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We provide quantitative bounds for the long time behavior of a class of Piecewise Deterministic Markov Processes with state space R d × E where E is a finite set. The continuous component evolves according to a smooth vector field that switches at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Under regularity assumptions on the jump rates and stability conditions for the vector fields we provide explicit exponential upper bounds for the convergence to equilibrium in terms of Wasserstein distances. As an example, we obtain convergence results for a stochastic version of the Morris-Lecar model of neurobiology.

Introduction and main results

Piecewise deterministic Markov processes (PDMPs in short) are intensively used in many applied areas (molecular biology [START_REF] Radulescu | Théorèmes limites pour des processus de Markov à sauts. Synthèse des résultats et applications en biologie moléculaire[END_REF], storage modelling [START_REF] Boxma | On/Off Storage Systems with State-Dependent Inpout, Outpout and Switching Rates[END_REF], Internet traffic [START_REF] Dumas | A Markovian analysis of additive-increase multiplicative-decrease algorithms[END_REF][START_REF] Graham | Interacting multi-class transmissions in large stochastic networks[END_REF][START_REF]Self-adaptive congestion control for multiclass intermittent connections in a communication network[END_REF], neuronal activity [START_REF] Pakdaman | Fluid limit theorems for stochastic hybrid systems with application to neuron models[END_REF][START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF], populations growth models [START_REF] Kussell | Fluctuating environments phenotypic diversity, population growth, and information in fluctuating environments[END_REF]...). Roughly speaking, a Markov process is a PDMP if its randomness is only given by the jump mechanism: in particular, it admits no diffusive dynamics. This huge class of processes has been introduced by Davis (see [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF][START_REF]Markov models and optimization[END_REF]) in a general framework. Several works [START_REF] Costa | Stationary distributions for piecewise-deterministic Markov processes[END_REF][START_REF] Dufour | Stability of piecewise-deterministic Markov processes[END_REF][START_REF] Costa | Ergodic properties and ergodic decompositions of continuoustime Markov processes[END_REF] deal with their long time behavior (existence of an invariant probability measure, Harris recurrence, exponential ergodicity...). In particular, it is shown in [START_REF]Stability and ergodicity of piecewise deterministic Markov processes[END_REF] that the behavior of a general PDMP can be related to the one of the discrete time Markov chain made of the positions at the jump times of the process and of an additional independent Poisson process. Nevertheless, this general approach does not seem to provide quantitative bounds for the convergence to equilibrium. Recent papers have tried to establish such estimates for some specific PDMPs (see [START_REF] Chafaï | On the long time behavior of the TCP window size process[END_REF][START_REF] Fontbona | Quantitative estimates for the long time behavior of an ergodic variant of the telegraph process[END_REF][START_REF] Bardet | Total variation estimates for the TCP process[END_REF]) or continuous time Markov chains (see [START_REF] Caputo | Convex entropy decay via the Bochner-Bakry-Émery approach[END_REF]).

In the present paper, we investigate the long time behavior of an interesting subclass of PDMPs that plays a role in molecular biology (see [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF][START_REF] Radulescu | Théorèmes limites pour des processus de Markov à sauts. Synthèse des résultats et applications en biologie moléculaire[END_REF][START_REF] Buckwar | An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution[END_REF][START_REF] Wainrib | Intrinsic variability of latency to first-spike[END_REF]). We consider a PDMP on R d × E where E is a finite set. The first coordinate moves continuously on R d according to a smooth vector field that depends on the second coordinate whereas the second coordinate jumps with a rate that may depend on the first one. This class of Markov processes is reminiscent of the so-called iterated random functions in the discrete time setting (see [START_REF] Diaconis | Iterated random functions[END_REF] for a good review of this topic).

Let E be a finite set, (a(•, i, j)) i,j∈E 2 be n 2 nonnegative continuous functions on R d , and, for any i ∈ E, F i : R d → R d be a smooth vector field such that the ordinary differential equation

x t = F i (x t ), t > 0;

x 0 = x, has a unique and global solution t → ϕ i t (x) on [0, ∞) for any initial condition x ∈ R d . Let us consider the Markov process (Z t ) t 0 = ((X t , I t )) t 0 on R d × E defined by its extended generator L as follows:

Lf (x, i) = F i (x), ∇ x f (x, i) + j∈E a(x, i, j)(f (x, j) -f (x, i))

(1.1)
for any smooth function f : R d × E → R (see [START_REF]Markov models and optimization[END_REF] for full details on the domain of L).

