
HAL Id: hal-00686248
https://hal.science/hal-00686248

Submitted on 9 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotically optimal parallel resource assignment
with interference

Ina Maria Maaike Verloop, Rudesindo Núñez-Queija

To cite this version:
Ina Maria Maaike Verloop, Rudesindo Núñez-Queija. Asymptotically optimal parallel resource as-
signment with interference. Queueing Systems, 2010, 65 (1), pp.43-92. �10.1007/s11134-010-9171-4�.
�hal-00686248�

https://hal.science/hal-00686248
https://hal.archives-ouvertes.fr

Queueing Syst (2010) 65: 43–92
DOI 10.1007/s11134-010-9171-4

Asymptotically optimal parallel resource assignment
with interference

I.M. Verloop · R. Núñez-Queija

Received: 26 July 2008 / Revised: 2 March 2010 / Published online: 9 April 2010
© Springer Science+Business Media, LLC 2010

Abstract Motivated by scheduling in cellular wireless networks and resource alloca-
tion in computer systems, we study a service facility with two classes of users having
heterogeneous service requirement distributions. The aggregate service capacity is
assumed to be largest when both classes are served in parallel, but giving preferential
treatment to one of the classes may be advantageous when aiming at minimization of
the number of users, or when classes have different economic values, for example.

We set out to determine the allocation policies that minimize the total number of
users in the system. For some particular cases we can determine the optimal policy
exactly, but in general this is not analytically feasible. We then study the optimal poli-
cies in the fluid regime, which prove to be close to optimal in the original stochastic
model. These policies can be characterized by either linear or exponential switch-
ing curves. We numerically compare our results with existing approximations based
on optimization in the heavy-traffic regime. By simulations we show that, in general,
our simple computable switching-curve strategies based on the fluid analysis perform
well.

Keywords Parallel servers · Resource sharing · Dynamic control · Optimal
scheduling · Switching curve · Fluid control problem · Fluid limit · Asymptotic
optimality

Mathematics Subject Classification (2000) Primary 68M20 · Secondary 60K25 ·
90B22 · 93E20

I.M. Verloop (�)
BCAM—Basque Center for Applied Mathematics, Derio, Spain
e-mail: verloop@bcamath.org

I.M. Verloop · R. Núñez-Queija
CWI, Amsterdam, The Netherlands

R. Núñez-Queija
University of Amsterdam, Amsterdam, The Netherlands

mailto:verloop@bcamath.org

44 Queueing Syst (2010) 65: 43–92

1 Introduction

In many practical applications where resources must be allocated to several contend-
ing users or tasks, the service capacity itself may be affected by the scheduling policy
deployed. Our work is motivated by two specific application areas. In third genera-
tion wireless networks, neighboring base stations may interfere with each other when
transmitting simultaneously. When one base station is not active, other base stations
can work at higher rates, see for example [6, 7]. For data applications, base stations
may coordinate transmissions (i.e., transmit simultaneously or alternatingly) so as
to improve the use of the shared spectrum. A second motivating application is the
scheduling of resources in computer systems (or Web servers) where jobs must be
routed to one of several servers, see for example [26, 27]. There, the capacity de-
pends on the allocation when servers are specialized for certain tasks.

Scheduling of resources with policy-dependent capacities has attracted much at-
tention in recent years. Most of the results concern stochastic stability properties of
such systems. Due to the dependence of capacity on the service policy, even this
most basic performance measure is a non-trivial task to determine. In [10] bounds
for stability in a general class of systems with policy-dependent capacity have been
determined. In the specific context of wireless networking, stability of utility-based
allocation strategies was shown to be intimately related with the shape of the feasible
capacity region [9], i.e., the set of simultaneously achievable transmission rates for all
users. With a convex capacity region, the system is stabilized by any such allocation
strategy, but this is not the case for non-convex capacity regions. These results were
later generalized to non-convex and time-varying capacity regions in [21], showing
the precise conditions for stability of utility-based strategies under quite general as-
sumptions on the time-variations. Stability conditions for non utility-based strategies,
for example threshold-based policies, were investigated in [27, 33].

As may be expected from the complexity of determining stability, results on the
flow-level performance in terms of system delay or system occupancy are scarce. In
this paper we focus on a particular model with simultaneous resource sharing that
turns out to be equivalent to a parallel-server model where user classes can be served
in parallel, all by a dedicated server, or where several servers can be simultaneously
allocated to one class only. This type of model is known to be notoriously hard to
analyze, as is illustrated by special cases (including the so-called coupled-processor
model) requiring the solution of a Riemann-Hilbert boundary value problem [12, 15].

Most results on flow-level performance in parallel-server models concentrate on a
specific class of scheduling policies. For example, besides determining the stability
conditions, the authors in [27] investigate the performance of threshold-based poli-
cies. One main observation there is that finding reasonable values for the thresholds is
not trivial since performance as well as stability can be quite sensitive to the threshold
values. Approximations for mean response times are given in [26]. A general class
of threshold-based priority policies for multi-class parallel-server networks is also
proposed in [32]. For these strategies, the authors derive approximate formulas for
the queue lengths and illustrate how these can be used to obtain reasonable threshold
values. In [6, 7] a parallel two-server model is analyzed under the policy that always
serves both classes in parallel whenever both are present, and a diffusion approxima-
tion for the queue lengths is found for a specific heavy-traffic setting.

Queueing Syst (2010) 65: 43–92 45

Our goals here are to study the structural properties of optimal scheduling poli-
cies in a parallel-server model, and to determine computable approximations that are
close to optimality. Our objective is to minimize (in some appropriate sense) the total
number of users. A crucial observation when addressing optimality is that, in general,
users will have class-specific sizes, so that few users of one class can typically add
up to the same amount of work as many of another class. On the one hand, it seems
reasonable to maximize the departure rate of users, by serving the “small” users first.
In the short run, this will keep the number of users in the system at a low level, thus
shortening overall delays. On the other hand, it is also desirable to deploy the highest
possible total service capacity. That will minimize the volume of back-logged work
and drain the system at maximum rate, thus ensuring maximum stability. In general,
finding the optimal trade-off between these two intrinsically different objectives is a
challenging task.

Determining the exact optimal policy in a parallel-server model has so far proved
analytically infeasible. Most research on this area has focused on heavily-loaded sys-
tems under a (complete) resource pooling condition for which asymptotically optimal
policies in heavy traffic are determined [1, 4, 5, 18, 19, 23, 31]. In [1, 18, 19] sev-
eral discrete-review policies are proposed (the system is reviewed at discrete points
in time, and decisions are based on the queue lengths at the revision moment) and
are proved to be asymptotically optimal in heavy traffic. In [23, 31] a generalized
cμ-rule is proposed (including the Max-Weight policy as a special case) that my-
opically maximizes the rate of decrease of certain instantaneous holding costs. This
policy is robust in the sense that it only depends on the departure rates and the cost
function, and it is proved that this policy minimizes the cumulative cost over any
finite interval in a heavily-loaded system. In [4, 5], the authors prove that threshold-
based strategies minimize the scaled total number of users in a heavy-traffic setting.
The order of magnitude of the optimal thresholds as functions of the traffic load
can be determined, but this does not give a recipe to choose good threshold values
in moderately-loaded regimes. In [32], the authors propose values for the threshold,
which can be found by solving a minimization problem.

In this paper, we consider a parallel two-server model with two traffic classes
that can be served either in parallel or alternatingly. The highest service capacity is
achieved when serving both classes in parallel, but with asymmetric service require-
ments the user departure rate may be larger when serving one class only. For some
special cases the optimal policy can be determined exactly, but this is not possible
in general. In a similar setting, [3] states that switching-curve policies are optimal
(a proof will be included in a forthcoming paper by the authors of [3]). Numerical
experiments included for illustration in the present paper indeed support this optimal-
ity. In order to find computable approximations for the optimal policies we study the
model in a fluid-limit regime for which we show that the optimal policy is character-
ized by a linear switching curve. The optimal switching curves in the fluid regime can
be used to determine asymptotically fluid optimal policies for the stochastic model.
These policies are characterized by either linear or exponential switching curves. Our
analysis is inspired by that in [16, 17] where a multi-class tandem network is studied.
By simulations we compare these asymptotically fluid optimal switching-curve poli-
cies with threshold-based policies [4, 5] and Max-Weight policies [23, 31] which are

46 Queueing Syst (2010) 65: 43–92

optimal in heavy traffic. We show that the fluid-based and threshold-based policies
give good performance in general, while significant improvements over Max-Weight
policies can be achieved.

It is worth noting that the optimal policies studied in this paper rely on centralized
control. In practice, centralized control may require a prohibitive amount of over-
head. However, knowledge of the (centralized) optimum is extremely valuable to
(numerically) estimate the scope for improvement of decentralized control policies.
For example, in the application area of bandwidth-sharing networks, it was found
numerically that certain distributed schemes may actually be close to the theoretical
(centralized) optimum [34, 35].

The paper is organized as follows. In Sect. 2 we describe the model and state
some preliminary results. Section 3 contains our optimality results for the stochastic
model. The fluid analysis and the asymptotically fluid optimal policies are presented
in Sect. 4. For comparison we briefly discuss optimal policies in heavy traffic using
the results of [4, 5] and [23, 31] in Sect. 5. Numerical experiments and concluding
remarks can be found in Sects. 6 and 7.

2 Model description and preliminaries

We consider the following model. There are two classes of users. Class-i users,
i = 1,2, arrive according to independent Poisson processes with rate λi and have
exponentially distributed service requirements with mean 1/μi , i = 1,2. Without
loss of generality, we assume throughout the paper that μ1 ≥ μ2, that is the service
requirements of class-1 users are relatively small. Define the traffic load of class i as
ρi := λi

μi
. At any time, either one class can be served individually with capacity 1, or

both classes 1 and 2 can be served in parallel with capacities c1 and c2 respectively,
ci ≤ 1, or the system is idling (not serving any class), or any convex combination of
these four.

For a given policy π , denote by sπ
i (t) the service capacity devoted to class i

at time t . We assume that sπ
i (t) = 0 when Ni(t) = 0. In addition, we assume the

process sπ
i (t) to be right continuous with left limits. The vector sπ (t) = (sπ

1 (t), sπ
2 (t))

lies in the capacity region S, which is defined as the convex hull of the set
{(0,0), (1,0), (0,1), (c1, c2)} (see Fig. 1 in the case c1 + c2 > 1). Note that the to-
tal (service) capacity sπ

1 (t) + sπ
2 (t), that is, the speed at which the total amount of

backlogged work in the system decreases, is not constant in time. Depending on the
decision taken at time t , it may vary between 0 and max(1, c1 +c2). The rate at which
users leave the system is μ1s

π
1 (t)+μ2s

π
2 (t), which we refer to as the (user) departure

rate.
Let Sπ

i (t) := ∫ t

0 sπ
i (u)du denote the cumulative amount of capacity devoted to

class i in the time interval (0, t) under policy π . Let Ai(u, t) be the amount of class-i
work that arrived during the time interval (u, t]. Then, the workload in class i at time t

can be written as

Wπ
i (t) := Wi(0) + Ai(0, t) − Sπ

i (t). (1)

Queueing Syst (2010) 65: 43–92 47

Fig. 1 Capacity region S when
c1 + c2 > 1

Fig. 2 Parallel two-server
model

Denote by Nπ
i (t) the number of class-i users at time t , and let Nπ(t) = (Nπ

1 (t),

Nπ
2 (t)). We further define Nπ

i and Nπ as random variables with the corresponding
equilibrium distributions (when they exist).

Remark 2.1 With resource allocation in computer systems in mind, it is more natural
to view the model as an equivalent parallel-server model with two servers and two
classes, as depicted in Fig. 2. Server 1 can either serve class 1 with capacity c1, or
class 2 with capacity 1 − c2. Similarly, server 2 can either serve class 2 with capac-
ity c2, or class 1 with capacity 1 − c1. Hence, when the two servers are dedicated
to their own classes, classes 1 and 2 are served in parallel with capacities c1 and c2,
respectively. When instead both servers are allocated to the same class, this class is
served with capacity 1. (In our setting, both servers can work together on one single
user, thus achieving a service capacity of 1 even when there is only one user in the
system.) Note that, although uncommon in this setting, it is no restriction to require
that the service capacity obtained by combining the two servers equals 1 irrespective
of the queue being served. In fact, this can be achieved for any parallel-server model
by normalizing the service requirements.1

For any point in time, one needs to decide how the service capacity should be
divided between the two classes. The objective of the paper is to identify schedul-
ing policies that in some appropriate sense minimize the total number of users in
the system. We focus on policies that only use knowledge of the past evolution of

1One may think of μi as the user departure rate of class i when served exclusively (with normalized service
capacity 1). Then c1 and c2 may be adjusted so that μici equals the user departure rate of class i when
the two classes are served simultaneously. To be specific, consider a parallel two-server model where C̃i

is the service capacity in queue i when allocated both servers, c̃1 and c̃2 are the service capacities in both
queues under parallel service, and 1/μ̃1 and 1/μ̃2 are the mean service requirements. The queue-length
process is then equivalent with our normalized system when setting μi = μ̃i C̃i and ci = c̃i /C̃i .

48 Queueing Syst (2010) 65: 43–92

the number of users. Since the service requirements and inter-arrival times are ex-
ponentially distributed, the Markov property implies that we only need to consider
policies that base decisions on the number of users present in the various classes.
In particular, we exclude anticipating policies, i.e., policies that have knowledge
available of the remaining service requirements. The set of these Markovian non-
anticipating policies is denoted by Π . We call a policy π̃ ∈ Π average optimal when
π̃ = argminπ∈Π lim supm→∞ 1

m
E(

∫ m

0 (Nπ
1 (t) + Nπ

2 (t))dt). A policy π̃ ∈ Π is sto-
chastically optimal when Nπ̃

1 (t) + Nπ̃
2 (t) ≤st Nπ

1 (t) + Nπ
2 (t), for all t ≥ 0, π ∈ Π ,

whenever Nπ̃(0) = Nπ(0). By definition, for two positive random variables X and Y ,
we use X ≤st Y to denote that P(X > s) ≤ P(Y > s) for all s ≥ 0. A stochastically
optimal policy, if it exists, is automatically average optimal as well.

