its overall

dimension could be reduced in a signi®cant manner if

other numerical integration methods were used, such as

the Gauss point method. And this should be used for random

®elds Y�t�; t [ R
d
:

5.4. Case of a scalar homogeneous random ®eld

5.4.1. Data

!i) The same statistical data as in the previous example

are utilized.

!ii) The spectral density is given by

S�v1;v2�
1

2p

100

270

11 0:6558v2
1

11 0:2459v2
1

ÿ �11=6

� 1

2p

100

270

11 0:6558v2
2

11 0:2459v2
2

ÿ �11=6
: �68�

!iii) M 4, 128 £ 128 discretization points are utilized

and 1000 simulations are performed.

The simulation of the underlying Gaussian random ®eld

is performed here using the spectral method. Although one
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Fig. 6. Comparison between target and estimated spectrum, ®xed moments/Markovian model.

Fig. 7. Target spectrum, random ®eld case. Fig. 8. Estimated spectrum, marginal distribution given.



can construct a Markovian model for random ®eld yielding

a stochastic partial differential equation, it is dif®cult to

integrate it because one has to discretize a partial differential

equation on a domain of R
d
: Therefore the Markovian

model is not effective for random ®elds.

In the case where the marginal distribution is given, the

target spectral density is shown in Fig. 7 and has to be

compared to the estimated spectral density shown in

Fig. 8. Fig. 9 depicts the comparison of the target and

estimated marginal distribution histogram. Finally the

comparison between the target and the estimated statistical

moments is given in Table 5.

The analogous results of the case 2 data are given in

Fig. 10 and Table 6.

Here again, the agreement between the estimated and the

target quantities is very good.

6. Conclusion

In this paper, various convergence results for Hermite

polynomial expansion of a Gaussian process are given.

These results act as lifeguards for simulation techniques

based on such Hermite polynomial expansions. In particu-

lar, it can be proved under some regularity assumption that

the speed of convergence of Hermite expansion correlation

function towards the non-Gaussian correlation function is

controlled by the quantity �M £M� 1 where M is the

number of polynomials in the sum. Various algorithms are

also given, allowing to construct simulations of general non-

Gaussian processes. The simulation method relies on the

simulation of a Gaussian process, which can be simulated
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Fig. 9. Histogram, comparison between target and simulated marginal distribution.

Fig. 10. Estimated spectrum, ®xed moments.

Table 5

Target and estimated statistical moments, marginal distribution given/spec

tral method

Moment Target Estimated

Order 2 1.00 1.00

Order 3 2.00 2.00

Order 4 9.00 9.07

Order 5 44.00 44.53



using either a spectral approach, or a Markovian approach.

This last method yields a lesser computational effort, but

which is not effective for random ®elds. Various examples

illustrate the soundness of the method. The general method

can be extended in theory to non-stationary random

processes, but, in practice, such a generalization would

lead to numerical and estimation dif®culties, the ®rst one

being to deal with time dependent statistical characteristics

of the non-Gaussian process and time !or space) dependent

estimations of real-life random phenomena. Extension to

vector valued random process is also straightforward,

since it is based on the simulation of a vector valued

Gaussian process and on the simulation of a vector valued

random variable.
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Table 6

Target and estimated statistical moments, ®xed moments/spectral method

Moment Target Estimated

Order 2 1.00 1.00

Order 3 2.00 2.01

Order 4 9.00 9.17

Order 5 44.00 45.58