Definition 1.1. In the sequel, η t (resp. µ t ) stands for the law of Z t = (X t , I t ) (resp of X t ) if (Z t ) t 0 is driven by (1.1) with initial distribution η 0 .

A simple case occurs when a(x, i, j) can be written as λ(x, i)P (i, j) for (λ(•, i)) i∈E a set of nonnegative continuous functions, and P an irreducible stochastic matrix, in which case:

Lf (x, i) = F i (x), ∇ x f (x, i) + λ(x, i) j∈E P (i, j)(f (x, j) -f (x, i)). (1.2)
Let us describe the dynamics of this process in this simple case, the general case being similar. Assume that (X 0 , I 0 ) = (x, i) ∈ R d × E. Before the first jump time T 1 of I, the first component X is driven by the vector field F i and then X t = ϕ i t (x). The time T 1 can be defined by:

T 1 = inf t > 0 : t 0 λ(X s , i) ds E 1 ,
where E 1 is an exponential random variable with parameter 1. Since the paths of X are deterministic between the jump times of I, the randomness of T 1 comes from the one of E 1 and

T 1 = inf t > 0 : t 0 λ(ϕ i s (x), i) ds E 1 . Remark 1.2. Notice that P (x,i) (T 1 = +∞) > 0 if and only if +∞ 0 λ(ϕ i s (x), i) ds < +∞.
If we assume that λ := inf (x,i) λ(x, i) > 0 then the process I jumps infinitely often.

At time T 1 , the second coordinate I performs a jump with the law P (i, •) and the vector field that drives the evolution of X is switched. . . Remark 1.3. In general, I is not a Markov process on its own since its jump rates depend on X. In this paper, we will study both the simple -Markovian -case and the general case.

The main goal of the present work is to provide quantitative bounds for the long time behavior of ergodic processes driven by (1.2) thanks to the construction of explicit couplings. We need to introduce a distance on the set of probability measures to quantify this convergence. Definition 1.4. Let P p be the set of probability measures on R d × E such that the first marginal has a finite p th moment. If η ∈ P p and Z is a random variable on R d × E with distribution η, we denote by X and I the two coordinates of Z in R d and E respectively and by µ and ν their distributions.

Let us now define the distance W p on P p as follows: for η, η ∈ P p ,

W p (η, η) = inf E |X -X| p 1/p + P(I = Ĩ) : (X, I) ∼ η and ( X, Ĩ) ∼ η .
The distance W p is made of a mixture of the Wasserstein distance for the first component and the total variation distance for the second one. Recall that for every p 1, the Wasserstein distance W p between two laws µ and μ on R d with finite p th moment is defined by

W p (µ, μ) = inf Π R d ×R d |x -x| p Π(dx, dx) 1/p (1.3)
where the infimum runs over all the probability measures Π on R d × R d with marginals µ and μ (such measures are called couplings of µ and μ). It is well known that for any p 1, the convergence in W p Wasserstein distance is equivalent to weak convergence together with convergence of all moments up to order p. However, two probability measures can be both very close in the W p sense and singular. Choose for example µ = δ 0 and μ = δ ε . In this case, W p (µ, μ) = ε and µ -μ TV = 1.

See e.g. [START_REF] Rachev | Probability metrics and the stability of stochastic models[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF] for further details and properties for Wasserstein distances.

Estimates for the Wasserstein distances do not require (nor provide) any information about the support of the invariant measure (which is the set of the recurrent points). This set may be difficult to determine and if the initial distribution of X is not supported by this set, the law of X t and the invariant measure may be singular. To illustrate this fact, one can consider the following trivial example:

(x, i) ∈ R 2 × {0, 1}, λ(x, i) = 1, F i (x) = -(x -ia) with a = (1, 0).
The process (X, I) is ergodic and the first marginal µ of its invariant measure is supported by the segment {ρa ; ρ ∈ [0, 1]} (it is shown in [START_REF] Boxma | On/Off Storage Systems with State-Dependent Inpout, Outpout and Switching Rates[END_REF] that µ is a Beta distribution).