In the paper we assume c1 + c2 > 1. However, before proceeding let us briefly
consider the situation c1 + c2 ≤ 1. In the latter case, the policy that gives preemptive
priority to class 1 (the class with the highest departure rate) is stochastically optimal.
(In fact, this result holds for any shape of the capacity region where the points (1,0)

and (0,1) are not dominated by any other element in the capacity region.) Intuitively,
this can be understood by noting that if c1 + c2 ≤ 1, then serving class 1 exclusively
will maximize the rate at which the total workload in the system decreases. At the
same time, since μ1 ≥ c1μ1 + c2μ2, serving class 1 myopically maximizes the de-
parture rate. A formal proof can be obtained along the lines of Proposition 3.3 below
using dynamic programming. Average optimality is actually rather easy to deduce
and we give its proof here: Denote by π(1) the policy that gives preemptive priority
to class 1. Then for any policy π ∈ Π , if at time t = 0 the workloads satisfy

Wπ(1)

1 (t) ≤ Wπ
1 (t), (2)

Wπ(1)

1 (t) + Wπ(1)

2 (t) ≤ Wπ
1 (t) + Wπ

2 (t), (3)

then the same is true for all t ≥ 0. These inequalities hold sample-path wise (for all t),
and they imply stochastic inequalities for the workload processes. Multiplying (2) by
μ1 − μ2 ≥ 0 and (3) by μ2 and adding the two inequalities gives that μ1W

π(1)

1 (t) +
μ2W

π(1)

2 (t) ≤ μ1W
π
1 (t)+μ2W

π
2 (t). Since we have exponentially distributed service

requirements and we consider only non-anticipating policies, we obtain E(Wπ
i (t)) =

1
μi

E(Nπ
i (t)), so that E(Nπ(1)

1 (t))+E(Nπ(1)

2 (t)) ≤ E(Nπ
1 (t))+E(Nπ

2 (t)), for all t ≥ 0

and for all policies π ∈ Π . In particular, policy π(1) is average optimal.
As mentioned before, in the remainder of the paper we will focus on the unsolved

case c1 + c2 > 1. In this case, the total service capacity is largest when both classes
are served in parallel. For application in wireless networks, this represents the joint
capacity when both base stations transmit in parallel, and in computer scheduling it
corresponds to dedicated specialized servers.

2.1 Stability

For a given policy π , the system is called stable when the process Nπ(t) is positive
recurrent. Since c1 + c2 > 1, the policy that serves classes 1 and 2 in parallel, when-
ever possible, minimizes the total workload in the system at every moment in time.

Queueing Syst (2010) 65: 43–92 49

Hence, this policy will keep the system stable whenever possible. Under this policy,
the model becomes a coupled-processor model for which the stability conditions are

min

(
ρ1

c1
,
ρ2

c2

)

< 1 and (4)

if
ρi

ci

< 1 then ρj + ρi

ci

(1 − cj) < 1, i �= j, (5)

as proved in [12, 15]. Conditions (4) and (5) are therefore necessary conditions for the
system to be stable. However, they do not guarantee stability for an arbitrary policy,
and the exact (sufficient and necessary) stability conditions depend strongly on the
scheduling policy used. Note that the load vectors (ρ1, ρ2) that satisfy the necessary
stability conditions (4) and (5), are exactly those vectors that lie in the interior of the
capacity region S depicted in Fig. 1.

3 Optimality results

For a standard multi-class single-server queue it is well known that if class-i users
have exponentially distributed service requirements with mean 1/μi , for all classes i,
then the policy that gives preemptive priority to the class with the highest departure
rate μi (the so-called μ-rule), is stochastically optimal [29]. The rationale behind
this rule is that it maximizes the departure rate at all times. One might expect that
such a rule is optimal in our model as well. The μ-rule would amount to choosing
the allocation s(t) that maximizes the user departure rate, μ1s1(t) + μ2s2(t), at any
time t . Unfortunately, the total service capacity, s1(t) + s2(t), depends on the chosen
allocation as well. For example, serving class i only decreases the total amount of
work at rate 1, while serving both classes in parallel gives a decrease of the workload
at rate c1 + c2 > 1. Therefore, the objective to maximize the user departure rate may
be conflicting with that of maximizing the total service capacity used. The latter will
minimize the total time needed to empty the system, which is advantageous in the
long run, while the former is better in the short run.

Recall that we chose μ1 ≥ μ2. If, in addition, μ1 ≤ μ1c1 + μ2c2, then there is no
trade-off and it is intuitively clear that the policy that always serves classes 1 and 2
in parallel (whenever both are backlogged) is optimal, since this maximizes both the
workload depletion rate and the departure rate. In Sect. 3.1 we show that the above
described policy is in fact stochastically optimal.

When μ1 ≥ μ1c1 + μ2c2, the highest departure rate is obtained when serving
class 1 individually. It may therefore be better to sometimes serve class 1 individ-
ually, even if that does not maximize the rate at which the total work in the system
decreases. Hence as the number of users varies, the system should dynamically switch
between different allocations. This setting is included in Sect. 3.2.

3.1 Stochastic optimality when μ1 ≤ μ1c1 + μ2c2

In this section we show that when (μ2 ≤)μ1 ≤ μ1c1 + μ2c2, the policy that serves
both classes in parallel (whenever possible) is stochastically optimal. Although it

50 Queueing Syst (2010) 65: 43–92

seems natural to prove this using stochastic coupling techniques, we have not been
able to find such a coupling. For that reason we resort to dynamic programming
techniques. We choose a framework which is somewhat broader than strictly needed
to prove the required stochastic optimality of the number of users (we only need a
particular choice of the function C(·) below). Doing so, we emphasize the essential
properties needed to prove stochastic optimality.

We consider the uniformized Markov chain, which is equivalent to the original
process, see [28, Sect. 11.5]. In the uniformized chain, the transition epochs (in-
cluding ‘dummy’ transitions that do not alter the system state) are generated by a
Poisson process of constant rate ν = λ1 + λ2 + μ1(1 + c1) + μ2(1 + c2). Since ν

is finite, we may assume ν = 1 without loss of generality. We then focus on the
discrete-time Markov chain embedded at transition epochs and, for transparency of
notation, again denote the number of class-i users after k steps by Ni(k), i = 1,2.
Let x = (x1, x2) ∈ Z

2+. We define the functions Vk(x), k = 0,1, . . . , as follows:

V0(x) = C(x)

Vk+1(x) = λ1Vk(x + e1) + λ2Vk(x + e2)

+ min
s∈S

{ ∑

i=1,2

1(xi>0)μisiVk(x − ei)

+
(

1 − λ1 − λ2 −
∑

i=1,2

1(xi>0)μisi

)

Vk(x)

}

= λ1Vk(x + e1) + λ2Vk(x + e2) + (
μ1(1 + c1) + μ2(1 + c2)

)
Vk(x)

+ min
s∈S

{ ∑

i=1,2

1(xi>0)μisi
(
Vk(x − ei) − Vk(x)

)
}

, (6)

for x1, x2 ≥ 0, k = 0,1, . . . , with C(·) : Z
2+ → R a terminal cost function, S the

capacity region, and ei the i-th unit vector. The term Vk+1(x) represents the minimum
achievable expected terminal cost, when the system starts in state x at k + 1 steps
from the horizon. In addition, a minimizing action in (6) is an optimal action at k + 1
steps from the horizon. Setting the cost function in this framework equal to C(x) =
1(x1+x2>y), we find that Vk+1(x) represents the minimum achievable value for

P
(
N1(k + 1) + N2(k + 1) > y|N(0) = x

)
.

If we then show that for all y ≥ 0 and all k ∈ {0,1, . . .}, we can choose the same
minimizing action in (6) (the optimal action may depend on the state x), then the
corresponding policy is stochastically optimal at every instant in time. In the next
two lemmas we establish convenient properties of Vk(·), under certain conditions on
the function C(·).

Lemma 3.1 If C(x) is non-decreasing in x1 and x2, then Vk(x) is non-decreasing in
x1 and x2 for all k.

Queueing Syst (2010) 65: 43–92 51

Proof The statement follows directly from the definition of Vk(·). �

The set S is convex, hence the minimizing action in (6) will be one of the ex-
treme points of S. From Lemma 3.1 it can be concluded that the minimizer will not
be (0,0) ∈ S, since

∑
i=1,2 1(xi>0)μisi(Vk(x −ei)−Vk(x)) ≤ 0, for all s ∈ S. Hence,

we can rewrite the function Vk+1(·) as follows:

Vk+1(x) = λ1Vk(x + e1) + λ2Vk(x + e2)

+ min
(
μ1Vk

(
(x1 − 1)+, x2

) + (μ2 + μ1c1 + μ2c2)Vk(x),

μ2Vk

(
x1, (x2 − 1)+

) + (μ1 + μ1c1 + μ2c2)Vk(x),

μ1c1Vk

(
(x1 − 1)+, x2

) + μ2c2Vk

(
x1, (x2 − 1)+

)

+ (μ1 + μ2)Vk(x)
)
. (7)

In the next lemma we will show that under certain conditions on C(x), the minimizing
action in (7) will be to always serve classes 1 and 2 in parallel, whenever possible.
The proof uses Lemma 3.1 and may be found in Appendix A.

Lemma 3.2 If c1 + c2 ≥ 1 and Z(x) = C(x) is non-decreasing in x1 and x2 and
satisfies

(μ1 + μ2)Z(x) + μ1c1Z(x − e1) + μ2c2Z(x − e2)

≤ min
(
μ1Z(x − e1) + (μ2 + μ1c1 + μ2c2)Z(x),

μ2Z(x − e1) + (μ1 + μ1c1 + μ2c2)Z(x)
)
, (8)

for x1, x2 > 0, then Z(x) = Vk(x) satisfies (8) as well, for any k ≥ 0.

We can now find a stochastically optimal policy when (μ2 ≤)μ1 ≤ μ1c1 + μ2c2.

Proposition 3.3 Assume c1 + c2 ≥ 1. If (μ2 ≤)μ1 ≤ μ1c1 + μ2c2, then it is stochas-
tically optimal to serve both classes in parallel whenever possible.

Proof If (μ2 ≤)μ1 ≤ μ1c1 +μ2c2, then the cost function C(x1, x2) = 1(x1+x2>y) sat-
isfies the conditions as given in Lemma 3.2, for all y ≥ 0. From Lemma 3.2 we find
that serving both classes in parallel (whenever possible) is always the minimizing ac-
tion in (7) and hence the corresponding stationary policy is stochastically optimal. �

3.2 General characterization of the average-optimal policy

Section 3.1 treats the case μ1 ≤ μ1c1 + μ2c2, for which a stochastically optimal
policies exist. Since this may in general not be the case, we now discuss the general
structure of an average-optimal policy.

When μ1 > μ2, maximizing the user departure rate would imply that an optimal
policy will never serve class 2 individually when class 1 is also present. At the same

52 Queueing Syst (2010) 65: 43–92

time, serving class 2 individually does not give the highest possible total service ca-
pacity either, since c1 + c2 > 1. Therefore, it is natural that an optimal policy should
never serve class 2 individually when there is also work of class 1 present. This fact
is proved in Proposition 3.5. First we state a lemma that in fact holds for generally
distributed inter-arrival times and service requirements, and in particular, holds irre-
spective of the values for μ1 and μ2. The proof may be found in Appendix B.

Lemma 3.4 (This lemma holds for generally distributed inter-arrival times and ser-
vice requirements) Assume c1 + c2 > 1. Let π̃ be a policy that sometimes does serve
class 2 individually while there are class-1 users present. Define policy π to be the
policy that uses the same allocation as π̃ when possible, except when policy π̃ serves
class 2 individually. In that case policy π serves classes 1 and 2 in parallel (if possi-
ble).

Consider the same realizations of the arrival processes and service requirements.
Then the following sample-path inequalities hold:

Sπ
1 (t) ≥ Sπ̃

1 (t), (9)

Sπ
1 (t) + Sπ

2 (t) ≥ Sπ̃
1 (t) + Sπ̃

2 (t), (10)

(1 − c2)S
π
1 (t) + c1S

π
2 (t) ≥ (1 − c2)S

π̃
1 (t) + c1S

π̃
2 (t), (11)

for all t ≥ 0.

Proposition 3.5 Assume μ1 ≥ μ2 and c1 + c2 > 1. For any policy π̃ that serves
class 2 individually when there is work of class 1 present, there exists a modified
policy π that never serves class 2 individually when class 1 is present and that does
not do worse than π̃ , i.e.,

E
(
Nπ

1 (t) + Nπ
2 (t)

) ≤ E
(
Nπ̃

1 (t) + Nπ̃
2 (t)

)
, for all t ≥ 0.

Proof Let π̃ be a policy that sometimes does serve class 2 individually while there
are class-1 users present. Define policy π as in Lemma 3.4 and hence the sample-path
inequalities (9) and (10) hold. Multiplying (9) by μ1 − μ2 ≥ 0 and (10) by μ2 and
adding the two inequalities gives that μ1S

π
1 (t) + μ2S

π
2 (t) ≥ μ1S

π̃
1 (t) + μ2S

π̃
2 (t) and

hence by (1) we obtain

μ1W
π
1 (t) + μ2W

π
2 (t) ≤ μ1W

π̃
1 (t) + μ2W

π̃
2 (t), (12)

for all t ≥ 0. Since we assumed exponentially distributed service requirements and we
consider only non-anticipating policies, we have E(Wπ

i (t)) = 1
μi

E(Nπ
i (t)). By tak-

ing expectations on both sides in (12), we obtain E(Nπ
1 (t) + Nπ

2 (t)) ≤ E(Nπ̃
1 (t) +

Nπ̃
2 (t)). Hence policy π is not worse than π̃ and policy π never serves class 2 indi-

vidually when there is work of class 1 present. �

In Sect. 3.1 we explicitly found a stochastically optimal policy when μ1 ≤
μ1c1 +μ2c2. Hence, the remaining interesting case is when μ1 > μ1c1 +μ2c2. Then,

Queueing Syst (2010) 65: 43–92 53

a stochastically optimal policy may not exist, due to the fact that there is a tradeoff
when users of both classes are present: On the one hand serving class 1 individually
maximizes the user departure rate since μ1 > μ1c1 + μ2c2, which gives stochastic
optimality in the short run. On the other hand, serving classes 1 and 2 simultaneously
maximizes the speed at which the total workload in the system decreases. The lat-
ter policy would empty the system sooner and, hence, achieve a smaller number of
users at the moment that it empties the system, compared to the policy that myopi-
cally maximizes the departure rate (which needs more time to completely drain the
system). A stochastically optimal policy should achieve the lowest number of users
at all times (in the sense of stochastic ordering), which is obviously not the case for
the two described strategies.

