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Consider the random process (X t ) t 0 solution of Ẋt = A It X t where (I t ) t 0 is a Markov process on {0, 1} and A 0 and A 1 are real Hurwitz matrices on R 2 . Assuming that there exists λ ∈ (0, 1) such that (1 -λ)A 0 + λA 1 has a positive eigenvalue, we establish that X t may converge to 0 or +∞ depending on the the jump rate of the process I. An application to product of random matrices is studied. This paper can be viewed as a probabilistic counterpart of the paper [2] by Balde, Boscain and Mason.

Introduction

The motivation of the present paper is twofold. Firstly, this work answers a question by G. Charlot about the stochastic counterpart of the work [START_REF] Balde | A note on stability conditions for planar switched systems[END_REF]. Secondly, the Piecewise Deterministic Markov processes (PDMP) under study may present a surprising blow-up when time goes to infinity.

Let A 0 , A 1 ∈ R 2×2 be two real matrices which admit two eigenvalues with negative real parts: A 0 and A 1 are said to be Hurwitz matrices. In [START_REF] Balde | A note on stability conditions for planar switched systems[END_REF], the authors deal with the stability problem for the planar linear switching system ẋt = (1 -u t )A 0 x t + u t A 1 x t , where u: [0, ∞) → {0, 1} is a measurable function. They provide necessary and sufficient conditions on A 0 and A 1 for the system to be asymptotically stable for arbitrary switching function u. The main hypothesis that ensures the existence of a control u such that the system is not asymptotically stable is the following.

Assumption 1.1.

There exists λ ∈ (0, 1) such that the matrix A λ = (1 -λ)A 0 + λA 1 has two real eigenvalues -λ -< 0 < λ + with opposite signs. Let us denote by u -, u + two associated (real, unit) eigenvectors.

Remark 1.2. It is shown in [2] that Assumption 1.1 is equivalent to the relation

Tr(A 0 )Tr(A 1 ) -Tr(A 0 A 1 ) < -2 det(A 0 ) det(A 1 ).

(1) Assumption 1.1 may hold in many different cases as it is illustrated by the two following Examples 1.3 and 1.4. The complete description of the different cases is postponed to Section 2.3.

Example 1.3. Let us define A 0 and A 1 by

A 0 = -1 2b 0 -1 and A 1 = -1 0 2b -1
with b > 0. Then A 0 and A 1 are two Jordan matrices and the eigenvalues of A 1/2 are given by -1 ± b.

Example 1.4. Let us define A 0 and A 1 by

A 0 = -1 ab -a/b -1 and A 1 = -1 -a/b ab -1
with a, b > 0. Then A 0 and A 1 have conjugate complex eigenvalues and the eigenvalues of A 1/2 are -1 ± a(b -1/b)/2.

In the sequel, we suppose that Assumption 1.1 holds. Let us define λ 0 = λ and λ 1 = 1 -λ. For any β > 0, consider the Markov process (X, I) on R 2 × {0, 1} driven by the generator L β :

L β f (x, i) = L C f (x, i) + βL J f (x, i)
where

L C f (x, i) = A i ∇f (x, i) and L J f (x, i) = λ i (f (x, 1 -i) -f (x, i)).
The operator L C corresponds to the "continuous" part (the first component x evolves along the flow of the vector field x → A i x) and βL J gives the jumps on the second component. If ν is a probability measure on R 2 × {0, 1}, we denote by P ν the law of the process (X, I) when the law of (X 0 , I 0 ) is ν.

Remark 1.5. One can easily construct the process (X, I) as follows. The process (I t ) t 0 is the Markov process on {0, 1} with jump rates (βλ i ) i∈{0,1} . Then, (X t ) t 0 is the solution of

X t = X 0 + t 0 A Is X s ds, (t 0).
Notice that (I t ) t 0 is a Markov process with invariant measure

βλ 1 βλ 0 + βλ 1 δ 0 + βλ 1 βλ 0 + βλ 1 δ 1 = (1 -λ)δ 0 + λδ 1 .
Our main result ensures that under Assumption 1.1 the norm of the continuous component X goes to zero if the jumps are rare and to +∞ if the jumps are sufficiently numerous (and X 0 = 0). Theorem 1.6. Under Assumption 1.1, there exists χ(β) ∈ R such that, for any initial measure

ν such that ν({0} × {0, 1}) = 0, 1 t log X t Pν -a.s. -----→ t→∞ χ(β). ( 2 
)
Moreover, there exist two constants 0 < β 1 β 2 < ∞ such that: [START_REF] Davis | Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models[END_REF][START_REF] Jacobsen | Point process theory and applications, Probability and its Applications[END_REF] for details) where the continuous part is driven by two vectors fields that admit a unique stable point and are exponentially stable. In [START_REF] Bakhtin | Invariant densities for dynamical systems with random switching[END_REF] it is proved that if the process is recurrent its invariant measure is often absolutely continuous. The previous theorem shows that the recurrence may not be so easy to establish (it can depend on the jump rates).