Despite its extreme simplicity, this process does not in general converge in total variation: if Z 0 = (0, 1), the law of X t is singular with the invariant measure for any t 0, so L(X t ) -µ TV is always equal to 1. On the contrary, W p (L(X t ), µ) goes to 0 exponentially fast (see below).

We are able to get explicit rates of convergence in two situations. Firstly, if the jump rates of I does not depend on X, then the vector fields (F i ) i∈E will be assumed to satisfy an averaged exponential stability. Secondly, if the jump rates of I are assumed to be Lipschitz functions of X, then the vector fields (F i ) i∈E will be assumed to satisfy a uniform exponential stability.
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it is shown that, for constant jump rates and under Hörmander-like conditions on the vectors fields (F i ) i∈E , the invariant probability measure is unique and absolutely continuous with respect to the Lebesgue measure on R d . In a similar setting, exponential rates of convergence to equilibrium are obtained in [START_REF]Qualitative properties of certain piecewise deterministic markov processes[END_REF]. But these estimates rely on compactness arguments and are not explicit.

Constant jump rates

If the jump rates of I do not depend on X, then (I t ) t 0 is a Markov process on the finite space E and (X s ) 0 s t is a deterministic function of (I s ) 0 s t . Many results are available both in the discrete time setting (see [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF][START_REF] Vervaat | On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables[END_REF][START_REF] Goldie | Perpetuities with thin tails[END_REF][START_REF] Hitczenko | Perpetuities with thin tails revisited[END_REF][START_REF] Alsmeyer | On distributional properties of perpetuities[END_REF]) and in the continuous time setting (see [START_REF] Guyon | Linear diffusion with stationary switching regime[END_REF][START_REF] De Saporta | Tail of a linear diffusion with Markov switching[END_REF][START_REF] Bardet | Long time behavior of diffusions with Markov switching[END_REF]). Moreover, if Assumption 1.8 (see below) does not hold, [START_REF] Benaïm | On the stability of planar randomly switched systems[END_REF] provides a simple example of surprising phase transition for a switching of two exponentially stable flows that can be explosive (when the jump rates are sufficiently large). Assumption 1.6. Assume that the jump rates (a(•, i, j)) i∈E do not depend on x and that I is an irreducible Markov process on E. Let us denote by ν its invariant probability measure.

Remark 1.7. If a(•, i, j) does not depend on x, we can always write a(i, j) = λ(i)P (i, j) with P (•, •) a Markov transition matrix. Assumption 1.8. Assume that for any i ∈ E, there exists α

(i) ∈ R such that, x -x, F i (x) -F i (x) -α(i)|x -x| 2 , x, x ∈ R d , and that i∈E α(i)ν(i) > 0
where ν is defined in Assumption 1.6.

Firstly, one can establish that the process X is bounded in some L p space.

Lemma 1.9. Under Assumptions 1.6 and 1.8, there exists κ > 0 such that, for any q < κ,

the function t → E(|X t | q ) is bounded as soon as E(|X 0 | q ) is finite. More precisely, there exists M (q, m) such that sup t 0 E(|X t | q ) M (q, m), as soon as E(|X 0 | q ) m.
Let us now turn to the long time behavior estimate.

Theorem 1.10. Assume that Assumptions 1.6 and 1.8 hold. Let p < q < κ and denote by s the conjugate of q: q -1 + s -1 = 1. Assume that µ 0 and μ0 admit a finite q th moment smaller than m. Then,

W p (η t , ηt ) 2 p+1 M (q, m) p/q C 2 (p) exp - θ p 1 + sθ p /ρ t ,
where ρ and θ p are positive constants depending only on the Markov chain I. 

W p (η t , η ∞ ) 2 p+1 M (q, m) p/q C 2 (p) exp - θ p 1 + sθ p /ρ t .