When seeking an average-optimal policy, by Proposition 3.5 we only need to con-
sider policies that never serve class-2 users individually when there are also class-1
users present. The decision between whether to serve class 1 individually or classes 1
and 2 jointly is determined by the number of class-1 and class-2 users present in
the system. Intuitively, one may expect that the optimal policy can be character-
ized by a switching curve, i.e., there exists a non-decreasing function h such that
if N2 ≥ h(N1), then it is optimal to serve classes 1 and 2 in parallel, and otherwise
it is optimal to serve class 1 individually. The authors in [3] state that for a model
with slightly different behavior near the boundaries, the existence of such a switch-
ing curve can be proved using dynamic programming techniques. We expect that for
our model, the existence of a switching curve can be proved using the same tech-
nique (see also [35] where this was done for a different model). However, dynamic
programming techniques will not provide us with any information concerning the
shape of the curve. Therefore, in the remainder of the paper we seek policies that
are close to optimal by investigating two limiting regimes. In Sect. 4 this is done for
a fluid-scaled system and asymptotically fluid optimal switching-curve policies are
derived. Optimality results for the heavy-traffic regime are reviewed in Sect. 5.

4 Fluid analysis and asymptotic fluid optimality

In this section we consider the stochastic queue-length processes under a fluid scaling
and investigate close-to-optimal policies for the unsolved case μ1 > c1μ1 + c2μ2. In
order to do so, it will be convenient to first study the related deterministic fluid control
model. This will be done in Sect. 4.1. For this relatively simple model we derive an
optimal control (which is characterized by a switching curve) and the corresponding
optimal trajectory. In Sect. 4.2 we show that, under certain switching-curve policies
in the stochastic process, the fluid-scaled stochastic processes converge to the optimal
trajectory as found for the deterministic fluid control model. In addition, we show that
these switching-curve policies are asymptotically fluid optimal (see Definition 4.9) in
the stochastic model.

4.1 Optimal policies for the fluid control model

In this section we focus on the deterministic fluid control model, which arises from
the original stochastic model by only taking into account the mean drifts. A fluid

54 Queueing Syst (2010) 65: 43–92

process is a solution n(t) = (n1(t), n2(t)) of the following equations:

ni(t) = ni + λit − Ui(t)μi − Uc(t)μici, i = 1,2, (13)

ni(t) ≥ 0, i = 1,2. (14)

Here n = (n1, n2) ∈ R
2+ and Uj (t) = ∫ t

0 uj (v)dv, j = 1,2, c, such that for all v ≥ 0,

u1(v) + u2(v) + uc(v) ≤ 1, (15)

uj (v) ≥ 0, j = 1,2, c, (16)

and the functions uj (v) are measurable, j = 1,2, c. The subscript c refers to “com-
bined service”, i.e., serving both classes in parallel. We refer to ni(t) as the amount of
class-i fluid in the system at time t . Note that Uj (t) is Lipschitz continuous with con-
stant less than or equal to 1, hence is differentiable almost everywhere. Then, ni(t) is
differentiable almost everywhere as well, and

dni(t)

dt
= λi − ui(t)μi − uc(t)μici, i = 1,2, (17)

at regular points (a regular point is a value of t at which ni(t) is differentiable). Under
the stability conditions, the fluid model can be drained in finite time, as is stated in
the following lemma.

Lemma 4.1 If (4) and (5) are satisfied, then the policy that serves classes 1 and 2 in
parallel whenever possible, drains the fluid model in finite time and keeps the system
empty from that moment on.

Proof We consider the workload fluid processes wi(t) := ni(t)
μi

, i = 1,2. From (17)

we have dwi(t)
dt

= ρi − ui(t) − uc(t)ci , i = 1,2, at regular points. Focus on the policy
that serves classes 1 and 2 in parallel whenever possible. So, when both w1(t) > 0
and w2(t) > 0, we have uc(t) = 1. By (4), there is a class i with ρi

ci
< 1. Hence,

dwi(t)
dt

= ρi − ci < 0 and class i will eventually be drained to zero. When at that
time the workload in class j (j �= i) is strictly positive (while wi(t) = 0), we have

uc(t) = ρi

ci
and uj (t) = 1 − ρi

ci
. From (5) this gives dwi(t)

dt
= 0 and

dwj (t)

dt
= ρj − 1 +

ρi

ci
− ρi

ci
cj = ρj + ρi

ci
(1 − cj) − 1 < 0. Hence, class j must eventually become empty

as well. �

A policy π for the fluid control model is described by the control functions uπ
1 (t),

uπ
2 (t) and uπ

c (t) (we also write Uπ
j (t) = ∫ t

0 uπ
j (v)dv). A corresponding trajectory is

denoted by nπ(t). We are interested in finding an optimal fluid control that minimizes
∫ ∞

0

(
nπ

1 (t) + nπ
2 (t)

)
dt , with

(
nπ(t), uπ (t)

)
satisfying (13)–(16). (18)

We denote such an optimal control by u∗
j (t), j = 1,2, c, and a corresponding op-

timal trajectory, by n∗
i (t), i = 1,2. Note that if (4) and (5) are satisfied, then

Queueing Syst (2010) 65: 43–92 55

minπ

∫ ∞
0 (nπ

1 (t) + nπ
2 (t))dt is finite due to Lemma 4.1. Before proceeding to find

n∗(t) and u∗(t), we first prove in the next lemma that an optimal pair (n∗(t), u∗(t))
exists. In addition, the lemma states that if n∗(t) is an optimal trajectory for the
infinite-horizon problem, then it is also optimal for the finite-horizon problem when-
ever the horizon is large enough. This property will be useful for proving convergence
of the stochastic model in Sect. 4.2.

Lemma 4.2 If (4) and (5) are satisfied, then there exists a control u∗(t) and a corre-
sponding trajectory n∗(t) that solves the minimization problem (18).

In addition, there exists a function H : R → R such that,

min
n(t) s.t. (13)–(16)

∫ D

0

(
n1(t) + n2(t)

)
dt =

∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt

=
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt,

for all D ≥ H(n1 + n2).

Proof By the Filippov–Cesari theorem [30, Chap. 2.8], there exists an optimal control
and a corresponding optimal trajectory n∗D(t) for the problem

min
n(t) s.t. (13)–(16)

∫ D

0
(n1(t) + n2(t))dt.

For the moment, assume that there exists a function H(·) such that

n∗D
1 (t) + n∗D

2 (t) = 0,

for all H(n1 + n2) ≤ t , with n = (n1, n2) denoting the initial state. (19)

The proof of (19) will be given later on. From (19) we obtain

min
n(t) s.t. (13)–(16)

∫ ∞

0

(
n1(t) + n2(t)

)
dt ≥ min

n(t) s.t. (13)–(16)

∫ D

0

(
n1(t) + n2(t)

)
dt

=
∫ D

0

(
n∗D

1 (t) + n∗D
2 (t)

)
dt

=
∫ ∞

0

(
n∗D

1 (t) + n∗D
2 (t)

)
dt,

≥ min
n(t) s.t. (13)–(16)

∫ ∞

0

(
n1(t) + n2(t)

)
dt, (20)

for all D ≥ H(n1 + n2). Hence, n∗D(t) is an optimal solution of (18). In particu-
lar, this implies the existence result for the minimization problem (18). In addition,
from (20) we find that, for any optimal trajectory n∗(t) of (20), we have

min
n(t) s.t. (13)–(16)

∫ ∞

0

(
n1(t) + n2(t)

)
dt

=
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt ≥

∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt

56 Queueing Syst (2010) 65: 43–92

≥ min
n(t) s.t. (13)–(16)

∫ D

0

(
n1(t) + n2(t)

)
dt = min

n(t) s.t. (13)–(16)

∫ ∞

0

(
n1(t) + n2(t)

)
dt,

for all D ≥ H(n1 + n2). This proves the lemma under the condition that there indeed
exists a function H(·) satisfying (19). The latter will be shown in the remainder of
the proof. We use similar arguments to those in [22, Proposition 6.1].

Denote by πp the policy that always serves classes 1 and 2 in parallel whenever
possible. Let np(t) be the trajectory that corresponds to policy πp . Under the stability
conditions we know that np(t) hits zero after a finite time and then remains empty;
see Lemma 4.1. Denote by T p(ñ, n′) the time it takes for policy πp to move from ñ

to n′. Then, the depletion time, T p(ñ,0), can be written as follows

T p(ñ,0) = T p(ñ, axes) + y1(ñ)

μ1
(
1 − ρ2

c2
(1 − c1) − ρ1

) + y2(ñ)

μ2
(
1 − ρ1

c1
(1 − c2) − ρ2

) ,

(21)
where T p(ñ, axes) = min(ñ1

(μ1c1−λ1)
+ , ñ2

(μ2c2−λ2)
+) is the time until the trajectory hits

either one of the axes, and y(ñ) represents the point where the trajectory hits the axis
when started in ñ. Note that y1(ñ) = ñ1 −T p(ñ, axes) ·μ1(c1 −ρ1) and y2(ñ) = ñ2 −
T p(ñ, axes) ·μ2(c2 −ρ2). Hence, the depletion time scales as follows: T p(a · ñ,0) =
a · T p(ñ,0), a ≥ 0.

Let 0 < ζ < 1 be fixed, and x > 0. We now have the following upper bound for all
initial states n with n1 + n2 = x:

∫ D

0

(
n∗D

1 (t) + n∗D
2 (t)

)
dt

= min
n(t) s.t. (13)–(16)

∫ D

0

(
n1(t) + n2(t)

)
dt ≤

∫ D

0

(
n

p

1 (t) + n
p

2 (t)
)

dt

≤ sup
0≤t≤D

{
n

p

1 (t) + n
p

2 (t)
} · T p(n,0) ≤ x · ζ · (1 − ζ) · H(x). (22)

Here the function H(x) is defined as

H(x) := β

ζ · (1 − ζ)
· sup
l:l1+l2=x

{
T p(l,0)

}
,

with the constant

β := max

(

1 + λ1 + λ2 − (μ1c1 + μ2c2)

μ1c1 − λ1
,1 + λ1 + λ2 − (μ1c1 + μ2c2)

μ2c2 − λ2
,1

)

,

so that for all initial states n with n1 + n2 = x we have sup0≤t≤D{np

1 (t) + n
p

2 (t)} =
max(x + T p(n, axes) · (λ1 + λ2 − (μ1c1 + μ2c2)), x) ≤ β · x.

From (21) it easily follows that T p(l,0) is continuous in l. Hence
supl:l1+l2=x T p(l,0) < ∞ and in particular H(x) < ∞ for all x > 0. Assume
D ≥ H(x) (in particular, D ≥ (1 − ζ) · H(x)). Hence, it follows from (22) that

τ(x) := arg min
t≥0

{
n∗D

1 (t) + n∗D
2 (t) ≤ x · ζ} ≤ (1 − ζ) · H(x), (23)

Queueing Syst (2010) 65: 43–92 57

for all initial states n with n1 + n2 = x. From continuity of n∗D(t) it follows that
n∗D

1 (τ (x)) + n∗D
2 (τ (x)) = x · ζ .

If n∗D(0) = (n1, n2), then n∗D(
∑∞

m=1 τ((n1 + n2)ζ
m−1)) = (0,0). Note that

H(a · x) = a · H(x), a ≥ 0. Together with (23) it follows that
∑∞

m=1 τ((n1 +
n2)ζ

m−1) ≤ ∑∞
m=1 ζm−1(1 − ζ) · H(n1 + n2) = H(n1 + n2) < ∞. Hence, rela-

tion (19) holds. �

For the stochastic model we know that it is never optimal to serve class 2 exclu-
sively when work of class 1 is also present. In the fluid control model this is true as
well, as is stated in the lemma below. The proof may be found in Appendix C.

Lemma 4.3 Assume (4) and (5) are satisfied, μ1 ≥ μ2, and c1 +c2 > 1. Then, for any
policy π̃ that allows uπ̃

2 (t) > 0 when nπ̃
1 (t) > 0, there exists a modified policy π , with

uπ
2 (t) = 0 whenever nπ

1 (t) > 0, that does not do worse than π̃ , i.e., nπ
1 (t) + nπ

2 (t) ≤
nπ̃

1 (t) + nπ̃
2 (t), for all t ≥ 0.

In the case μ1 ≤ c1μ1 + c2μ2 the control that serves both classes in parallel
whenever possible is optimal, i.e., u∗

c (t) = 1 when n1(t), n2(t) > 0, and u∗
c (t) =

min(
ρj

cj
,1), u∗

i (t) = 1 − u∗
c (t) when nj (t) = 0 and ni(t) > 0, for i �= j , i, j = 1,2.

This follows from the fact that the policy described above minimizes the time to
empty the system, while at the same time it maximizes the departure rate at any mo-
ment in time. We do not include a formal proof of this fact, since the main objective
of this section is to investigate close-to-optimal policies for parameter choices that
did not allow us to exactly determine the optimal policy for the stochastic model.
(Proposition 3.3 discusses an optimal stochastic policy when μ1 ≤ c1μ1 + c2μ2.)

In the remainder of this section we concentrate on the case μ1 > c1μ1 + c2μ2,
for which the following lemma enables us to prove that an optimal policy in the fluid
control model can be characterized by a switching curve.

Lemma 4.4 Assume (4) and (5) are satisfied, μ1 > c1μ1 + c2μ2, and c1 + c2 > 1.
Consider a trajectory starting in ñ ∈ {n : n1 > 0, n2 ≥ 0} with the following proper-
ties: (i) first class 1 is served exclusively during a contiguous period, and then (ii) we
switch to serving both classes simultaneously during another contiguous period. Let
n̂ be the end point of this trajectory.

Then the trajectory described above minimizes n1(t) + n2(t) at all times (until
reaching n̂) among all trajectories that move from ñ to n̂ without coinciding with the
n1 = 0 axis.

Proof Since we consider only trajectories from ñ to n̂ that do not coincide with the
n1 = 0 axis, by Lemma 4.3 we can focus on paths that do not spend any time serving
class 2 individually. Denote by U1 (Uc) the cumulative amount of time spent on
serving class 1 individually (classes 1 and 2 in parallel). The net change in the amount
of fluid in the two classes can be written as

n̂1 − ñ1 = (λ1 − μ1)U1 + (λ1 − c1μ1)Uc,

n̂2 − ñ2 = λ2U1 + (λ2 − c2μ2)Uc.

58 Queueing Syst (2010) 65: 43–92

Fig. 3 Drift vectors for ρ1 < c1
and ρ2 > c2 (left), and ρ1 < c1
and ρ2 < c2 (right), respectively

Fig. 4 Optimal trajectory of the fluid control model when ρ1 < c1

Under the necessary stability conditions (4) and (5) this has a unique solution for U1
and Uc. Hence, all trajectories spend the same cumulative amount of time serving
both classes in parallel as well as serving class 1 individually.