• if β < β 1 , then χ(β) is negative and X t Pν -a.s. -----→ t→∞ 0, • if β > β 2 , then χ(β) is positive and X t Pν -a.s. -----→ t→∞ ∞. Remark 1.7. The process ((X t , I t )) t 0 is what is called a Piecewise Deterministic Markov Process on R 2 × {0, 1} (see
We prove Theorem 1.6 in Section 2. We do not know if β 1 = β 2 under Assumption 1.1. Nevertheless, Section 3 is dedicated to the study of Examples 1.3 and 1.4 where this "phase transition" can be established. The exponential rate of growth of the process is given by an expression analogous to Furstenberg formula ([5]). Generally it is difficult to compute the element entering the Furstenberg formula (see examples in [START_REF] Chamayou | Explicit stationary distributions for compositions of random functions and products of random matrices[END_REF], [START_REF] Marklof | Explicit invariant measures for products of random matrices[END_REF]). For the example of Section 3 one obtains an explicit expression of the "Lyapunov" exponent of (X t ) t 0 . Finally, in Section 4, we remark that our results can be interpreted in terms of products of random matrices. We obtain examples of products of random independent matrices, all of them contracting, with a positive Lyapunov exponent (we are not in the frame of unimodular matrices studied in [START_REF] Chamayou | Explicit stationary distributions for compositions of random functions and products of random matrices[END_REF], [START_REF] Marklof | Explicit invariant measures for products of random matrices[END_REF]).

The general case

The proofs of the two parts of Theorem 1.6 use different techniques. The easy part, when β is small, follows from a martingale argument explained in Section 2.1. To study the process for large β, we use a polar decomposition, detailed in Section 2.2. The angular process is studied in Sections 2.3 and 2.4. In Section 2.5 we give the main line of the proof of Theorem 1.6; the proof of a key lemma is postponed to Section 2.6.

Few jumps: convergence to zero

In this subsection, we suppose that β is small: the i component rarely jumps. The two flows associated to A 0 and A 1 being linear and attractive, there exists ρ > 0 and two norms V 0 and V 1 , given by two positive symmetric matrices M 0 and M 1 , such that, for

V i (x) = x, M i x , L C V i (x, i) -ρV i (x). Define, V (x, i) = V i (x). Since |L J f (x, i)| K(|f (x, 0)| + |f (x, 1)|), we get L β V (x, i) = L C V i (x, i) + βL J V i (x, i) -ρV i (x) + βK(V 0 (x) + V 1 (x)) -ρV i (x) + βK ′ V i (x)
by the equivalence of the norms. Therefore there exist a ρ ′ > 0 and a β 1 > 0 such that, for

β < β 1 , ∀(x, i) ∈ R 2 × {0, 1}, L β V (x, i) -ρ ′ V (x, i).
Consequently the process (M t ) t 0 defined by M t = e ρ ′ t V (X t , I t ) is a positive supermartingale. It converges almost surely to a random variable which is almost surely finite. Therefore V (X t , I t ) converges almost surely to zero, and X t itself converges to zero almost surely (exponentially fast).

A polar decomposition

We begin by decomposing the deterministic dynamics. Let A be a matrix on R 2 and x ∈ R 2 \{0}. Consider (x t ) t 0 the solution of

ẋt = Ax t , x 0 = x.
First of all, since x is not 0, then, for any t 0, x t is not equal to 0. Therefore it is possible to define the polar coordinates (r t , θ t ) of x t . Call e θ the unit vector (cos θ, sin θ) and define u t = e θt : x t may be written r t u t . Since r 2 t = x t , x t , we have:

r t ṙt = x t , Ax t A(r t u t ) = ẋt = ṙt u t + r t ut . Therefore: ṙt = r t u t , Au t (3) ut = Au t -u t , Au t u t . ( 4 
)
The evolution of u t on the circle is autonomous. The derivative ut vanishes when Au t = u t , Au t u t that is when u t is a eigenvector of A. As a consequence, the equation (4) has

• four stationary points iff A admits two different eigenvalues,

• two stationary points iff A is a Jordan matrix as in Example 1.3,

• no stationary points iff the eigenvalues of A are not real.

If we write equation (4) in terms of the angles θ t . Since ut = θt e θt+π/2 , the scalar product of ( 4) with e θt+π/2 gives: θt = Ae θt , e θt+π/2 = (A 22 -A 11 ) sin(θ t ) cos(θ t ) + A 21 cos 2 (θ t ) -A 12 sin 2 (θ t ).

(5)

The critical points of this differential equation are related to the eigenvector of A as it is pointed out in the following lemma.

Lemma 2.1. For any matrix A, the function

d : θ → d(θ) = Ae θ , e θ+π/2
given by (5) is π-periodic and d(θ) = 0 iff e θ is an eigenvector of A. Finally, the function d is constant and equal to zero iff A = λI 2 .

Proof. If θ is changed to θ + π then both e θ and e θ+π/2 are changed to their opposite, so that Ae θ , e θ+π/2 remains unchanged. We have already seen that d(θ) = 0 if and only if e θ is an eignevector of A.