Non constant jump rates

Let us now turn to the case when the jump rates of I depend on X. We will assume that the a(x, i, j) are smooth in the x variable and that each vector field F i has a unique stable point. Assumption 1.12. There exist a > 0 and κ > 0 such that, for any x, x ∈ R d and i, j ∈ E, a(x, i, j) a and j∈E |a(x, i, j) -a(x, i, j)| κ|x -x|.

The lower bound condition insures that the second -discrete -coordinate of Z changes often enough (so that the second coordinates of two independent copies of Z coincide sufficiently often). This is a rather strong condition that can be relaxed in certain situations. If for example a(x, i, j) = λ(x, i)P ij as in (1.2), Lipschitz continuous λ bounded from below and an aperiodic P are sufficient to get a similar rate of convergence. Assumption 1.13. Assume that there exists α > 0 such that,

x -x, F i (x) -F i (x) -α|x -x| 2 , x, x ∈ R d , i ∈ E.
(1.4) Assumption 1.13 ensures that, for any i ∈ E,

ϕ i t (x) -ϕ i t (x) e -αt |x -x|, x, x ∈ R d .
As a consequence, the vector fields F i has exactly one critical point σ(i) ∈ R d . Moreover it is exponentially stable since, for any x ∈ R d ,

ϕ i t (x) -σ(i) e -αt |x -σ(i)|.
In particular, X cannot escape from a sufficiently large ball (this implies that the (continuous) functions a(•, i, j) are also bounded from above along the trajectories of X).

More precisely, the following estimate holds.

Lemma 1.14. Under Assumptions 1.12 and 1.13, the process Z cannot escape from the compact set B(0, r) × E where B(0, r) is the (closed) ball centered in 0 ∈ R d with radius r given by r = max i∈E F i (0) α .

(1.5)

Moreover, if |X 0 | > r then |X t | 2 -r 2 + e -αt |X 0 | 2 -r 2 + .
In particular the support of any invariant measure is included in B(0, r).

Let us now state our main result which establishes the quantitative exponential ergodicity of the process Z under Assumptions 1.12 and 1.13.

Theorem 1.15. Assume that Assumptions 1.12 and 1.13 hold and that the supports of µ 0 and μ0 are included in the ball B(0, r) where r is given by (1.5). Then there exist positive constants c and γ such that

W 1 (η t , ηt ) (1 + 2r)(1 + ct) exp - α 1 + α/γ t
where α is derived from (1.4).
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The constants obtained in the proof are the following

γ = (α + b) -(α + b) 2 -4bpα 2 and c = α α + γ epαb (α + b) 2 -4bpα
, with p = e -2rκ/α and e = exp [START_REF] Alsmeyer | On distributional properties of perpetuities[END_REF] and where b depends on the coalescence time of two independent processes defined on E as the second coordinates of independent copies of Z. To obtain this result we couple two paths of our process and compare their distance to a real-valued process that can pass instantly (less and less often) from small to large values (2r+1). This may seem rough, but in the general case, nothing much better can be done : if one of the flows is very strongly attractive, two paths may indeed very rapidly diverge. For particular examples, or under additional assumptions on the flows, it must be possible to get better rates.

Corollary 1.16. Under the hypotheses of Theorem (1.15), the process Z admits a unique invariant measure η ∞ and

W 1 (η t , η ∞ ) (1 + 2r)(1 + ct) exp - α 1 + α/γ t .
Section 2 is dedicated to the proof of Theorem 1.10. Theorem 1.15 is established in Section 3. As an example of the applicability of this result, we show in Section 4 that the stochastic version of the Morris-Lecar model introduced in [START_REF] Wainrib | Intrinsic variability of latency to first-spike[END_REF] satisfies our assumptions, so that explicit bounds may be obtained for its convergence to equilibrium.

Constant jump rates

The aim of this section is to prove Theorem 1.10. Assumption 1.6 ensures that (I t ) t 0 is an irreducible Markov process on the finite space E. Its generator A is the matrix defined by A(i, i) = -λ(i) and A(i, j) = λ(i)P (i, j) for i = j. Let us denote by ν ∞ its unique invariant probability measure. The study of the long time behavior of I is classical: since I takes its values in a finite set, it is quite simple to construct a coalescent coupling of two processes starting from different points.