The rate at which the total amount of fluid decreases when n1(t) > 0 is given by
d(n1(t)+n2(t))

dt
= λ1 + λ2 − u1(t)μ1 − uc(t)(μ1c1 + μ2c2). Since μ1 > μ1c1 + μ2c2,

first serving only class 1 initially maximizes the rate at which n1(t)+n2(t) decreases.
Hence, this minimizes n1(t) + n2(t) at all times (until reaching n̂). �

For the fluid control model we can now determine optimal policies. To do that,
we distinguish between ρ1 < c1 and ρ1 ≥ c1. Note that, cf. Bellman’s principle of
optimality, we only need to consider policies that base their actions on the current
state n(t), because of the infinite horizon and the fact that the parameters do not
depend on the current time t .

4.1.1 Case ρ1 < c1

When ρ1 < c1, a necessary condition for the system to drain in finite time is ρ2 <

1 − ρ1
c1

(1 − c2) (see Lemma 4.1). Depending on ρ2 and c2, the drifts are as in Fig. 3.
In Proposition 4.5 we describe an optimal fluid control, which is characterized by a
linear switching curve. In Fig. 4 the corresponding trajectory is shown. In order to
state the proposition it is convenient to define

α := max

(

0,
c2 − ρ2

c1 − ρ1
+ c1

c1 + c2 − 1
× 1 − ρ2 − ρ1

c1
(1 − c2)

c1 − ρ1
× μ1 − c1μ1 − c2μ2

μ2

)

.

(24)

Queueing Syst (2010) 65: 43–92 59

Note that under the conditions of Proposition 4.5, we have α >
c2−ρ2
c1−ρ1

.

Proposition 4.5 Let μ1 > μ1c1 + μ2c2 and c1 + c2 > 1. Assume ρ1 < c1 and ρ2 <

1 − ρ1
c1

(1 − c2). An optimal control u∗(t) in the fluid control model is

• u∗
1(t) = 1, if n2(t) < α

μ2
μ1

n1(t).

• u∗
c (t) = 1, if n2(t) ≥ α

μ2
μ1

n1(t) and n1(t) > 0.
• u∗

c (t) = ρ1
c1

and u∗
2(t) = 1 − ρ1

c1
, if n1(t) = 0.

Proof If n1(t) > 0, when searching for an optimal control, by Lemma 4.3 we only
need to consider controls with u2(t) = 0 and u1(t)+uc(t) = 1. Hence, from dn1(t)

dt
=

λ1 − u1(t)μ1 − uc(t)μ1c1, and the fact that ρ1 < c1 < 1, class 1 remains empty once
it hits zero. So dn1(t)

dt
= 0, or equivalently, ρ1 − u1(t) − uc(t)c1 = 0 when n1(t) = 0.

We can now determine an optimal allocation for points with n1(t) = 0. Class 1 is
kept empty, hence an optimal fluid control will maximize the departure rate of class 2.
We should therefore maximize u2(t)μ2 +uc(t)μ2c2 given that ρ1 −u1(t)−uc(t)c1 =
0, u1(t) + u2(t) + uc(t) = 1 and uj (t) ≥ 0. Solving this we obtain

u∗
c (t) = ρ1

c1
, u∗

1(t) = 0 and u∗
2(t) = 1 − ρ1

c1
.

So when n1(t) = 0, class 1 is kept empty by serving both classes in parallel a fraction
ρ1
c1

of time. The remaining capacity is given to class 2; see Fig. 4.
Now assume we start at time t = 0 in n(0) = n = (n1, n2) with n1 > 0 and n2 ≥ 0.

At some point an optimal trajectory will hit the n1=0 axis for the first time. This
point will be denoted by d = (0, d2), see Fig. 4. Note that the path from n to d that
first serves class 1 individually and at some point switches to serving both classes in
parallel, is always feasible (see the drift vectors in Fig. 3). Hence, by Lemma 4.4 this
path is also an optimal path from n to d . The turning point where the switch occurs is
denoted by b = (b1, b2); see again Fig. 4. We can calculate the costs corresponding
to a certain turning point b. Let T (x, y) be the time it takes to go from point x to y

in the plane. We have T (n, b) = n1−b1
μ1−λ1

, T (b, d) = b1
μ1c1−λ1

,

T (d,0) = d2

u2μ2 + ucμ2c2 − λ2
= d2

μ2 − μ2
ρ1
c1

(1 − c2) − λ2
,

with d2 = b2 + T (b, d)(λ2 − μ2c2) and b2 = n2 + T (n, b)λ2. Let Kn(b1) =∫ ∞
0 (n1(t) + n2(t))dt be the cost of the fluid trajectory going from n to the origin

when the turning point is b = (b1, b2). Note that b2 = n2 + n1−b1
μ1−λ1

λ2, hence b2 is
uniquely determined by b1 and n. We have

Kn(b1) = T (n, b)

(
n1 + b1

2
+ n2 + b2

2

)

+ T (b, d)

(
b1

2
+ b2 + d2

2

)

+ T (d,0)
d2

2
.

(25)
It can be checked that the function Kn(b1) is a quadratic function in b1 and, when
minimizing the costs in (25), the optimal turning point b lies on the line b2 = α

μ2
μ1

b1.
Hence, if n2(t) < α

μ2
μ1

n1(t), then u∗
1(t) = 1, and if n2(t) ≥ α

μ2
μ1

n1(t) and n1(t) > 0,
then u∗

c (t) = 1. This completes the characterization of an optimal control. �

60 Queueing Syst (2010) 65: 43–92

Fig. 5 Vectors for ρ1 ≥ c1 and ρ2 < c2. Left figure: ρ1 < 1 − ρ2
c2

(1 − c1) and hence there are policies that

give a stable system. Right figure: ρ1 > 1 − ρ2
c2

(1 − c1) and hence unstable

Fig. 6 Optimal trajectory of the fluid control model when ρ1 ≥ c1

4.1.2 Case ρ1 ≥ c1

When ρ1 ≥ c1, the necessary stability condition is ρ2 < c2 and ρ1 < 1 − ρ2
c2

(1 − c1)

(see (4) and (5)). Hence ρ2
1−ρ1

≤ c2−ρ2
ρ1−c1

and the drifts are as in the left picture in Fig. 5.
When ρ1 ≥ 1 − ρ2

c2
(1 − c1), the system is unstable which corresponds to the picture

on the right in Fig. 5. An optimal fluid policy is described in the next proposition, and
in Fig. 6 the corresponding trajectory is shown.

Proposition 4.6 Let μ1 > μ1c1 + μ2c2 and c1 + c2 > 1. Assume ρ1 ≥ c1, ρ2 < c2
and ρ1 < 1− ρ2

c2
(1−c1). An optimal policy in the fluid control model is to give priority

to class 1, i.e.,

• u∗
1(t) = 1 if n1(t) > 0.

• u∗
c (t) = 1−ρ1

1−c1
and u∗

1(t) = ρ1−c1
1−c1

if n1(t) = 0.

The proof of Proposition 4.6 below does not give much insight into the result.
Therefore, we first provide some intuition for the fact that the control u∗ as defined
above, is optimal when ρ1 > c1. Using Lemma 4.4 it can be argued that as long as
n1(t) > 0, an optimal action is u∗

1(t) = 1. Hence, once n1(t) = 0, this optimal control

Queueing Syst (2010) 65: 43–92 61

will keep class 1 empty (ρ1 < 1). An optimal fluid control will now choose allocations
u∗

j (t) such that the departure rate for class 2, u2(t)μ2 + uc(t)μ2c2, is maximized
subject to u1(t)+uc(t)c1 = ρ1, u1(t)+u2(t)+uc(t) = 1 and uj (t) ≥ 0. The unique
solution to this is u∗

2(t) = 0, u∗
1(t) = ρ1−c1

1−c1
and u∗

c (t) = 1−ρ1
1−c1

when n1(t) = 0.

Proof of Proposition 4.6 Consider the control u∗(t) as defined in Proposition 4.6.
The corresponding trajectory is denoted by n∗(t). Its cost-to-go function is defined
as K(t,n) := ∫ ∞

t
(n∗

1(s) + n∗
2(s)|n(t) = n)ds = ∫ ∞

0 (n∗
1(s) + n∗

2(s)|n(0) = n)ds, for
n = (n1, n2) ∈ R

2+. Hence, we can drop the dependence on t , and write Kn for the
cost-to-go starting in state n. A sufficient condition for optimality of u∗(t) is that its
cost-to-go function Kn satisfies the “Hamilton-Jacobi-Bellman” partial differential
equation

0 = min
u s.t. (14)–(16)

(

n1 + n2 + ∂Kn

∂n1
· (λ1 − μ1(u1 + c1uc)

)

+ ∂Kn

∂n2
· (λ2 − μ2(u2 + c2uc)

)
)

, (26)

for all n1, n2 ≥ 0, and that u∗ is a corresponding minimizing action, [11, Sect. 5.5].
In the remainder of the proof we show that this is indeed satisfied.

The cost-to-go function is easily derived. Let d = (0, d2) denote the point where
the trajectory n∗(t) hits the vertical axis; see Fig. 6. Hence, d2 = n2 + n1

λ2
μ1−λ1

and

also d2 = T (d,0) · (μ2c2
1−ρ1
1−c1

− λ2) = T (d,0) ·μ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1)), with

T (d,0) the time it takes to move from d to 0. So

Kn = T (n, d)

(
n1

2
+ n2 + d2

2

)

+ T (d,0)
d2

2

= n1

μ1 − λ1

(
n1

2
+ 2n2 + n1

λ2
μ1−λ1

2

)

+
(
n2 + n1

λ2
μ1−λ1

)2

2μ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1)

) .

In the Hamilton-Jacobi-Bellman equation we are interested in the function

n1 + n2 + ∂Kn

∂n1
· (λ1 − μ1(u1 + c1uc)

) + ∂Kn

∂n2
· (λ2 − μ2(u2 + c2uc)

)

= n1 + n2 + (
λ1 − μ1(u1 + c1uc)

)

×
(

n1

μ1 − λ1
+ 1

μ1 − λ1

(

n1
λ2

μ1 − λ1
+ n2

)

+
λ2

μ1−λ1

μ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1)

)
(

n1
λ2

μ1 − λ1
+ n2

))

+ (
λ2 − μ2(u2 + c2uc)

)

×
(

n1

μ1 − λ1
+ 1

μ2
c2

1−c1
· (1 − ρ1 − ρ2

c2
(1 − c1)

)
(

n1
λ2

μ1 − λ1
+ n2

))

62 Queueing Syst (2010) 65: 43–92

= n1 + n2 + 1

μ1 − λ1
·
(

ρ1(a11n1 + a12n2) + ρ2(a21n1 + a22n2)

− n1
(
u1a11 + uc(c1a11 + c2a21) + u2a21

)

− n2
(
u1a12 + uc(c1a12 + c2a22) + u2a22

)
)

, (27)

where

a11 = μ1 + λ2

1 − ρ1

(

1 +
ρ2
c2

(1 − c1)
(
1 − ρ1 − ρ2

c2
(1 − c1)

)
)

= μ1 + μ2
ρ2

1 − ρ1 − ρ2
c2

(1 − c1)
,

a12 = μ1 + μ1

ρ2
c2

(1 − c1)
(
1 − ρ1 − ρ2

c2
(1 − c1)

) = μ1
1 − ρ1

1 − ρ1 − ρ2
c2

(1 − c1)
,

a21 = μ2 + μ2

ρ2
c2

(1 − c1)

1 − ρ1 − ρ2
c2

(1 − c1)
= μ2

1 − ρ1

1 − ρ1 − ρ2
c2

(1 − c1)
,

a22 = μ1 − λ1
c2

1−c1

(
1 − ρ1 − ρ2

c2
(1 − c1)

) = μ1
(1 − ρ1)

1−c1
c2(

1 − ρ1 − ρ2
c2

(1 − c1)
) .

Elementary calculation shows that, for u1 = 1, and u2 = uc = 0, (27) is equal to
zero. In addition, under the conditions as stated in Proposition 4.6, we have a11 >

c1a11 + c2a21 > a21 and a12 = c1a12 + c2a22 > a22. Hence, when n1(t) > 0, the
minimizing action is u1(t) = 1, u2(t) = 0, uc(t) = 0, which is indeed prescribed by
the control strategy u∗.

When n1 = 0, (27) is equal to

n2 + 1

μ1 − λ1

(
n2(ρ1a12 + ρ2a22) − n2

(
u1a12 + uc(c1a12 + c2a22) + u2a22

))
. (28)

Again simple calculations show that this is equal to 0 for all u with u1 + uc = 1 and
u2 = 0. Besides u1 + u2 + uc ≤ 1, we have the restriction u1 + c1uc ≤ ρ1 (because
n1 = 0). Since a12 = c1a12 + c2a22 > a22, any control with u1 + uc = 1 and u2 = 0
such that u1 + c1uc ≤ ρ1, will minimize (28). The control u∗

1(t) = ρ1−c1
1−c1

, u∗
c (t) =

1−ρ1
1−c1

and u∗
2(t) = 0 is therefore indeed a minimizing action. �

4.2 Asymptotic fluid optimality

In this section we discuss the theoretical foundations that justify the use of optimal
controls in the fluid model as proxies for optimal policies in the stochastic model. In
particular, we prove that under a fluid scaling, the stochastic processes of the num-
bers of users under certain switching-curve policies, converge to the optimal fluid
trajectory n∗(t) as determined in Sect. 4.1. Using the latter, we then show that these
switching-curve policies are asymptotically fluid optimal in the stochastic model. The
terminology used in this section is motivated by [2, 16, 22, 24].

Queueing Syst (2010) 65: 43–92 63

On a common probability space we construct different realizations of the
processes, depending on the initial state. To be precise, for a given policy π we
let N

π,r
i (t) denote the number of class-i users at time t when the initial state equals

Nr
i (0) = rni , i = 1,2, with r ∈ N. All processes Nπ,r (t) share the same sequences

of arrivals and service requirements.
For a given policy π , denote by T

π,r
0 (t) the cumulative amount of time during the

interval (0, t) that neither class is served, by T
π,r
i (t) the cumulative amount of time

that was spent on serving class i individually, i = 1,2, and by T
π,r
c (t) the cumulative

amount of time that was spent on serving classes 1 and 2 in parallel. Then, T
π,r
0 (t) +

T
π,r
1 (t) + T

π,r
2 (t) + T

π,r
c (t) = t , and

N
π,r
i (t) = rni + Ei(t) − Fi

(
T

π,r
i (t)

) − Fc,i

(
T π,r

c (t)
)
, i = 1,2, (29)

with Ei(t) a Poisson process with rate λi , Fi(·) a Poisson process with rate μi and
Fc,i(·) a Poisson process with rate ciμi , [14].