The angular process

Let us use the polar decomposition to study the process ((X t , I t )) t 0 . Between jumps, the process follows the deterministic dynamics described above, with A ∈ {A 0 , A 1 }. Since the evolution of the angle θ is autonomous for each dynamics, the process (Θ, I) is a Markov process on R × {0, 1}. The evolution of (R t ) t 0 is determined by the one of the process ((Θ t , I t )) t 0 , by solving Equation (3) between the jumps. If we call A(θ, i) = A i e θ , e θ , then

R t = R 0 exp t 0 A(Θ s , I s )ds . ( 6 
)
and R t appears as a multiplicative functional of ((Θ s , I s )) 0 s t . The proof of Theorem 1.6 relies on the study of the long time behavior of (Θ, I). We will see in the sequel that this process may be ergodic (i.e. it may admits a unique invariant measure) or not. Let us define, for i ∈ {0, 1} and λ ∈ (0, 1),

d i (θ) = A i e θ , e θ+π/2 , d λ (θ) = (1 -λ)d 0 (θ) + λd 1 (θ).
The generator of the Markov process (Θ, I) is given by:

L β f (θ, i) = L C f (θ, i) + βL J f (θ, i) where L C f (θ, i) = d i (θ)∂ θ f (θ, i) and L J f (θ, i) = λ i (f (θ, 1 -i) -f (θ, i)). ( 7 
)
Once again, L C is the continuous drift and βL J is the jump part. Let us also introduce the averaged (deterministic) dynamic:

L A f (θ, i) = d λ (θ)∂ θ f (θ, i).
Under Assumption 1.1, Lemma 2.1 ensures that the vector field F λ = d λ ∂ θ has exactly four critical points on [0, 2π). As d λ is π-periodic it suffices to describe it only on an interval of length π separating two zeros of d λ corresponding to the negative eigenvalues of A λ . Let [θ -, θ -+ π) this interval. The function d λ vanishes only once on (θ -, θ -+ π) at a point θ + correponding to the positive eigenvalues of A λ . We have

d λ (θ) > 0 if θ ∈ (θ -, θ + ), < 0 if θ ∈ (θ + , θ -+ π). ( 8 
)
Let us firstly notice that, under Assumption 1.1, the critical points d 0 , d 1 and d λ are different.

Lemma 2.2. Under Assumption 1.1 if θ is a critical point of d λ then d 0 (θ)d 1 (θ) < 0. In particular, θ is not a critical point of d i , i ∈ {0, 1}.
Proof. Assume that there exists θ such that d λ (θ) = 0 = d 0 (λ). Then d 1 (θ) = 0. As a consequence, u θ is an eigenvector for A 0 , A 1 and A λ associated to the respective eigenvalues η 0 , η 1 and η λ . By definition, η λ = (1 -λ)η 0 + λη 1 . This implies that the second eigenvalue of A λ is also a convex combination of two complex numbers with negative real part (consider the relation 

Tr(A λ ) = (1 -λ)Tr(A 0 ) + λTr(A 0 )). This cannot hold under Assumption 1.1. As a consequence, d 0 (θ)d 1 (θ) = 0. Since d λ (θ) = 0,
θ 1m < θ 1M such that θ 1m < θ 0m < θ + < θ 1M < θ 0M .
In the last two cases we have a subinterval of (θ -, θ -+ π) that is invariant for both of the systems θt = d i (θ t ) : (θ 0M , θ 1m ) in case (e), (θ 0m , θ 1M ) in case (f) (see Figure 1).

Ergodic properties of the angular process

Since the asymptotic behavior of R t = X t depends on the long time behavior of the process (U, I) = (e Θ , I), let us briefly study its ergodicity (recurrent and transient points, number of invariant measures...).

Firstly, remark that when Assumption 1.1 is satisfied there exists ε > 0 such that

• the points {(θ, i) : θ ∈ (θ --ε, θ -+ ε,
), i = 0, 1} lead with positive probability to (θ + , j) and (θ + -π, j), j = 0, 1,

• the points {(θ, i) : θ ∈ (θ -+ π -ε, θ -+ π + ε, ), i = 0, 1} lead with positive probability to (θ + , j) and (θ + + π, j), j = 0, 1.

θ 0m θ 0M θ 1m θ 1M θ - θ -+π θ + i n v a r ia nt by b o t h f l o w s Case (e) θ 0m θ 0M θ 1m θ 1M θ - θ -+π θ + i n v a r ia nt by b o t h f l o w s Case (f)
The outer arrows, in red, represent the flow of d 1 . The middle ones, in blue, represent d 0 and the inner ones the averaged flow d λ . In the two cases, there is a region around θ + that is left invariant by both flows. The regions on each side are unstable and lead back to the invariant region. 

Thus if one of the sets (θ

--ε, θ -+ ε) × {0, 1} or (θ -+ π -ε, θ -+ π + ε) × {0, 1}
is attained with positive probability starting from (θ + , 0), then the Markov process (U t , I t ) on the circle is recurrent. This is the case in the situations (a), (b), (c), (d) described above. In these situations the process (U t , I t ) is irreducible and has a unique invariant measure.