Lemma 2.1 ([32]

). If Assumption 1.6 holds then there exists ρ > 0 such that for any i, j ∈ E,

P(T > t|I 0 = i, Ĩ0 = j) e -ρt (2.1)
where (I t ) t 0 and ( Ĩt ) t 0 are two independent Markov processes with infinitesimal generator A starting respectively at i and j and T = inf t 0 : I t = Ĩt is the first inter- section time.

Remark 2.2. If E = {1, 2}, then the first intersection time is distributed as an exponential random variable with parameter λ(1) + λ(2) and Equation (2.1) holds with ρ = λ(1) + λ(2).

The proof of Theorem 1.10 is made of two steps. Firstly we couple two processes starting respectively from (x, i) and (x, i) to get a simple estimate as time goes to infinity.

Then we use this estimate and Lemma 2.1 to manage the general case.
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Moments estimates

In this section we prove Lemma 1.9 and get an L p estimate for |X t |. For any p 2 and ε > 0, This study has been already performed in [START_REF] Bardet | Long time behavior of diffusions with Markov switching[END_REF]. Let us state the precise result. We denote by A p the matrix A-pB where A is the infinitesimal generator of I and B is the diagonal matrix with diagonal (α(1), . . . , α(n)) and associate to A p the quantity

d dt |X t | p = p|X t | p-2 X t , F It (X t ) = p|X t | p-2 X t , F It (X t ) -F It (0) + p|X t | p-2 X t , F It (0) -(pα(I t ) -ε)|X t | p + C(p, ε).
θ p := -max γ∈Spec(Ap)
Re γ.

(

The long time behavior of e(p, t) is characterised by θ p as follows. For any p > 0, there exist 0 < C 1 (p) < 1 < C 2 (p) < +∞ such that, for any any t > 0, C 1 (p)e -θpt e(p, t) C 2 (p)e -θpt .

(2.3)

Moreover the following dichotomy holds:

• if α 0, then θ p > 0 for all p > 0,

• if α < 0, there is κ ∈ (0, min{A ii /α(i) : α(i) < 0}) such that θ p > 0 for p < κ and θ p < 0 for p > κ.

See [START_REF] Bardet | Long time behavior of diffusions with Markov switching[END_REF] for further details.

If p < κ, then t → E(|X t | p ) is bounded as soon as E(|X 0 | p ) is finite.
This concludes the proof of Lemma 1.9.

Convergence rate

Let us now get the upper bound for the Wasserstein distance W p for some p < κ. Assume firstly that the initial law are two Dirac masses at (x, i) and (x, i). It is easy to construct a good coupling of the two processes (X, I) and ( X, Ĩ): since the jump rates of I do not depend on X, one can choose I and Ĩ equal! As a consequence, for any p 2, Let us now turn to a general initial condition. Choose (x, i) and (x, j) in R d × E

d dt |X t -Xt | p = p|X t -Xt | p-2 X t -Xt , F It (X t ) -F It ( Xt ) -pα(I t )|X t -Xt | p .
and consider the following coupling: the two processes evolve independently until the intersection time T of the second coordinates. Then, I and Ĩ are chosen to be equal for ever:

P(I t = Ĩt ) = P(T > t) e -ρt
by (2.1). This term will turn to be negligible in W p (η t , ηt ). Now fix t > 0 and β ∈ (0, 1)

and decompose:

E |X t -Xt | p = E |X t -Xt | p 1 {T >βt} + E |X t -Xt | p 1 {T βt} .
Choose q ∈ (p, κ) and define r = q/p and s as the conjugate of r. By Hölder's inequality and Lemma 1.9, we get

E |X t -Xt | p 1 {T >βt} E |X t -Xt | q p/q P(T βt) 1/s 2 p M (q, m) p/q e -(βρ/s)t .
Moreover,

E |X t -Xt | p 1 {T βt} = E |X T -XT | p E I T exp -p t T α(I s ) ds 1 {T βt} 2 p M (p, m)C 2 (p)e -θp(1-β)t .
At last, one has to optimize over β ∈ (0, 1). With

β = θ p θ p + ρ/s , one has E |X t -Xt | p 2 p+1 M (q, m) p/q C 2 (p) exp - ρ/s θ p + ρ/s θ p t .
This concludes the proof of Theorem 1.10.