We will be interested in the processes under the fluid scaling, i.e., both time and
space are scaled linearly with the parameter r :

N
π,r

i (t) := N
π,r
i (rt)

r
and T

π,r

j (t) := T
π,r
j (rt)

r
.

Limit points for N
π,r

i (t) and T
π,r

j (t) are described in the next lemma.

Lemma 4.7 For almost all sample paths ω and any sequence rk , there exists a sub-
sequence rkl

such that

lim
l→∞N

π,rkl
i (t) = N

π

i (t), i = 1,2, u.o.c.,

lim
l→∞T

π,rkl
j (t) = T

π

j (t), j = 0,1,2, c, u.o.c.,

with (N
π
,T

π
) a continuous function. In addition, (N

π
,T

π
) satisfies, for i = 1,2,

j = 0,1,2, c,

N
π

i (t) = ni + λit − μiT
π

i (t) − μiciT
π

c (t), (30)

N
π

i (t) ≥ 0, T
π

j (0) = 0, T
π

0 (t) + T
π

1 (t) + T
π

2 (t) + T
π

c (t) = t , and T
π

j (t) are non-
decreasing and Lipschitz continuous functions.

The notation u.o.c. stands for uniform convergence on compact sets. We call the
processes T

π

j (t), j = 1,2, c, and N
π

i (t), i = 1,2, (as obtained in Lemma 4.7) fluid
limits for initial fluid level n and policy π .

Proof of Lemma 4.7 Making use of (29) and the fact that T
π,r

j (t), j = 1,2, c, is Lip-
schitz continuous with a constant less than or equal to 1, the proof follows similarly
to that of [13, Theorem 4.1], see also [25, Proposition 10.3.3 and 10.3.4]. Note that
the Poisson assumptions are in fact not needed for the result of this lemma to hold. �

64 Queueing Syst (2010) 65: 43–92

As cost in the stochastic model we take E(
∫ D

0 (N
π,r
1 (t) + N

π,r
2 (t))dt). As r → ∞

this will tend to infinity. In order to obtain a non-trivial limit we divide the cost by r2

and consider a horizon that grows linearly in r . So we are interested in

E

(∫ r·D

0

N
π,r
1 (t) + N

π,r
2 (t)

r2
dt

)

= E

(∫ D

0

N
π,r
1 (rt) + N

π,r
2 (rt)

r
dt

)

= E

(∫ D

0

(
N

π,r

1 (t) + N
π,r

2 (t)
)

dt

)

. (31)

Our goal is to find policies that minimize the cost (31) as r → ∞. We have the
following lower bound.

Lemma 4.8 For any policy π we have

lim inf
r→∞ E

(∫ D

0

(
N

π,r

1 (t) + N
π,r

2 (t)
)

dt

)

≥
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt,

whenever D ≥ H(n1 + n2), and where n∗(t) represents an optimal solution of (18)
for initial state n and H(·) is as defined in Lemma 4.2.

Proof By applying Fatou’s lemma, we obtain

lim inf
r→∞ E

(∫ D

0

(
N

π,r

1 (t) + N
π,r

2 (t)
)

dt

)

≥ E

(

lim inf
r→∞

∫ D

0

(
N

π,r

1 (t) + N
π,r

2 (t)
)

dt

)

= E

(

lim
k→∞

∫ D

0

(
N

π,rk
1 (t) + N

π,rk
2 (t)

)
dt

)

,

with the subsequence rk (possibly depending on the sample path ω) corresponding
to the lim inf-sequence. Lemma 4.7 states that, for almost all sample paths ω, there
exists a subsequence rkl

of rk such that liml→∞ N
π,rkl
1 (t) + N

π,rkl
2 (t) = N

π

1 (t) +
N

π

2 (t), u.o.c., with N
π

i (t) a fluid limit for initial fluid level n and policy π . Note
that a fluid limit is an admissible trajectory for the fluid control problem. When we
consider a finite horizon D ≥ H(n1 + n2), we know from Lemma 4.2 that n∗ solves
the finite-horizon minimization problem, and hence

lim
l→∞

∫ D

0

(
N

π,rkl
1 (t) + N

π,rkl
2 (t)

)
dt

=
∫ D

0
lim

l→∞
(
N

π,rkl
1 (t) + N

π,rkl
2 (t)

)
dt =

∫ D

0

(
N

π

1 (t) + N
π

2 (t)
)

dt

≥ min
n(t) s.t. (13)–(16)

∫ D

0

(
n1(t) + n2(t)

)
dt =

∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt

=
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt,

Queueing Syst (2010) 65: 43–92 65

where in the first step we used uniform convergence of the functions N
π,rkl
i (t), i =

1,2, on [0,D], in order to interchange the limit and the integral. This proves the
lemma. �

We say that a policy is asymptotically fluid optimal when the lower bound is ob-
tained, i.e., when the scaled cost converges to the cost of the optimal trajectory in
the fluid model. In the remainder of this section we characterize asymptotically fluid
optimal policies.

Definition 4.9 A policy π∗ is called asymptotically fluid optimal if

lim
r→∞ E

(∫ D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt

)

=
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt,

with D ≥ H(n1 + n2), where n∗(t) is an optimal solution of (18) for initial state n

and H(·) is as defined in Lemma 4.2.

4.2.1 Case ρ1 < c1

In this section we consider the case ρ1 < c1. In Proposition 4.5 we found that an opti-
mal switching curve for the fluid control problem was given by h(n1) = α

μ2
μ1

n1. In the
following lemma we show that, under this switching curve, the fluid-scaled processes
of the original stochastic model have a unique limit, which is described by the opti-
mal trajectory of the fluid control model. Using this fact, in Proposition 4.11 we show
that the policy with switching curve h(n1) = α

μ2
μ1

n1 is asymptotically fluid optimal.

Lemma 4.10 Assume c1 + c2 > 1, ρ1 < c1 and ρ2 < 1 − ρ1
c1

(1 − c2). Denote by

π∗ the policy with switching curve h(N1) = α
μ2
μ1

N1, with α as defined in (24). The

functions T
π∗
j (t) are differentiable almost everywhere, and for each regular point t

we have

dT
π∗
1 (t)

dt
= 1, if N

π∗
2 (t) < α

μ2

μ1
N

π∗
1 (t), (32)

dT
π∗
c (t)

dt
= 1, if N

π∗
2 (t) ≥ α

μ2

μ1
N

π∗
1 (t) and N

π∗
1 (t) > 0, (33)

dT
π∗
c (t)

dt
= ρ1

c1
and

dT
π∗
2 (t)

dt
= 1 − ρ1

c1
, if N

π∗
1 (t) = 0 and N

π∗
2 (t) > 0, (34)

and dT
π∗
1 (t)

dt
+ dT

π∗
2 (t)

dt
+ dT

π∗
c (t)

dt
+ dT

π∗
0 (t)

dt
= 1.

In particular, N
π∗

(t) is uniquely determined by

N
π∗

(t) = n∗(t), (35)

with n∗(t) the trajectory corresponding to the control u∗(t) as defined in Proposi-
tion 4.5.

66 Queueing Syst (2010) 65: 43–92

Proof Let N
π∗
i (t), i = 1,2, T

π∗
j (t), j = 1,2, c,0, be a fluid limit of policy π∗. So

the functions N
π∗
i (t), i = 1,2, satisfy (30), and the functions T

π∗
j (t), j = 0,1,2, c,

are absolutely continuous (follows from Lipschitz continuity), and hence are differ-
entiable almost everywhere. Fix a sample path ω such that there is a subsequence rk

with limk→∞ N
π∗,rk
i (t) = N

π∗
i (t), i = 1,2, u.o.c., and limk→∞ T

π∗,rk
j (t) = T

π∗
j (t),

j = 1,2, c, u.o.c. Further, let t > 0 be a regular point of T
π∗
j (t) for all j = 0,1,2, c.

First assume N
π∗
2 (t) < α

μ2
μ1

N
π∗
1 (t). Then there is an ε > 0 such that N

π∗
2 (s) <

α
μ2
μ1

N
π∗
1 (s) for s ∈ [t −ε, t +ε]. By the uniform convergence of N

π∗,rk
i (t) to N

π∗
i (t),

i = 1,2, on [t − ε, t + ε], we have N
π∗,rk
2 (rks) < α

μ2
μ1

N
π∗,rk
1 (rks) for all rk large

enough and s ∈ [t −ε, t +ε]. Hence, under policy π∗, in the interval [rk(t −ε), rk(t +
ε)] class 1 is served and we obtain T

π∗,rk
1 (t + ε) − T

π∗,rk
1 (t − ε) = 2ε. Letting rk →

∞ and ε ↓ 0 we obtain dT
π∗
1 (t)

dt
= 1.

Now assume N
π∗
2 (t) > α

μ2
μ1

N
π∗
1 (t) and N

π∗
1 (t) > 0. Then there is an ε such that

N
π∗,rk
2 (rks) > α

μ2
μ1

N
π∗,rk
1 (rks) and N

π∗,rk
1 (rks) > 0 for all rk large enough and s ∈

[t − ε, t + ε]. Under policy π∗, in this interval both classes are served in parallel,

hence dT
π∗
c (t)

dt
= 1.

Assume N
π∗
2 (t) = α

μ2
μ1

N
π∗
1 (t) and N

π∗
1 (t) > 0. Then there is an ε such that

N
π∗,rk
1 (rks) > 0 for all rk large enough and s ∈ [t − ε, t + ε]. In this interval,

class 2 is never served individually, so dT
π∗
1 (s)

ds
+ dT

π∗
c (s)

ds
= 1, for any regular point

s ∈ [t − ε, t + ε]. Together with (30), we obtain

α
μ2

μ1

dN
π∗
1 (s)

ds
− dN

π∗
2 (s)

ds

= μ2

(

−α ·
(

−ρ1 + dT
π∗
1 (s)

ds
+ c1

dT
π∗
c (s)

ds

)

− ρ2 + c2
dT

π∗
c (s)

ds

)

< μ2

(

−c2 − ρ2

c1 − ρ1
·
(

−ρ1 + dT
π∗
1 (s)

ds
+ c1

dT
π∗
c (s)

ds

)

− ρ2 + c2
dT

π∗
c (s)

ds

)

= μ2

(

−c2 − ρ2

c1 − ρ1
·
(

c1 − ρ1 + dT
π∗
1 (s)

ds
(1 − c1)

)

− ρ2 + c2 − c2
dT

π∗
1 (s)

ds

)

= −dT
π∗
1 (s)

ds
· μ2

c1 − ρ1
· ((c2 − ρ2)(1 − c1) + c2(c1 − ρ1)

)

= −dT
π∗
1 (s)

ds
· μ2c2

c1 − ρ1
·
(

1 − ρ1 − ρ2

c2
(1 − c1)

)

≤ 0, (36)

Queueing Syst (2010) 65: 43–92 67

whenever s ∈ [t − ε, t + ε] is a regular point. Here we used that c1 + c2 > 1,

ρ1 < c1 ≤ 1, ρ2 < 1 − ρ1
c1

(1 − c2), α >
c2−ρ2
c1−ρ1

and dT
π∗
1 (s)

ds
+ dT

π∗
c (s)

ds
= 1. Equa-

tion (36) implies that if at a certain time N
π∗

lies below the switching curve, then it

moves towards the switching curve and if N
π∗

lies on or above the switching curve,
it will move away from (and above) the switching curve. Since at time t we are in

a state on the switching curve, we have N
π∗
2 (s) < α

μ2
μ1

N
π∗
1 (s) for s ∈ [t − ε, t) and

N
π∗
2 (s) > α

μ2
μ1

N
π∗
1 (s) for s ∈ (t, t + ε]. Note that dT

π∗
1 (t−)

dt
= 1 and dT

π∗
c (t−)

dt
= 0,

while dT
π∗
1 (t+)

dt
= 0 and dT

π∗
c (t+)

dt
= 1, so that the point t itself is not a regular point.

Finally assume N
π∗
1 (t) = 0 and N

π∗
2 (t) > 0. Then there is an ε > 0 such that

N
π∗
2 (s) > α

μ1
μ2

N
π∗
1 (s) for s ∈ [t − ε, t + ε] and hence N

π∗,rk
2 (rks) > α

μ1
μ2

N
π∗,rk
1 (rks)

for all rk large enough and s ∈ [t − ε, t + ε]. Under policy π∗, in this interval class 1

is not served individually, hence dT
π∗
1 (t)

dt
= 0. From (30) we then have

dN
π∗
1 (t)

dt
= λ1 − μ1c1

dT
π∗
c (t)

dt
. (37)

Note that if N
π∗
1 (t + δ) > 0, for all 0 < δ < �, then dT

π∗
c (t+δ)

dt
= 1. Since ρ1 < c1,

from (37) we see that class 1 will stay empty, and thus dT
π∗
c (t)

dt
= ρ1

c1
. We conclude

that (32)–(34) are satisfied for each fluid limit T
π∗

(t).

From (30) and (32)–(34) it follows that N
π∗
i (t) is uniquely determined. Using

the correspondence u∗
j (t) = dT

π∗
j (t)

dt
, j = 1,2, c, it follows from Proposition 4.5 that

N
π∗

(t) = n∗(t), with n∗ as defined in Proposition 4.5. �

In the next proposition it is stated that the linear switching curve provides a policy
that is asymptotically fluid optimal for the original stochastic model.

Proposition 4.11 Let μ1 > μ1c1 + μ2c2 and c1 + c2 > 1. If ρ1 < c1 and ρ2 < 1 −
ρ1
c1

(1−c2), then the policy π∗ with switching curve h(N1) = α
μ2
μ1

N1 is asymptotically
fluid optimal, with α as defined in (24).

Proof Let rk be a subsequence such that

lim inf
r→∞

∫ D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt = lim

k→∞

∫ D

0

(
N

π∗,rk
1 (t) + N

π∗,rk
2 (t)

)
dt.