In the cases (e) and (f), (U t , I t ) has exactly two distinct recurrent classes and two invariant measures supported by two intervals on the circles corresponding to the invariant interval defined above and its symmetric. Let µ β and μβ be these two ergodic invariant measures. For any initial measure µ on T × {0, 1},

1 t t 0 f (U s , I s )ds Pµ a.s. ----→ t→∞ P f (u, i)dµ β (u, i) + (1 -P ) f (u, i)dμ β (u, i)
where P ∈ {0, 1} is a random variable such that P(P = 1) is the probability that (U, I) reaches the class of (e θ + , 0) when the law of (U 0 , I 0 ) is µ. Now by symmetry we have

f (u, i)dμ β (u, i) = f (-u, i)dµ β (u, i), so that, if f (-u, i) = f (u, i),
in all the cases, we have

1 t t 0 f (U s , I s )ds Pµ a.s. ----→ t→∞ f (u, i)dµ β (u, i).
Finally notice that the invariant measures are always absolutely continuous with respect to λ T ⊗ (δ 0 + δ 1 ) where λ T is the Lebesgue measure on T.

Many jumps: blow up

In the sequel, µ β stands for any invariant measure of (U, I) and we identify u = e θ with θ. As A(θ, i) = A i e θ , e θ = A(θ + π, i) we get (see the expression (6)):

1 t log (R t /R 0 ) a.s ---→ t→∞ A(θ, i) dµ β (θ, i).
Thus, for any probability measure ν on R 2 × {0, 1} such that ν({0} × {0, 1}) = 0, the convergence (2) in Theorem 1.6 holds with

χ(β) = A(θ, i) dµ β (θ, i).
In order to prove that χ(β) is positive when β is large we use the following lemma, which will be proved in Section 2.6.

Lemma 2.3. When β is large, the invariant measures are concentrated around the stable points θ + and θ+ = θ + + π of the averaged dynamical system. More precisely, for any ǫ > 0, and any neighborhood K ⊂ T of the set {θ + , θ+ }, there exists a β(K, ǫ) such that, for any β β(K, ǫ),

µ β (K × {0, 1}) 1 -ǫ.
Thanks to this result, we can now prove:

A(θ, i)dµ β (θ, i) > 0
for β large enough. For θ = θ + or θ = θ+ , we know that

A(θ + , i)dµ β (θ, i) = A λ e θ + , e θ + = λ + > 0. Moreover A(•, i) is continuous for i = 0, 1. Choose K, a neighborhood of θ + , θ+ , such that ∀(θ, i) ∈ K × {0, 1}, A(θ, i) 2λ + 3 .
Thanks to Lemma 2.3, for β large enough,

µ β (K × {0, 1}) 1 - λ + 6 A ∞ .
Therefore:

A(θ, i)dµ β (θ, i) -λ + |A(θ, i) -A(θ + , i)|1 θ∈K dµ β + |A(θ, i) -A(θ + , i)|1 θ / ∈K dµ β λ + 3 + 2 A ∞ µ β ( K × {0, 1}) 2λ + 3 .
This shows that χ(β) λ + 3 > 0. Hence R t converges a.s. to infinity; this concludes the proof of Theorem 1.6.

The invariant measures concentrate near the attractive points

This section is devoted to the proof of Lemma 2.3. The idea is that the averaged system gets back quickly to the stable points, so most of the mass of the invariant measure µ β should be located near these stable points. To quantify this attraction to the stable points, we find a Lyapunov function, in the following sense. Lemma 2.4. Suppose that there exists a function (θ, i) → f β (θ, i) that satisfies:

f β (θ, i) a > 0, L β f β (θ, i) -ρf β (θ, i) + C1 {θ∈K} , ( 9 
)
Then µ β (K) aρ/C.
Proof. Integrating (9) with respect to the invariant measure µ β , we get:

0 = L β f β dµ β -ρ f β dµ β + Cµ β (K),
which proves the result.

The Lyapunov function f β will be constructed by the classical "perturbation" method (for details see e.g. [START_REF] Kushner | Approximation and weak convergence methods for random processes, with applications to stochastic systems theory[END_REF]). We start from a test function f (depending only on θ) adapted to the averaged dynamical system driven by d λ , and build a perturbation f β = f -β -1 g of this function such that L β f β ≈ L A f ; this perturbed function will satisfy the hypotheses of Lemma 2.4 with appropriate constants.

Let K be a small neighborhood of the stable points θ + , θ+ and ǫ > 0. There exists a 2π-periodic function f that satisfies the following properties:

1. f is C 2 (R), 2. f (θ -) = f ( θ-) = 2, f (θ + ) = f ( θ+ ) = 1, 3. f ′ (θ -) = f ′ (θ + ) = f ′ ( θ+ ) = f ′ ( θ-) = 0, 4. f ′′ (θ -) = -1, f ′′ (θ + ) = ǫ,

f is monotonous between its critical points.