Non constant jump rates

Let us now turn to the proof of Theorem 1.15. In this section we do not assume that the jump rates depend only on the discrete component. Thus, the coupling is more subtle since once I and Ĩ are equal, they can go apart with a positive rate. The main idea is the following. If I and Ĩ are equal, the distance between X and X decreases exponentially fast and then it should be more and more easier to make the processes I and Ĩ jump simultaneously (since the jump rates are Lipschitz functions of X). This idea has been used in a different framework in [START_REF] Chafaï | On the long time behavior of the TCP window size process[END_REF][START_REF] Bardet | Total variation estimates for the TCP process[END_REF].

This section is organized as follows. Firstly we prove Lemma 1.14 that ensures that the process X cannot escape from a sufficiently large ball. In particular, the support of the invariant law of X is included in this ball. Then we construct the coupling of two processes Z = (X, I) and Z = ( X, Ĩ) driven by the same infinitesimal generator (1.2) with different initial conditions. At last we compare the distance between Z and Z to an companion process that goes to 0 exponentially fast.
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Proof of Lemma 1.14. Setting x = 0 in (1.4) ensures that, for ε ∈ (0, α),

F i (x), x -α|x| 2 + F i (0), x -(α -ε)|x| 2 + M/(4ε), if M = max i∈E F i (0)
2 . In other words,

|X t | 2 -|X s | 2 = t s 2 F Iu (X u ), X u du -2(α -ε) t s |X u | 2 du + M 2ε (t -s).
As a consequence,

|X t | 2 M 4ε(α -ε) (1 -e -2(α-ε)t ) + |X 0 | 2 e -2(α-ε)t . Choosing ε = α/2 ensures that |X t | 2 - M α 2 + e -αt |X 0 | 2 - M α 2 + .
In particular, X cannot escape from the centered closed ball with radius r = √ M /α.

The coupling

Let us construct a Markov process on (R d × E) 2 with marginals driven by (1.2) starting respectively from (x, i) and (x, j). This is done via its infinitesimal generator L which is defined as follows:

• if i = j Lf (x, i, x, j) = F i (x), ∇ x f (x, i, x, j) + F j (x), ∇ xf (x, i, x, j) + i ∈E a(x, i, i )(f (x, i , x, j) -f (x, i, x, j)) + j ∈E
a(x, j, j )(f (x, y, x, j ) -f (x, y, x, j)).

• if i = j: Lf (x, i, x, j) = F i (x), ∇ x f (x, i, x, i) + F i (x), ∇ xf (x, i, x, i) + i ∈E (a(x, i, i ) ∧ a(x, i, i ))(f (x, i , x, i ) -f (x, i, x, i)) + i ∈E (a(x, i, i ) -a(x, i, i )) + (f (x, i , x, i) -f (x, i, x, i)) + i ∈E (a(x, i, i ) -a(x, i, i )) -(f (x, i, x, i ) -f (x, i, x, i)),
where (•) + and (•) -stand respectively for the positive and negative parts. Notice that if f depends only on (x, i) or on (x, j), then Lf = Af . Let us explain how this coupling works. When I and Ĩ are different, the two processes (X, I) and ( X, Ĩ) evolve independently. If I = Ĩ then two jump processes are in competition: a single jump vs two simultaneous jumps. The rate of arrival of a single jump equals to i ∈E |a(x, i, i ) -a(x, i, i )|. It is bounded above by κ|x -x|. The rate of arrival of a simultaneous jump is given by i ∈E (a(x, i, i ) ∧ a(x, i, i )). Assume firstly that X 0 and X0 belong to the ball B(0, r) where r is given by (1.5). Let us define, for any t 0,

∆ t = |X t -Xt | + 1 {It = Ĩt} .
Electron. Commun. Probab. 17 (2012), no. 56, 1-14.
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Quantitative ergodicity for some switched dynamical systems

The process (∆ t ) t 0 is not Markovian. Nevertheless, as long as I = Ĩ, ∆ decreases with an exponential rate which is greater than α. If a single jump occurs, then ∆ is increased by 1 and it can continuously increase (since the continuous parts are driven by two different vector fields). Nevertheless ∆ is bounded above by D + 1 with D = 2r.