From Lemma 4.7 it follows that for almost all ω there exists a subsequence

rkl
of rk such that liml→∞ N

π∗,rkl (t) = N
π∗

(t), u.o.c.. Since every fluid limit

N
π∗

(t) coincides with the optimal fluid control solution n∗(t) (see (35)) we obtain

liml→∞ N
π∗,rkl
i (t) = n∗

i (t), i = 1,2. Since the functions N
π∗,rkl
i (t), i = 1,2, con-

68 Queueing Syst (2010) 65: 43–92

verge uniformly on [0,D], we can interchange the limit and the integral, so that

lim inf
r→∞

∫ D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt = lim

l→∞

∫ D

0

(
N

π∗,rkl
1 (t) + N

π∗,rkl
2 (t)

)
dt

=
∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt.

The same holds for the lim sup and we can conclude that

lim
r→∞

∫ D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt =

∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt. (38)

We also have that
∫ D

0 (N
π∗,r
1 (t) + N

π∗,r
2 (t))dt is uniformly integrable. This fol-

lows from the same argument as in the proof of [13, Lemma 4.5]. Here we state

it briefly. Note that N
π,r

1 (t) + N
π,r

2 (t) ≤ nr
1+nr

2
r

+ E1(rt)+E2(rt)
r

, with Ei(·) a Pois-

son process with rate λi . Since limr→∞ E1(rt)+E2(rt)
r

= (λ1 + λ2)t almost surely (see

Lemma 4.7) and E(
E1(rt)+E2(rt)

r
) = (λ1 + λ2)t , we obtain from [8, Theorem 3.6]

that E1(rt)+E2(rt)
r

is uniformly integrable. Since D < ∞, uniform integrability of
∫ D

0 (
E1(rt)+E2(rt)

r
)dt follows as well. Hence, by definition of uniform integrability

it is immediate that
∫ D

0 (N
π,r

1 (t) + N
π,r

2 (t))dt is uniformly integrable.
We then obtain

lim
r→∞E

(∫ D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt

)

= E

(∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt

)

=
∫ D

0

(
n∗

1(t) + n∗
2(t)

)
dt, (39)

where in the first step we used uniformly integrability together with equation (38)
to interchange the limit and expectation (see [8, Theorem 3.5]). Hence, policy π∗ is
asymptotically fluid optimal. �

4.2.2 Case ρ1 > c1

In this section we consider the case ρ1 > c1. In Proposition 4.6 we found that for
the fluid control problem it is optimal to give class 1 priority whenever present.
A straightforward translation of this policy to the original stochastic model would
be to give preemptive priority to class-1 users. However, the stability conditions un-
der this policy are ρ1 + ρ2 < 1, which are more stringent than the necessary stability
conditions as given in (4) and (5). Hence, a more precise interpretation of this fluid
control is needed to avoid an unstable system.

Note that in the fluid control model, the policy that gives class 1 priority can keep
the system stable under (4) and (5), since on the vertical axis it partly serves class 1
individually and partly serves both classes in parallel. This suggests that for the sto-
chastic model we should serve both classes 1 and 2 in parallel when the process moves
close to the vertical axis. So there is a switching curve in the original model that lies

Queueing Syst (2010) 65: 43–92 69

close to the vertical axis such that it is non-observable in the fluid limit. In the next
conjecture we state that a policy with a switching curve of the shape h(N1) = eN1/γ

is an asymptotically fluid optimal policy when γ > 0 is large enough. We make no
claim for small γ .

Proving the conjecture requires use of martingale equations similar to the proof of
Lemma A.3 in [16], which we were unable to establish here. Following the conjec-
ture, we sketch a proof that relies on these martingale equations.

Conjecture 4.12 Let μ1 > μ1c1 + μ2c2 and c1 + c2 > 1. Assume ρ1 > c1, ρ2 <

c2 and ρ1 < 1 − ρ2
c2

(1 − c1). The policy π∗ with switching curve h(N1) = eN1/γ is
asymptotically fluid optimal for γ > 0 large enough.

The fluid limit of policy π∗ is uniquely determined by N
π∗

(t) = n∗(t), with n∗(t)
the trajectory corresponding to the control u∗(t) as defined in Proposition 4.6.

Sketch of proof As noted above, the conjecture can be proved using martingale equa-
tions similar to those in the proof of Lemma A.3 in [16]. We believe such equations
are valid, but were unable to formalize this. The following sketch of proof can be
turned into a formal proof if the validity of these equations is proved.

Let N
π∗
i (t), i = 1,2, T

π∗
j (t), j = 1,2, c,0, be a fluid limit of policy π∗. The

function T
π∗
j (·) is absolutely continuous. Our conjecture is proved if we can show

that for each regular point t , the derivatives satisfy:

dT
π∗
1 (t)

dt
= 1, if N

π∗
1 (t) > 0, (40)

dT
π∗
1 (t)

dt
= ρ1 − c1

1 − c1
and

dT
π∗
c (t)

dt
= 1 − ρ1

1 − c1
, if N

π∗
1 (t) = 0, (41)

for γ large enough. We expect that this result can be obtained by using the same
techniques as in [16, Theorem 7.1] and the following correspondence between the
processes ξt , xt and T (t) in [16], and our equivalents: ξ3

t = Nπ∗
1 (t), ξ1

t = Nπ∗
2 (t),

x3
t = N

π∗
1 (t), x1

t = N
π∗
2 (t), T01(t) = T

π∗
1 (t) and T11(t) = T

π∗
c (t), and mapping our

parameters c1, c2,μ1,μ2, λ1 and λ2, such that the drifts in the interior of Fig. 4 in [16]
correspond to the drifts in our Fig. 5. Note that the drifts on the boundaries cannot
be matched, but this does not influence the fluid analysis. Assuming martingale equa-
tions similar to those in the proof of [16, Lemma A.3] can be verified, we can establish

equations similar to (A.12) and (A.13) in [16], i.e., dT
π∗
1 (t)

dt
= 1 if N

π∗
1 (t) > 0, and

dT
π∗
1 (t)

dt
+ dT

π∗
c (t)

dt
= 1 if N

π∗
1 (t) = 0. Since 1

μ1

dN
π∗
1 (t)

dt
= ρ1 − dT

π∗
1 (t)

dt
− c1

dT
π∗
c (t)

dt
and

ρ1 < 1 = dT
π∗
1 (t)

dt
when N

π∗
1 (t) > 0, class 1 remains empty once it hits zero. Hence,

dT
π∗
1 (t)

dt
+ c1

dT
π∗
c (t)

dt
= ρ1, which implies (41).

Note that dT
π∗
2 (t)

dt
= 0, i.e., the unscaled process does not stay long on the vertical

axis. Hence, any capacity lost when serving class 2 individually, is negligible under
fluid scaling.

70 Queueing Syst (2010) 65: 43–92

From (30), (40) and (41) it follows that N
π∗
i (t) is uniquely determined. Using

the correspondence u∗
j (t) = dT

π∗
j (t)

dt
, j = 1,2, c, it follows from Proposition 4.6 that

N
π∗

(t) = n∗(t), with n∗(t) the trajectory corresponding to the control u∗(t) as de-
fined in Proposition 4.6. The proof of the conjecture can then be completed similar
as in the proof of Proposition 4.11. �

4.3 Exponential switching curves

When ρ1 < c1, an asymptotically fluid optimal policy can be characterized by a lin-
ear switching curve and the slope of this curve has been exactly determined. When
ρ1 > c1, Conjecture 4.12 states that an exponential switching curve h(N1) = eN1/γ

is asymptotically fluid optimal for any γ that is large enough. The purpose of this
section is to determine a reasonable rule of thumb for the choice of γ . This rule of
thumb should avoid possible poor performance that may result when choosing very
small values of γ (for which Conjecture 4.12 is inconclusive).

An asymptotically fluid optimal policy π∗ satisfies

E

(∫ r·D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt

)

= r2 · E

(∫ D

0

(
N

π∗,r
1 (t) + N

π∗,r
2 (t)

)
dt

)

= r2
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt + o

(
r2).

Hence, one way to determine a reasonable value for γ is by choosing that value for γ

that minimizes the next-order term, o(r2). For the discrete-time version of our model,
it is possible to find an estimate of this term under exponential switching curves, using
the techniques of [17].

Consider a discrete-time system with Bernoulli arrivals. In an interval of length �,
a class-i user arrives with probability λi�, and it leaves the system with probabil-
ity μisi�, s ∈ S (with S the capacity region as defined in Sect. 2). We are inter-
ested in policies with exponential switching curves, i.e., s = (1,0) if N2 < eN1/γ ,
and s = (c1, c2) if N2 ≥ eN1/γ and N1 > 0. When � → 0, this approximates the
continuous-time system with Poisson arrivals and exponential distributed service re-
quirements. (The user departure rate in the discrete model is μisi , which is equal
to the user departure rate in the stochastic model.) For a given parameter γ of the
switching curve, denote the state at time k by N

γ

i (k), i = 1,2.
Following the reasoning in [17] we consider different realizations of the queue-

length process, indexed by a superscript r ∈ N. We take as initial point nr =
(γ ln[rn2], [rn2]) and as time horizon r · D for some fixed D with n2 > D. We then
write E(

∑r·D
k=0 N

γ,r

1 (k) + N
γ,r

2 (k)) = ∑4
k=1 V

γ

k (nr) with

V
γ

1

(
nr

) =
r·D∑

k=0

E
(
N

γ,r

1 (k)
)
,

V
γ

2

(
nr

) =
r·D∑

k=0

(

nr
2 + k

(

λ2 − 1 − ρ1

1 − c1
μ2c2

))

,

Queueing Syst (2010) 65: 43–92 71

V
γ

3

(
nr

) =
r·D∑

k=0

μ2c2

μ1(1 − c1)

(
nr

1 − E
(
N

γ,r

1 (k)
))

,

V
γ

4

(
nr

) =
r·D∑

k=0

μ2
c1 + c2 − 1

1 − c1
E

(
v

γ,r

k

)
,

where v
γ,r

k = ∑k−1
m=0 1(N

γ,r

1 (m)=0) is the number of times the process serves class 2 in-

dividually. Since c1 < ρ1 < 1 and ρ1 < 1− ρ2
c2

(1−c1), we can use the large-deviation
results in [17] to show that

V
γ

1

(
nr

) = Drγ ln(r) + O(r),

V
γ

2

(
nr

) = r2
∫ ∞

0

(
n∗

1(t) + n∗
2(t)

)
dt + O(r),

V
γ

3

(
nr

) = O(r),

V
γ

4

(
nr

) = μ2
c1 + c2 − 1

1 − c1
· r2−β(�)γ+o(1),

as r → ∞, with β(�) = ln(
ρ1
c1

1−μ1c1�
1−λ1�

), and n∗(t) the optimal fluid trajectory corre-
sponding to initial state (0, n2). As explained in [17], setting the value of γ larger than
1/β(�) gives good second-order asymptotics. The condition that γ should be large
enough is natural: setting the value of γ near 0 would almost everywhere give priority
to class 1, a strategy that we know can perform poorly. In our numerical experiments
in Sect. 6.2 (for the continuous-time setting), this is indeed observed for large loads,
as the performance severely degrades for small values of γ (see Fig. 12). For large
values of γ , performance is also suboptimal: When γ > 1/β(�), the second-order
term is given by Dγ r ln r , so that it is not attractive to choose γ too large either.
However, performance turns out to be less sensitive to small changes in γ for large
values of γ , see also our numerical experiments in Sect. 6.2.

Letting � → 0, we have lim�→0 β(�) = ln(
ρ1
c1

). Choosing as estimate γ =
1/ln(

ρ1
c1

) in the continuous-time system proves to be a reasonable rule of thumb in
all our experiments, see Sect. 6.2.

5 Heavy-traffic regime

One of the goals of this paper is to describe policies that approximate optimal policies
rather well (in cases where an optimal policy could not be determined explicitly). In
Sect. 4 we did so by considering a simpler (fluid) model that only took into account
the mean drifts. We proved that certain policies are asymptotically fluid optimal, and
therefore are potentially close to optimal in the original stochastic model as well. In
this section we discuss another approach to obtain policies that are in some sense
approximately optimal: we review optimality results available in the literature for a
heavy-traffic regime (when the system is close to saturation). These results can be
used as approximations for the original system when the load is rather high, however,

72 Queueing Syst (2010) 65: 43–92

Fig. 7 Stability set

there is no guarantee for the performance of these policies in moderately-loaded sys-
tems. Therefore, in Sect. 6 we numerically compare (under moderate load conditions)
the performance of the policies that are optimal in heavy traffic with our asymptoti-
cally fluid optimal policies. Note that both of these policies are motivated by a certain
asymptotic regime, and beforehand it is unclear how well they perform outside these
regimes.

We know the system can be kept stable when (4) and (5) are satisfied. Equiva-
lently, we may say that the system can be kept stable when the vector (λ1, λ2) lies
in the interior of the stability set as depicted in Fig. 7. The system is said to be in
heavy traffic when the vector (λ1, λ2) lies on the northeast boundary of the stabil-
ity set in Fig. 7. In addition, the complete resource pooling condition is satisfied if
the outer normal, η, to the stability set at that λ is unique up to scaling and all its
coordinates are strictly positive, i.e., (λ1, λ2) is such that λi > 0 for i = 1,2 and
(λ1, λ2) �= (μ1c1,μ2c2). More precisely, the parameters of a heavily-loaded system
under the resource pooling condition correspond to one of the following two regions
(see also Fig. 7):

• Region A: ρ2 = 1 − ρ1
c1

(1 − c2) and ρ2 > c2, c1 > ρ1. The outer normal vector to a
point in this region is η = (μ2(1 − c2),μ1c1).

• Region B: ρ1 = 1 − ρ2
c2

(1 − c1) and ρ1 > c1, c2 > ρ2. The outer normal vector to a
point in this region is η = (μ2c2,μ1(1 − c1)).

Recall that our model may be viewed as a parallel two-server model, see Re-
mark 2.1. Policies that are in some sense asymptotically optimal in a heavy-traffic
setting with complete resource pooling have been investigated in among others [4,
5, 23, 31]. In Sect. 5.1 we briefly state the results of Bell and Williams [4, 5]. They
prove that threshold-based policies asymptotically minimize the (scaled) total number
of users in heavy traffic. In Sect. 5.2 we recall the definition of Max-Weight policies
(or Gcμ-rule) and describe the results concerning their behavior in heavy traffic as
obtained by Mandelbaum and Stolyar [23, 31].