Notice that, by design, f decreases along the trajectories of the averaged system:

∀θ ∈ [0, 2π], L A f (θ) = d λ (θ)f ′ (θ) 0. ( 10 
)
Let us define g on T × {0, 1} by

g(θ, i) = L A f (θ) -L C f (θ, i)
where L C is the continuous part of the L β in [START_REF] Kushner | Approximation and weak convergence methods for random processes, with applications to stochastic systems theory[END_REF]. One can notice that, for any θ ∈ T, i → g(θ, i) is the solution of the Poisson equation

L J g(θ, •) = L C f (θ, •) -L A f (θ) = -g(θ, •)
since, for any θ ∈ T,

L A f (θ) = L C f (θ, i)d(λδ 1 + (1 -λ)δ 0 )(i).
Finally, define f β on T × {0, 1} by

f β (θ, i) = f (θ) - 1 β g(θ, i).
Applying the generator, we get

L β f β (θ, i) = L C f (θ, i) -β -1 L C g(θ, i) + βL J f (θ, i) -L J g(θ, i) = L A f (θ) -β -1 L C g(θ, i).
The definition of g ensures that

L β f β (θ, i) = L A f (θ) + β -1 Rf (θ, i) where Rf (θ, i) = L C L C f (θ, i) -L C L A f (θ, i), (11) 
with

L C L C f (θ, i) = d i (θ) 2 f ′′ (θ) + d i (θ)d ′ i (θ)f ′ (θ) L C L A f (θ, i) = d i (θ)d λ (θ)f ′′ (θ) + d i (θ)d ′ λ (θ)f ′ (θ).
Thus there exists Rǫ such that for any (θ, i) ∈ R × {0, 1}, |Rf (θ, i)| Rǫ . In particular, if β is sufficiently large, one can assume that

1 2 1 -ǫ f β (θ, i) 3. ( 12 
)
Let us prove (9) between two critical points θ -< θ + splitting the interval [θ

-, θ + ] in three regions [θ -, θ -+ l -], [θ -+ l -, θ + -l + ] and [θ + -l + , θ + ]
where l -and l + depend on f , ε and K (but not on β).

First region. Since θ -is a critical point of d λ , one has L A f (θ -) = 0. Moreover f ′ (θ -) is equal to 0 since f reaches its minimum at θ -. From (11), the expressions of L C L C f and L C L A f , we get that L β f β (θ -, i) = β -1 Rf (θ -, i) = β -1 d i (θ -) 2 f ′′ (θ -) -β -1 c u where c u = min d 0 (θ -) 2 , d 1 (θ -) 2 > 0. ( 13 
)
By continuity, we can find l -> 0 (that does not depend on β) such that Rf (θ, i)

-c u /2 for θ ∈ [θ -, θ -+ l -]
. Remembering (10), we obtain:

L β f β (θ, i) β -1 Rf (θ, i) - c u 2 β -1 - c u 6 β -1 f β (θ, i), ( 14 
)
where the last line follows from (12).

Second region.

For θ ∈ [θ -+ l -, θ + -l + ], |d λ (θ)| and |f ′ (θ)| are bounded below, so L A f (θ) -ρ for some ρ > 0 that does not depend on β. Since Rf is bounded,

L β f β - ρ 2
for β large enough. Then (14) also holds when β is large.

Third region. Since θ + is a critical point of d λ and an extremum of f , L A f (θ + ) = 0 and from (11)

L β f β (θ + , i) = β -1 Rf (θ + , i) = β -1 d i (θ + ) 2 f ′′ (θ + ) β -1 c d ǫ where c d = max d 0 (θ + ) 2 , d 1 (θ + ) 2 . ( 15 
)
By continuity, we can find l + > 0 such that, for any θ

∈ [θ + -l + , θ + ], 0 Rf (θ, i) 2c d ǫ and 1 f (θ, i) 1 + ǫ.
Notice that l + does not depend on β. Without loss of generality, one can assume that K contains [θ + -l + , θ + ]. We use (10) once more to get, for θ ∈ [θ + -l + , θ + ],

L β f β (θ, i) 2c d ǫβ -1 - c u 6 β -1 f β (θ, i) + c u 6 β -1 f β (θ, i) + 2c d ǫβ -1 - c u 6 β -1 f β (θ, i) + β -1 (1 + ǫ) c u 6 + 2c d ǫ .

Conclusion.

Gathering the three estimates provides (9) with:

a = min θ,i f β (θ, i), ρ = c u 6 β -1 and C = β -1 (1 + ǫ) c u 6 + 2c d ǫ .
By (10), a 1 -ǫ when β is large. By Lemma 2.4,

µ(K) (1 -ǫ)ρ C = 1 -ǫ 1 + ǫ + 12(c d /c u )ǫ .
This can be arbitrarily close to 1 if we choose ǫ small enough.

Two explicit examples with a phase transition

In this section we perform a detail study of Examples 1.3 and 1.4. It has been pointed out in Section 2.4 that the angular processes associated to these two examples are of different type.