At the next coalescent time T c of two independent copies of I, ∆ jumps to ∆-1 and then decreases exponential fast once again (as long as the discrete components coincide).

There exists b > 0 such that T c is (stochastically) smaller than E(b) (for example, if E = {0, 1}, then T c is equal to the minimum of the jump times of the two independent processes which are both stochastically smaller than a random variable of law E(a) and T c is stochastically smaller than E(2a)). Then E(∆ t ) E(U t ) where the Markov process (U t ) t 0 on [0, D] ∪ {D + 1} is driven by the infinitesimal generator

Gf (x) = -αxf (x) + κx(f (D + 1) -f (x)) if x ∈ [0, D], b(f (D) -f (D + 1)) if x = D + 1.

The companion process

Theorem 3.1. For any t 0, In other words, the cumulative distribution function F T of T is such that, for any t 0,

E(U t |U 0 = D) D + (D + 1) pαbe (α + b) 2 -4pαb αt α + γ exp - 1 1 + α/γ αt
1 -F T (t) = P(T > t) = exp - Dκ α (1 -e -αt ) .
Let us define p = e -Dκ/α . The law of T is the mixture with respective weights p and 1 -p of a Dirac mass at +∞ and a probability measure on R with density

f : t → f (t) = Dκ 1 -p e -αt e -Dκ α (1-e -αt ) 1 (0,+∞) (t) (3.2)
and cumulative distribution function

F : t → F (t) = 1 -exp -Dκ α (1 -e -αt ) 1 -exp -Dκ α 1 (0,+∞) (t).
Starting at D, U will return to D with probability 1-p. The Markov property ensures that the number N of returns of U to D is a random variable with geometric law with parameter p. The length of a finite loop from D to D can be written as the sum S + E where the law of S has the density function f given in (3.2), the law of E is the exponential measure with parameter b and S and E are independent. Lemma 3.3. The variable S is stochastically smaller than an exponential random variable with parameter α i.e. for any t 0, F (t) F α (t) where F α (t) = (1 -e -αt )1 {t>0} .

Proof. For any t 0,

1 -F (t) = exp Dκ α e -αt -1 exp Dκ α -1 e -αt = 1 -F α (t).
This ensures the stochastic bound.

As a consequence, the Laplace transform L S of S with density f is smaller than the one of an exponential variable with parameter α: for any s < α, L S (s) α α -s .

If L e is the Laplace transform of S + E, then, for any s < α ∧ b, we have

L e (s) α α -s b b -s .
Let us denote by H the last hitting time of d i.e. the last jump time of U and by L its Laplace transform. Let us introduce N ∼ G(p), (S i ) i 1 with density f and (E i ) i 1 with law E(b). All the random variables are assumed to be independent. Then

H L = N i=1 (S i + E i ).
Classically, for any s ∈ R such that (1 -p)L e (s) < 1, one has

L(s) = E e sH = pL e (s) 1 -(1 -p)L e (s) = p 1 -p 1 1 -(1 -p)L e (s) -1 . 
Let us denote by

γ = (α + b) -(α + b) 2 -4pαb 2 and γ = (α + b) + (α + b) 2 -4pαb 2 the two roots of ξ 2 -(α + b)ξ + pαb = 0. Notice that γ < α ∧ b < γ. For any s < γ, one has (1 -p)L e (s) < 1 and L(s) pαb (γ -s)(γ -s) pαb γ -s 1 γ -s . (3.3) 
Let us now turn to the control of E(U t |U 0 = D). The idea is to discuss whether H > βt or not for some β ∈ (0, 1) (and then to choose β as good as possible):

• if H < βt, then U t e -(1-β)αt ,

• the event {H βt} has a small probability for large t since H has a finite Laplace transform on a neighbourhood of the origin. Electron. Commun. Probab. 17 (2012), no. 56, 1-14.

ecp.ejpecp.org For any β ∈ (0, 1) and s > 0,

E(U t |U 0 = D) = E U t 1 {T βt} + E U t 1 {T >βt}
De -(1-β)αt + (D + 1)L(s)e -sβt .