5.1 Threshold policies

Bell and Williams [4, 5] have investigated the parallel-server model (with an arbitrary
number of servers and classes) with i.i.d. inter-arrival times and service requirements,
and with FCFS as intra-class policy. (In the case of exponential service requirements,
the behavior of the system is independent of the non-anticipating intra-class policy.)
In this section we collect results specific for the parallel two-server model. Their
model is in fact a slight variation of the model we consider in this paper. First, in their

Queueing Syst (2010) 65: 43–92 73

model, once a server starts serving a user, this user has to obtain its full service from
this server. Secondly, their model has slightly different behavior near the boundaries:
when Ni = 1, their model can have a departure rate of at most μici for class i, since
a single user cannot be served simultaneously by the two servers. In the model we
consider, we can have a departure rate of μi .

Bell and Williams [4, 5] consider a sequence of parameters indexed by r , μr
i and

λr
i (ρr

i = λr
i

μr
i
), with λr

i → λi,μ
r
i → μi such that λ1, λ2,μ1 and μ2 correspond either

to Region A or Region B. An additional condition involves the rate at which the
system converges:

lim
r→∞

√
rμr

i

(
ρr

i − ρi

) = θi , with θi ∈ R, i = 1,2.

Let N
π,r
i (t) be the number of class-i users in the r th system under policy π , and let

N̂
π,r
i (t) = N

π,r
i (rt)√

r
be the diffusion-scaled number of class-i users. It is assumed that

the system is initially empty. Define

Ĵ r (π) = E

(∫ ∞

0
e−ξ t

(
N̂

π,r
1 (t) + N̂

π,r
2 (t)

)
dt

)

where ξ > 0 is a constant. In [4, 5], a sequence of policies π̃ r is called asymptotically
optimal in heavy traffic when limr→∞ Ĵ r (π̃ r) ≤ lim infr→∞ Ĵ r (πr) for any sequence
of policies πr .

When μ1 ≤ c1μ1 + c2μ2, the optimal policy is to serve both classes in parallel
whenever possible. This remains valid in heavy traffic. For μ1 > c1μ1 + c2μ2 the
following result holds:

Proposition 5.1 [5] Assume μ1 > c1μ1 + c2μ2, c1 + c2 > 1 and consider a heavy-
traffic setting with complete resource pooling.

• If (ρ1, ρ2) corresponds to Region A, then the policy that serves classes 1 and 2 in
parallel whenever possible, is an asymptotically optimal policy in heavy traffic.

• If (ρ1, ρ2) corresponds to Region B, then the sequence of threshold policies that
gives priority to class 1 when N1 > c ln(

√
r) (with c large enough), and that oth-

erwise serves classes 1 and 2 in parallel, is asymptotically optimal in heavy traffic.

Denote by Th(r) the minimum value for the threshold Th such that the r th system
is stable under the threshold policy that serves class 1 individually when N1(t) > Th
and serves classes 1 and 2 in parallel otherwise. In [33] it is shown that any thresh-
old Th with Th > Th(r), makes the r th system stable. In addition, Th(r)/ ln(

√
r) → ĉ

for some constant ĉ > 0. This shows that the threshold c · ln(
√

r) in the above propo-
sition is of a minimum order.

In Sect. 6.2 we will evaluate the performance of threshold-based policies in the
moderately-loaded case, and compare it with the optimal policy found numerically,
as well as with the asymptotically fluid optimal policies as we proposed in this paper.

74 Queueing Syst (2010) 65: 43–92

5.2 Max-Weight policies

In this section we summarize results on Max-Weight policies cf. [23, 31]. For a
parallel-server system with K classes and L servers, the Gcμ-rule (Max-Weight pol-
icy is a special case of this) is defined as follows. When server l becomes free, it starts
serving a user from class k such that k = arg maxi μilC

′
i (Ni), and serves this user un-

til it leaves the system. Here μil is the departure rate of class-i users when served by
server l, and the function Ci(Ni) can be interpreted as the cost of having Ni users in
class i. In order for the heavy-traffic results to hold (which will be stated later on),
the function Ci(Ni) needs to satisfy certain conditions as specified in [23]. In particu-
lar, the second derivative needs to be strictly positive and continuous in (0,∞). This
excludes the function Ci(Ni) = Ni , which would be needed to minimize the total
number of users. We will focus on functions of the type Ci(Ni) = γiN

β+1
i , with pa-

rameters β,γi > 0, which do satisfy the conditions. These cost functions correspond
to the Max-Weight policies. An important property of the Max-Weight policies is that
they maintain a stable system under the necessary stability conditions [31].

Mandelbaum and Stolyar [23] consider i.i.d. inter-arrival times and service re-
quirements. They consider a sequence of systems indexed by r , λr

i , with λr
i → λi ,

and keep μil fixed. The parameters λi and μil are such that the system is in
heavy traffic and the complete resource pooling condition is satisfied. In addition,
limr→∞

√
r(λr

i − λi) = θi , with θi ∈ R, i = 1, . . . ,K . The initial state converges

under the diffusion scaling such that limr→∞
Nr

i (0)√
r

= mi with (γ1m
β

1 , . . . , γKm
β
K)

proportional to (η1, . . . , ηK).
The authors of [23] focus on policies with FCFS as intra-class policy, and once

a user is taken for service by a server, this user cannot be served by any other
server. The next proposition states the results for the Max-Weight policy, which will
be denoted by MW . In particular, for a heavy-traffic setting it states that the Max-
Weight policy minimizes (under diffusion scaling) both the cost,

∑
i Ci(Ni(t)) =∑

i γi · (Ni(t))
β+1, and the “virtual” workload,

∑
i ηiNi(t), at all times. As before, η

is the outer normal vector to the stability set.

Proposition 5.2 [23] Consider a heavy-traffic setting with complete resource pool-
ing. For any policy π that is allowed in the framework of [23] (as described above),
we have

lim inf
r→∞

∑

i

γi · (N̂π,r
i (t)

)β+1 ≥ lim
r→∞

∑

i

γi · (N̂MW,r
i (t)

)β+1
,

and,

lim inf
r→∞

∑

i

ηiN̂
π,r
i (t) ≥ lim

r→∞
∑

i

ηiN̂
MW,r
i (t).

for all time t . In addition, the vector

lim
r→∞

(
γ1 · (N̂MW,r

1 (t)
)β

, . . . , γK · (N̂MW,r
K (t)

)β)
, (42)

is proportional to (η1, . . . , ηK).

Queueing Syst (2010) 65: 43–92 75

Fig. 8 The Max-Weight policy

The result that the vector in (42) is proportional to (η1, . . . , ηK), is referred to as a
state space collapse, since the dimension of the K-dimensional process decreases to
one.

Note that the Max-Weight policy does not minimize the total number of users,
since β must be strictly positive. However, the Max-Weight policy can be used to
come close to this setting, for example, by setting β > 0 very small and γi = 1, i =
1, . . . ,K . An alternative option is by making use of the fact that the Max-Weight pol-
icy does minimize the (diffusion-scaled) virtual workload

∑
i ηiNi(t). Hence, when

trying to minimize the total number of users among the Max-Weight policies, it is
best to set the parameters (γi ’s and β) such that NMW

k (t) is as large as possible,
where k is such that ηk ≥ ηi for all i �= k. For this reason, in [23] it is suggested that
in heavy traffic a good choice for the parameters is β = 1, γi = 1, i �= k and γk = εk ,
with εk > 0 small, since the state space collapse result implies that then NMW

k (t) will
become relatively large compared to NMW

i (t), i �= k.
The model that we consider in this paper, is closely matched2 by the parallel two-

server model as considered in [23] when taking μ11 = μ1c1,μ21 = μ2(1−c2),μ12 =
μ1(1 − c1) and μ22 = μ2c2, see Remark 2.1. When c1 + c2 > 1 and ci ≤ 1, the
corresponding Max-Weight policy is as follows:

• Serve class 1 when N2 < (
γ1(1−c1)μ1

γ2c2μ2
)

1
β N1.

• Serve classes 1 and 2 in parallel when (
γ1(1−c1)μ1

γ2c2μ2
)

1
β N1 ≤ N2 < (

γ1c1μ1
γ2(1−c2)μ2

)
1
β N1.

• Serve class 2 when (
γ1c1μ1

γ2(1−c2)μ2
)

1
β N1 ≤ N2.

Hence the Max-Weight policy has two linear switching curves. In Fig. 8 these switch-
ing curves are plotted. Note that in heavy traffic, the state space collapses to the line

2Note that the two models are not exactly equivalent since the possible allocations in states with Ni = 1,
for an i = 1,2, are not identical.

76 Queueing Syst (2010) 65: 43–92

Fig. 9 Optimal switching curve when (a) ρ1 < c1, ρ2 < c2, (b) ρ1 < c1 and ρ2 > c2 and (c) ρ1 > c1 and
ρ2 < c2

N2 = (
c1μ1γ1

(1−c2)μ2γ2
)

1
β N1 if we are in Region A and to the line N2 = (

(1−c1)μ1γ1
c2μ2γ2

)
1
β N1

if we are in Region B.
In Sect. 6.3 we will investigate the performance of the Max-Weight policies in the

moderately-loaded case, and compare it with the optimal policy found numerically,
as well as with the asymptotically fluid optimal policies as we proposed in this paper.

6 Numerical results

An average-optimal policy for the original stochastic model can be computed nu-
merically by value iteration using appropriate truncation of the state space. Figure 9
illustrates for various scenarios that an optimal policy is characterized by a switch-
ing curve. We note that finding these optimal curves numerically was extremely
time-consuming. Figures 9(a) and (b) consider the setting ρ1 < c1. We see that the
switching curve is linear and coincides exactly with the asymptotically fluid optimal
switching curve h(N1) = α

μ2
μ1

N1 from Proposition 4.11. Figure 9(c) corresponds to
a scenario with ρ1 > c1 and illustrates that then an optimal policy resembles an expo-
nentially shaped curve, which agrees with Conjecture 4.12. In the remainder of this
section we will assess the gains that can be achieved by choosing the best switching-
curve policies.

6.1 Linear switching-curve policies for ρ1 < c1

In Fig. 10 we focus on the case ρ1 < c1 and plot the mean total number of users under
policies with a linear switching curve h(N1) = dN1 (obtained by simulation). On the
horizontal axis we vary the value of d . Note that d = 0 corresponds to always serving
both classes in parallel. When the slope grows large (d → ∞), the policy gives higher
priority to serving class 1 exclusively (whenever present). Note that strict priority for
class 1 leads to instability if ρ1 + ρ2 > 1, which can be the case even if the stability
conditions (4) and (5) are met. The two graphs on the left in Fig. 10 correspond to a
moderately-loaded system. There we also plot the optimal policy found numerically
by value iteration. We observe that when the parameter d is chosen well, the linear
switching-curve policy coincides with the optimal policy. The two graphs on the right
in Fig. 10 represent a heavily-loaded system. We did not determine the optimal policy
for this parameter setting, since this is extremely time-consuming. Choosing d very
large implies that the mean number of users will be large (since ρ1 + ρ2 > 1). It

Queueing Syst (2010) 65: 43–92 77

Fig. 10 Mean total number of users for policies with a linear switching curve. The marker indicates the
optimal slope for the fluid approximation. The two graphs on the top row correspond to cases with ρ1 < c1
and ρ2 < c2. The lower graphs have ρ1 < c1 and ρ2 > c2

seems that a good choice for heavily-loaded systems is d = 0, i.e., always serve both
classes in parallel. In a heavy-traffic setting with ρ1 < c1 (and necessarily ρ2 > c2
while ρ2 + ρ1

c1
(1 − c2) → 1) we see that the policy that always serves both classes in

parallel is also the asymptotically optimal policy as found by both the fluid analysis
(since then α = 0, so the slope is equal to 0) and the heavy-traffic analysis.

In Fig. 11 we repeated the experiment for different parameter choices to illustrate
that the relative differences in performance between the optimal linear policy (ob-
tained numerically by value iteration) and the strategy that maximizes the service
capacity at all times (slope d = 0) can be quite significant.

An important observation in Figs. 10 and 11 is that the asymptotically fluid optimal
policy as found by the fluid analysis in Sect. 4 (denoted in the figures by “optimal
slope fluid”) is always close to optimal and performs very well.

In the two graphs on the right in Fig. 10, we observe that the total mean number
of users grows linearly in d as d → ∞. In the following remark we provide intuition
for this effect.

Remark 6.1 Consider the policy with a linear switching curve h(N1) = dN1. If d

tends to ∞, then the system dynamics tends to a priority queue where class 1 is given
preemptive priority. When ρ1 + ρ2 < 1, this policy is stable, and we indeed observe

78 Queueing Syst (2010) 65: 43–92

Fig. 11 Mean total number of
users for policies with a linear
switching curve. The marker
indicates the optimal slope for
the fluid approximation

in the two graphs on the left in Fig. 10 and in Fig. 11 that the mean number of users
will converge to a constant. However, when ρ1 + ρ2 > 1, this policy is not stable,
and E(N1 + N2) will grow infinitely large as d → ∞. The two graphs on the right in
Fig. 10 suggest that the mean number of users grows linearly in d as d → ∞. This
can be intuitively understood as follows.

Conditioned on jd ≤ N2 < (j + 1)d , class 1 has as departure rate μ1c1 if N1 ≤ j ,
and μ1 otherwise. For a given j , let π(j) denote the equilibrium distribution for the
process with departure rates as described above. Hence, πi(j) = π0(j)(

ρ1
c1

)i if i ≤ j

and πi(j) = π0(j)(
ρ1
c1

)jρ
i−j

1 if i > j . If d is large, we assume that class 1 reaches
equilibrium during the time that jd ≤ N2 < (j + 1)d . Then the mean departure rate
for class 2 is μ2(j) := μ2π0(j) + μ2c2

∑j

i=1 πi(j) (when jd ≤ N2 < (j + 1)d),
since both classes are served in parallel whenever N2 ≥ dN1. It can be checked that
this is increasing in j , hence there exists a j∗ such that μ2(j

∗ −1) < λ2 ≤ μ2(j
∗) (for

convenience we define μ2(−1) = 0). Note that j∗ > 0, unless ρ1 + ρ2 < 1. Hence,
if jd ≤ N2 < (j + 1)d with j < j∗, then the mean drift in class 2 is positive, and
the probability that the increase in N2 is O(d) tends to 1 as d → ∞. If jd ≤ N2 <

(j +1)d with j ≥ j∗, then the mean drift in class 2 is negative. Hence, the probability
that the decrement of N2 is of order O(d) tends to 1 as d → ∞. It is therefore
plausible that the process N2/d will most of the time be around the level j∗.