The first one has two recurrent classes whereas the second one is ergodic. Nevertheless, we are able to get a perfect picture of the asymptotic of X t as a function of β for these two examples.

As the studies are similar we present precisely the analysis of Example 1.4 and we provide more briefly the key expressions for Example 1.3.

Example 1.4

Let a and b be two positive real numbers, λ = 1/2 and set

A 0 = -1 ab -a/b -1 A 1 = -1 -a/b ab -1
and

A 1/2 = A 1 + A 0 2 = -1 a(b -1/b)/2 a(b -1/b)/2 -1 .
The eigenvalues of A 0 and A 1 are equal to -1 ± ia whereas the eigenvalues of

A 1/2 are -1 ± a(b -1/b)/2. If a(b -1/b) > 2, i.e. b > 1 + √ 1 + a 2
, the matrix A 1/2 admits a positive and a negative eigenvalue. The associated eigenvectors are (1, 1) and (1, -1). The generator of the process (Θ t , I t ) is given by

L β f (θ, i) = d i (θ)∂ θ f (θ, i) + β 2 (f (θ, 1 -i) -f (θ, i)),
where

d 0 (θ) = -a/b cos 2 (θ) -ab sin 2 (θ) < 0 d 1 (θ) = ab cos 2 (θ) + a/b sin 2 (θ) > 0.
Lemma 3.1. The invariant measure µ β of the angular process is given by

µ β (dθ, i) = 1 C(β) 1 |d i (θ)| e βv(θ) 1 [0,2π] (θ) dθ,
where

v(θ) =    1 2a (arctan(b tan(θ)) -arctan(b -1 tan(θ))) if θ = ± π 2 , 0 otherwise. ( 16 
)
and

C(β) = 2π 0 1 d 1 (θ) - 1 d 0 (θ)
e βv(θ) dθ.

Remark 3.2. Notice that v belongs to C ∞ (T) and is π-periodic. Moreover, v ′ (θ) = 0 if and only if θ = ±π/4 + kπ. Finally, the function v reaches its maximum at π/4 + kπ and its minimum at -π/4 + kπ.

Proof of Lemma 3.1. If µ β is an invariant measure for (Θ, I), then, for any smooth function f on T × {0, 1}, one has

T×{0,1} L β f (θ, i)dµ β (θ, i) = 0.
Let us look for an invariant measure µ β on T × {0, 1} that can be written as

µ β (dθ, i) = ρ 0 (θ)1 0 (i) dθ + ρ 1 (θ)1 1 (i) dθ,
where ρ 0 and ρ 1 are two smooth and 2π-periodic functions. If f does not depend on the discrete

variable i ∈ {0, 1}, i.e. f (θ, i) = f (θ), then T×{0,1} L β f (θ)dµ β (θ, i) = T ∂ θ f (θ)(d 0 ρ 0 )(θ)dθ + T ∂ θ f (θ)(d 1 ρ 1 )(θ)dθ,
and an integration by parts leads to

T×{0,1} L β f (θ)dµ β (θ, i) = - T f (θ)[d 0 ρ 0 + d 1 ρ 1 ] ′ (θ)dθ
This ensures that d 0 ρ 0 + d 1 ρ 1 must be constant. Let us assume that one can find ρ 0 and ρ 1 such that

d 0 ρ 0 + d 1 ρ 1 = 0. Now, if f is such that f (θ, 0) = f (θ) et f (θ, 1) = 0, we get T×{0,1} L β f (θ, i)dµ β (θ, i) = T d 0 (θ)∂ θ f (θ) - β 2 f (θ) ρ 0 (θ)dθ + T β 2 f (θ)ρ 1 (θ)dθ
and, after an integration by parts,

T×{0,1} L β f (θ, i)dµ β (θ, i) = T f (θ) -(d 0 ρ 0 ) ′ (θ) + β 2 (ρ 1 (θ) -ρ 0 (θ)) dθ.
Let us define φ = d 0 ρ 0 . Then ρ 0 = φ d 0 and ρ 1 = -φ d 1 . The function φ is solution of the following ordinary differential equation:

φ ′ = - β 2 1 d 1 + 1 d 0 φ. ( 17 
)
This equation admits a solution on T (i.e. 2π-periodic) since the integral of

1 d 1 + 1 d 0 on [-π, π
] is equal to 0. In fact this is already true on [-π/2, π/2]. Since d 0 and d 1 are explicit trigonometric functions, one can find an explicit expression for φ. Notice that arctan b -1 tan(θ)

′ = 1 b • 1 + tan 2 (θ) 1 + tan 2 (θ) b 2 = 1 b cos 2 (θ) + 1 b sin 2 (θ) = a d 1 (θ) [arctan(b tan(θ))] ′ = - a d 0 (θ)
.

The differential equation (17) becomes φ ′ = βv ′ φ where v is given by ( 16) and its solutions are given by φ = K exp(βv).

This relation provides the expression of ρ 0 and ρ 1 up to the multiplicative constant K. Since we are looking for probability measures, K is such that

K T 1 d 0 (θ) - 1 d 1 (θ) φ(θ)dθ = 1.
Conversely, it is easy to check that the measure given in Lemma 3.1 is invariant for L β .