(3.4)

From Equation (3.3), we get that, for any s < γ, log L(s) -βts h(s) where h(s) = log pαb γ -γ -log(γ -s) -βts.

The function h reaches its minimum at s(t) = γ -(βt) -1 and h(s(t)) = log pαb γ -γ + log(βt) + 1 -γβt. 

Example

The Morris-Lecar model introduced in [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF] describes the evolution in time of the electric potential V (t) in a neuron. The neuron exchanges different ions with its environment via ion channels which may be open or closed. In the original -deterministic -model, the proportion of open channels of different types are coded by two functions m(t) and n(t), and the three quantities m, n and V evolve through the flow of an ordinary differential equation.

Various stochastic versions of this model exist. Here we focus on a model described in [START_REF] Wainrib | Intrinsic variability of latency to first-spike[END_REF], to which we refer for additional information. This model is motivated by the fact that m and n, being proportions of open channels, are better coded as discrete variables. More precisely, we fix a large integer K (the total number of channels) and define a PDMP (V, u 1 , u 2 ) with values in R × {0, 1/K, 2/K . . . , 1} 2 as follows.

Firstly, the potential V evolves according to

dV (t) dt = 1 C I - 3 i=1 g i u i (t)(V -V i ) (4.1)
where C and I are positive constants (the capacitance and input current), the g i and V i are positive constants (representing conductances and equilibrium potentials for different types of ions), u 3 (t) is equal to 1 and u 1 (t), u 2 (t) are the (discrete) proportions of open channels for two types of ions.

These two discrete variables follow birth-death processes on {0, 1/K, . . . , 1} with birth rates α 1 , α 2 and death rates β 1 , β 2 that depend on the potential V :

α i (V ) = c i cosh V -V i 2V i 1 + tanh V -V i V i β i (V ) = c i cosh V -V i 2V i 1 -tanh V -V i V i (4.2)
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 1232 where p = e -Dκ/α and γ = (α + b)-(α + b) 2 -4pαb 2 = (α + b) -(α -b) 2 + 4(1 -p)αb Remark If α goes to ∞, then γ goes to d whereas γ ∼ pα/b if b goes to ∞.Proof. Starting from D + 1, the process U jumps after a random time with law E(b) to d and then goes to zero exponentially fast until it (possibly) goes back to D + 1. The first jump time T starting from D can be constructed as follows: let E be a random variable with exponential law E(1). Then T on {U 0 = D}, e -αt ).

For t > 0

 0 and β ∈ (0, 1), choose s(t) = γ -(βt) -1 in (3.4) to get E(U t |U 0 = D) De -(1-β)αt + (D + 1)e h(γ(t)) De -(1-β)αt + (D + 1) pαbe γ -γ βte -γβt .At last, one can choose β = α(α + γ) -1 in order to have (1 -β)α = γβ. This ensures thatE(U t |U 0 = D)Replacing γ -γ by its expression as a function of α, b and p provides (3.1).

  The constants ρ, θ p and C 2 (p) are given below in Equations (2.1), (2.2) and (2.3). Under the hypotheses of Theorem 1.10, the process Z admits a unique invariant measure η ∞ and

	Corollary 1.11.
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where the c i and V i , V i are constants.

Let us check that our main result can be applied in this example. Formally the process is a PDMP with d = 1 and the finite set E = {0, 1/K, . . . , 1} 2 . The discrete process (u 1 , u 2 ) plays the role of the index i ∈ E, and the fields F (u1,u2) are defined (on R) by (4.1) by setting u

The constant term u 3 g 3 in (4.1) ensures that the uniform dissipation property (1.4) is satisfied: for all (u 1 , u 2 ),

The Lipschitz character and the bound from below on the rates are not immediate.

Indeed the jump rates (4.2) are not bounded from below if V is allowed to take values in R.

However, a direct analysis of (4.1) shows that V is essentially bounded : all the fields F (u1,u2) point inward at the boundary of the (fixed) line segment S = [0, max(V 1 , V 2 , V 3 + (I + 1)/g 3 u 3 )], so if V (t) starts in this region it cannot get out. The necessary bounds all follow by compactness, since α i (V ) and β i (V ) are C 1 in S and strictly positive.