Let us now consider the function χ given by χ(β) = A(θ, i) dµ β (θ, i).

Lemma 3.3. The function β → χ(β) is a C 1 and monotonous application on [0, +∞) such that χ ′ has the sign of b 2 -1 and

χ(0) = -1, lim β→∞ χ(β) = a(b 2 -1) 2b -1.
Proof. From the definition of A i and A, we get that, for i ∈ {0, 1},

A(θ, i) = A i e θ , e θ = a(b 2 -1) 2b sin(2θ) -1.
For sake of simplicity, A(θ) stands for A(θ, 0) = A(θ, 1). Thus, χ(β) is given by

χ(β) = 2π 0 A(θ)μ β (dθ),
where μβ (dθ) = 1 C(β)

1 d 1 (θ) - 1 d 0 (θ) e βv(θ) 1 [0,2π] dθ.
Its derivative is given by

χ ′ (β) = 2π 0 A(θ)v(θ)μ β (dθ) - C ′ (β) C(β) 2π 0 A(θ)μ β (dθ) = 2π 0 A(θ)v(θ)μ β (dθ) - 2π 0 v(θ)μ β (dθ) 2π 0 A(θ)μ β (dθ).
In other words, one has

χ ′ (β) = Cov μβ (A(•), v(•)) = a(b 2 -1) 2b Cov μβ (sin(2•), v(•)).
The mean of sin(2•) with respect to μβ is equal to 0. Besides, θ → v(θ) sin(2θ) is nonnegative (and non constant) on T. Thus, χ ′ has the sign of b 2 -1.

If β = 0, one has

χ(0) = 1 C(0) 2π 0 a(b 2 -1) 2b sin(2θ) -1 1 d 1 (θ) - 1 d 0 (θ) dθ = - 1 C(0) 2π 0 1 d 1 (θ) - 1 d 0 (θ) dθ = -1 < 0.
Finally, as β goes to ∞, the probability measure ν β converges to a probability measure concentrated on the points {π/4, 5π/4, } where v reaches its maximum. We get

lim β→+∞ χ(β) = a(b 2 -1) 2b -1.
This concludes the proof.

Corollary 3.4. If b > 1 + √ 1 + a 2
, then there exists β c ∈ (0, +∞) such that χ is negative on (0, β c ) and positive on (β c , +∞).

Example 1.3

Let us define A 0 and A 1 by

A 0 = -1 2b 0 -1 and A 1 = -1 0 2b -1
with b > 0. Then A 0 and A 1 are two Jordan matrices and the eigenvalues of A 1/2 are given by -1 ± b. In this case, d 0 (θ) = -2b sin 2 (θ) 0 and d 1 (θ) = 2b cos 2 (θ) 0, and (Θ, I) has two recurrent classes

C 1 = {(θ, i) : θ ∈ (0, π/2), i = 0, 1} and C 2 {(θ, i) : θ ∈ (π, 3π/2), i = 0, 1}.
It can be shown, following the lines of the previous section that the ergodic invariant measure µ β of the angular process on C 1 is given by

µ β (dθ, i) = 1 C(β) • 1 |d i (θ)| e βv(θ) 1 (0,π/2) (θ) dθ, where v(θ) = - 1 2b sin(2θ) and C(β) = 2 b π/2 0 1 sin 2 (2θ)
e βv(θ) dθ.

Moreover, for any β > 0,

χ(β) = -1 + 1 C(β) π/2 0 2 sin(2θ)
e βv(θ) dθ.

In particular, the function β → χ(β) is a C 1 increasing application on [0, +∞) such that

χ(0) = -1, lim β→∞ χ(β) = -1 + b.
Corollary 3.5. If b > 1, then there exists β c ∈ (0, +∞) such that χ is negative on (0, β c ) and positive on (β c , +∞).

Application to matrix products

The process studied in the preceding sections is linked to some products of random matrices. Let us consider the embedded chain of our process defined by the sequence of the positions of the process X at the times when the second coodinate I changes, that is the positions at the times when one changes the flow. The jump times are given by sums of independent random variables with exponential law of parameters λ 0 β and λ 1 β. To study this embedded chain is to study the linear images of vectors by products of independent random matrices which distributions are the image laws of exponential law of parameter 1 by the two mappings s → exp((s/βλ 0 )A 0 ) and s → exp((s/βλ 1 )A 1 ).

Let us denote (T k ) k 0 the sequence of the jump times of the second coordinate (with the convention T 0 = 0) and (Z k ) k 0 the sequence of the positions of X at these times:

Z k = X T k .
The embedded chain and the process (X t )t 0 are linked as follows. For t ∈]T k , T k+1 ] one has :

X t = exp t -T k βλ i k A i k Z k ,
where i k is 0 or 1 depending on the evenness of k. Thus,

Z k = U k U k-1 . . . U 1 X 0 where U l = exp T l -T l-1 βλ i l-1 A i l-1 .
For example we can fix that i 0 = 0, which means that at time 0, X is driven by the vector field x → A 0 x. Let e (1) and e (2) be the element of the canonical basis of R 2 , X

(1) t and X

(2) t the processes starting from e (1) and e (2) respectively. From the equality

X (1) t = exp t -T k βλ i k A i k U k U k-1 . . . U 1 e (1)
, we get

U k U k-1 . . . U 1 U k U k-1 . . . U 1 e (1)
exp(-

((t -T k )/βλ i k )A i k )X (1) t exp(((t -T k )/βλ i k )A i k ) -1 X (1) t .
On the other hand, for t ∈]T k , T k+1 ], we have

U k U k-1 . . . U 1 U k U k-1 . . . U 1 e (1) + U k U k-1 . . . U 1 e (2) = 2 j=1 exp(-((t -T k )/βλ i k )A i k ) X (j) t 2 exp(-((t -T k )/βλ i k )A i k ) max( X (1) t , X (2) t 
).

According 

1 k log U k U k-1 . . . U 1 = χ(β) 2λ(1 -λ)β .
In particular this limit has the same sign as χ(β), it is negative for small β and positive for large β. This does give an example of a product of contracting independent matrices with a positive Lyapunov exponent but in this case the matrices (U k ) k do not have the same distribution : it depends on the evenness of k. If we group the U k by 2 we get a product of independent matrices with the same distribution but they are not always contracting: some matrices in the image of (s, t) → exp t βλ 1 A 1 exp s βλ 0 A 0 are hyperbolic. So let us slightly modifiy the process we began with. When the second coordinate is i ∈ {0, 1}, at each date given by the sum of independent random variables with exponential law of parameter λ i β one chooses independently with probability 1/2 to keep the flow i or with probability 1/2 to flip to the flow 1 -i. As an independent geometric random sum of exponential independent random variables is still an exponential random variable, in continuous time, this modification is simply a change of parameter β (replaced par β/2). The embedded chain defined by the position at times given by (not the changes of flow but) the sums of exponential random variables, also corresponds to a products of independent random matrices, and this time, all matrices considered are contracting.

Let (D k ) denotes the sequence of dates considered in this case. It is a sum of k independent exponential variables of parameters βλ 0 and βλ 1 and, almost surely, asymptotically, half of them are of parameter βλ 0 , half of them of parameter βλ 1 . So that, as before, D k /k almost surely tends to (2λ(1 -λ)β) -1 . These remarks and the preceding computation give the following proposition.

Proposition 4.1. Let A 0 and A 1 two matrices such that Assumption 1.1 is satisfied. Let (V k ) k 1 be a sequence of independent matrices with distribution given by the half sum of the image measures of the exponential law of parameter 1 by the two mappings s → exp s βλ 0 A 0 and t → exp t βλ 1 A 1 .

Then almost surely, one has

lim k→∞ 1 k log V k V k-1 . . . V 1 = χ(β/2) 2λ(1 -λ)β ,
and if β is sufficiently large this limit is positive.

Thus we have obtained examples of product of random independent identically distributed matrices, all contracting, with a positive Lyapounov exponent.

  we get that d 0 (θ) and d 1 (θ) have opposite signs. Without loss of generality we can assume that d 0 (θ + ) < 0 and d 1 (θ + ) > 0. Because of the equality d λ = (1 -λ)d 0 (θ) + λd 1 (θ) we have constraints on the signs of the d i . Let us list all the possibilities: (a) d 1 does not vanish and d 0 vanishes 0, 1 or 2 times on (θ -, θ + ), (b) d 0 does not vanish and d 1 vanishes 0, 1 or 2 times on (θ + , θ -+ π), (c) d 1 vanishes 2 times on (θ + , θ -+ π) at points θ 1m < θ 1M and d 0 vanishes 1 or 2 times on (θ 1m , θ 1M ), (d) d 0 vanishes 2 times on (θ -, θ + ) at points θ 0m < θ 0M and d 1 vanishes 1 or 2 times on (θ 0m , θ 0M ), (e) d 1 vanishes 1 or 2 times on (θ + , θ -+ π) at points θ 1m θ 1M and d 0 vanishes 1 or 2 times on (θ -, θ + ) at points θ 0m θ 0M , (f) d 0 vanishes 2 times at points θ 0m < θ 0M and d 1 vanishes 2 times at points
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 1 Figure 1: The three flows in cases (e) and (f).

  so that T k /k almost surely tends toward (2λ(1 -λ)β) -1 .Putting things together we get that, almost surely,

	to Theorem 1.6 almost surely both limits	
		lim t→∞	1 t	log X t (1)		and lim t→∞	1 t	log X	(2)
										law of
	large numbers gives	T 2k 2k	---→ k→∞	1 2λβ	+	1 2(1 -λ)β	=	1 2λ(1 -λ)β	,
		lim k→∞					

t exist and are equal to χ(β). Moreover, almost surely, the ratio (t -T k )/t tends to 0 and, as T k is the sum of independent random variables of parameter λβ and (1 -λ)β, the strong
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