If the region (j∗ + 1)d ≤ N2 is not reached (which is not a strong assumption,
since this region will be rarely visited as d → ∞), then the number of class-1 users
can be upper bounded by the number of class-1 users in a system with departure rates
μ1c1 if N1 ≤ j∗ and μ1 otherwise. Since j∗ does not depend on d , the upper bound
for the number of class-1 users does not scale with d .

For the parameters used in the graph on the top right in Fig. 10, the j∗ is equal to 2.
We observe in the figure that E(N2)/d indeed converges to j∗ = 2 and that E(N1)

does not scale with d . For the parameters that belong to the graph on the bottom right
in Fig. 10, the j∗ is equal to 1. In that case too, we observe in the figure that E(N2)/d

indeed converges to j∗ = 1 and that E(N1) does not scale with d .

Queueing Syst (2010) 65: 43–92 79

6.2 Exponential switching curves and threshold-based policies for ρ1 > c1

In Fig. 12 we consider several parameter settings with ρ1 > c1, and plot the total
mean number of users under policies with switching curves of the shape h(N1) =
eN1/γ (obtained by simulation). On the horizontal axis we vary the value of γ . Note
that when γ grows large, this tends to the policy that always serves both classes
in parallel. We observed that the best choice for the parameter γ , delivers virtually
the same performance as the optimal policy (found numerically by value iteration).
In Conjecture 4.12 it is stated that exponential switching curves are asymptotically
fluid optimal. The large-deviation analysis further suggests that γ = 1

ln(ρ1/c1)
is a

safe choice, see Sect. 4.3 (denoted in the figures by “rule of thumb”). In the three
graphs on the top row in Fig. 12 this corresponds to γ = 8.5. We observe that in fact
the better choices for the parameter γ are smaller than 8.5. Still, the large-deviation
result gives a safe estimate (the policy is stable) with better performance than the
capacity-maximizing strategy (serving both classes in parallel whenever possible, i.e.,
γ → ∞). In the three graphs on the last row in Fig. 12, the rule of thumb is equal
to γ = 2.5. In this case, the rule of thumb is very close to the optimal performance.
In general, in all our tests we observed that the rule of thumb for γ proves to be a
reasonable choice.

Recall that when ρ1 > c1, a threshold policy is asymptotically optimal in a heavily-
loaded system. That is, both classes should be served in parallel whenever the num-
ber of class-1 users is below or equal to some threshold Th ≥ 0. When the threshold
grows large, this coincides with the policy that always serves both classes in parallel.
In Fig. 12 we consider a moderately-loaded system. We vary the value of the thresh-
old Th, and plot the mean total number of users (obtained by simulation). For certain
small values of the threshold, the threshold policy performs rather well. However,
when the threshold is chosen too small, the performance of the system can degrade
considerably. In fact, for a system with large loads (ρ1 + ρ2 > 1), the policy with
Th = 0 is unstable. In the two graphs on the right in Fig. 12 (where still ρ1 + ρ2 < 1)
we already see that the total number of users doubles when the threshold is set equal
to 0. In [32] the authors propose a method to obtain estimates for the value of the
threshold. For transparency of presentation, we do not describe this method here. For
the settings in Fig. 12 we have calculated the estimates for the threshold using their
method (denoted in the figures by “Approx. for threshold”). We see that in the figures
on the top, the approximation for the threshold matches exactly with the best thresh-
old value. However, in the figures on the bottom, the approximation of the threshold
is too small, which results in severe performance degradation in the case of high loads
(ρ1 = 0.45, ρ2 = 0.5).

In general, for the case ρ1 > c1 our fluid-based method (rule of thumb) proved
to be a rather safe option, while threshold policies (using the approximation in [32])
may sometimes perform better, but can also be far from optimal. Although this is sup-
ported by a rather extensive set of experiments, it remains as a challenge to provide a
theoretical basis for the robustness of fluid-based policies.

6.3 Comparison with Max-Weight policies for moderate loads

As stated in Sect. 5.2, Max-Weight policies can be close to optimal in a heavy-traffic
setting. In this section we investigate the performance of the Max-Weight policies in a

80 Queueing Syst (2010) 65: 43–92

F
ig

.1
2

M
ea

n
to

ta
ln

um
be

r
of

us
er

s
w

he
n

ρ
1

>
c 1

an
d

ρ
2

<
c 2

fo
r

po
lic

ie
s

w
ith

ex
po

ne
nt

ia
ls

w
itc

hi
ng

cu
rv

es
(a

s
a

fu
nc

tio
n

of
γ

),
an

d
fo

r
th

re
sh

ol
d

po
lic

ie
s

(a
s

a
fu

nc
tio

n
of

T
h)

Queueing Syst (2010) 65: 43–92 81

moderately-loaded system and compare this to the performance of the asymptotically
fluid optimal policies as found in this paper. We need to distinguish between whether
μ1c1 + μ2c2 ≥ μ1 or μ1c1 + μ2c2 < μ1. We will see that in the second case the
fluid-based policies can outperform the Max-Weight policies, and that the parameter
choices for the Max-Weight policies as suggested by the heavy-traffic results are not
necessarily a good choice in a moderately-loaded system.

Case μ1c1 + μ2c2 ≥ μ1

From Sect. 3.1 we know that when μ1c1 + μ2c2 ≥ μ1, the policy which serves
classes 1 and 2 in parallel whenever possible, stochastically minimizes the total
mean number of users present in the system. Note that when μ1c1 + μ2c2 ≥ μ1, the
Max-Weight policy with γ1 = γ2 = 1 and β close to zero, will almost always serve
both classes in parallel. Numerically we observed that the Max-Weight policy (with
γ1 = γ2 = 1 and β close to zero) turns out to be very effective and nearly matches
the optimal performance. For this reason, we have not included any graphs for this
case.

Case μ1c1 + μ2c2 < μ1

When μ1c1 + μ2c2 < μ1, the asymptotically fluid optimal policy we proposed is
described by a switching curve h(N1) (either linear or exponential), where class 1 is
served in states below the switching curve, and classes 1 and 2 are served in paral-
lel in states above the switching curve. We compare these policies with Max-Weight
policies. We choose the parameters as described in Sect. 5.2. So we take γ1 = γ2 = 1
and β = 10−4. When μ1 > μ2 and μ1c1 + μ2c2 < μ1, we have η1 < η2, both in Re-
gion A and in Region B of Fig. 7. Hence, we will also consider Max-Weight policies
with γ1 = 1, γ2 = ε2, ε2 > 0, and β = 1.

In Figs. 13 and 14, we compare (by simulation) the performance of the Max-
Weight policies with the performance of the best linear or exponential switching-
curve policies. On the horizontal axis we vary ε2 and on the vertical axis we plot the
total mean number of users under the various policies. First of all, we note that in both
Figs. 13 and 14, the Max-Weight policy with β = 10−4 and γi = 1, i = 1,2, performs
rather poorly. This is not surprising, since if μ1c1 +μ2c2 < μ1, then the Max-Weight
policy (with β = 10−4 and γ1 = γ2 = 1) will almost always serve class 1 individually,
which is far from optimal.

For the parameters as in Fig. 13(a), the fluid approximation suggests that if
N2 ≤ 1.8N1, then serve class 1, and otherwise serve both classes in parallel. Nu-
merically, we found that this is also the best linear policy for the stochastic model.
The Max-Weight policy (with β = 1 and γ = (1, ε2)) will serve class 1 most of the
time, since that is the prescribed action in states such that N2 ≤ 6 2

3ε2
N1. From the

figure, we see that this is only 5% worse than the optimal linear policy. For the pa-
rameters as in Fig. 13(b), the fluid approximation serves always classes 1 and 2 in
parallel. Numerically, we found that this is also the best linear policy for the sto-
chastic model. The Max-Weight policy (with β = 1 and γ = (1, ε2)) however, serves
class 1 individually as soon as N2 ≤ 12

10ε2
N1. These states will be visited more often

82 Queueing Syst (2010) 65: 43–92

Fig. 13 Mean total number of users under Max-Weight policies and under the optimal linear switching
curve, with μ1c1 + μ2c2 < μ1 and ρ1 < c1

Fig. 14 Mean total number of users under Max-Weight policies and under exponential switching curves,
with μ1c1 + μ2c2 < μ1 and ρ1 > c1

when ε2 ↓ 0. In the figure, the performance degrades from 15% worse (ε2 = 1), to
30% worse (ε2 ↓ 0), compared with the optimal linear policy.

In Fig. 14 the parameters are such that Conjecture 4.12 implies an exponential
switching curve. We plot the performance of both the best exponential switching
curve (determined numerically), and of the exponential switching curve where γ is
set according to the rule of thumb, i.e., γ = 1

ln(ρ1/c1)
= 3.48. For μ1 = 10, the Max-

Weight policy (with β = 1 and γ = (1, ε2)) is about 15% worse compared with the
best exponential policy. For μ1 = 2, it is close to optimal when ε2 = 1, but the per-
formance degrades when ε2 ↓ 0. Observe that in both cases the policy with an expo-
nential switching curve where γ is chosen according to the rule of thumb, performs
rather well. We have also calculated the performance of the threshold policy as sug-
gested in [32]. For the setting of Fig. 14(a) it suggests a threshold equal to 0, in which
case there are on average approximately 2.8 users in the system. Hence, the proposed
policy does not give good performance. For the setting of Fig. 14(b) it suggests a
threshold equal to 1, in which case there are approximately 2.68 users in the system.
This is rather close to optimal.

Queueing Syst (2010) 65: 43–92 83

7 Conclusion and future work

We have studied optimal policies for systems that have capacity gains when serving
users in parallel. Fluid-limit analysis indicates that asymptotically fluid optimal poli-
cies can be characterized by either linear or exponentially shaped switching curves.
The results yield directly usable estimates for efficient policies in the stochastic set-
ting, comparing favorably with threshold-based policies and Max-Weight policies for
moderately-loaded regimes. A proof of Conjecture 4.12 seems within reach, using
similar steps as in Lemma A.3 in [16]. At this stage we did not succeed to formalize
the required martingale inequality used there.

Several extensions to this work are of interest. For example, it is interesting to
investigate how our results change if the capacity is also favorably affected by the
numbers of users within each class. For example, in wireless networks the aggregate
transmission rate increases with the number of users, due to opportunistic scheduling
that exploits multiuser diversity [20].

An intermediate step that is of interest on its own would be to consider our current
model with several possible service capacity vectors when serving classes in parallel.
For example, if in addition to the service capacities c1 and c2 we can choose d1 and
d2 that are not in the convex hull depicted in Fig. 1.

A third direction of interest is to study our model with more than two classes. This
could also serve as an intermediate step towards handling multiuser diversity gains as
mentioned above, which presumably are more difficult to handle. These issues will
be addressed in on-going and future research.

Acknowledgements The authors are grateful to Sem Borst for valuable discussions and comments, and
to the referees for their constructive reviews.

Appendix A: Proof of Lemma 3.2

The proof is by induction on the time index k. For k = 0 the statement holds. In order
to apply induction, assume it holds for Z = Vk . We show that it holds for Z = Vk+1
as well.

In the remainder of the appendix we show that

(μ1 + μ2)Vk+1(x) + μ1c1Vk+1(x − e1) + μ2c2Vk+1(x − e2)

≤ μ1Vk+1(x) + μ2Vk+1(x − e2) + (μ1c1 + μ2c2)Vk+1(x) (43)

is indeed satisfied. The proof of

(μ1 + μ2)Vk+1(x) + μ1c1Vk+1(x − e1) + μ2c2Vk+1(x − e2)

≤ μ1Vk+1(x − e1) + μ2Vk+1(x) + (μ1c1 + μ2c2)Vk+1(x)

follows exactly the same steps, but with the role of class 1 and class 2 interchanged.
First assume x1 > 0 and x2 = 1. By definition of the function Vk+1(·) (see (7)),

we can write

84 Queueing Syst (2010) 65: 43–92

μ2Vk+1(x1,1) + μ1c1Vk+1(x1 − 1,1) + μ2c2Vk+1(x1,0)

≤ μ2
[
λ1Vk(x1 + 1,1) + λ2Vk(x1,2) + μ1Vk(x1,1)

+ μ2Vk(x1,0) + (μ1c1 + μ2c2)Vk(x1,1)
]

+ μ1c1
[
λ1Vk(x1,1) + λ2Vk(x1 − 1,2) + μ1Vk(x1 − 1,1) + μ2Vk(x1 − 1,0)

+ (μ1c1 + μ2c2)Vk(x1 − 1,1)
]

+ μ2c2
[
λ1Vk(x1 + 1,0) + λ2Vk(x1,1) + μ1Vk(x1 − 1,0)

+ μ2Vk(x1,0) + (μ1c1 + μ2c2)Vk(x1,0)
]
. (44)

Rearranging terms in (44), gives

λ1
[
μ2Vk(x1 + 1,1) + μ1c1Vk(x1,1) + μ2c2Vk(x1 + 1,0)

]

+ λ2
[
μ2Vk(x1,2) + μ1c1Vk(x1 − 1,2) + μ2c2Vk(x1,1)

]

+ μ1
[
μ2Vk(x1,1) + μ1c1Vk(x1 − 1,1) + μ2c2Vk(x1,0)

]

+ (μ1c1 + μ2c2)
[
μ2Vk(x1,1) + μ1c1Vk(x1 − 1,1) + μ2c2Vk(x1,0)

]

+ μ2
[
μ2Vk(x1,0) + μ2c2Vk(x1,0)

]

+ μ1μ2
[
(c1 + c2)Vk(x1 − 1,0) − c2Vk(x1,0)

]
. (45)

Since Vk(·) is increasing in x1 (see Lemma 3.1), c1 + c2 ≥ 1, and since (8) holds by
induction for Vk(·), (45) is less than or equal to

λ1
[
μ2Vk(x1 + 1,0) + (μ1c1 + μ2c2)Vk(x1 + 1,1)

]

+ λ2
[
μ2Vk(x1,1) + (μ1c1 + μ2c2)Vk(x1,2)

]

+ μ1
[
μ2Vk(x1,0) + (μ1c1 + μ2c2)Vk(x1,1)

]

+ (μ1c1 + μ2c2)
[
μ2Vk(x1,1) + μ1c1Vk(x1 − 1,1) + μ2c2Vk(x1,0)

]

+ μ2
[
μ2Vk(x1,0) + μ2c2Vk(x1,0)

]

+ μ1μ2
[
(c1 − 1)Vk(x1,0) + Vk(x1 − 1,0)

]

= μ2
[
λ1Vk(x1 + 1,0) + λ2Vk(x1,1) + μ1Vk(x1 − 1,0)

+ (μ2 + μ1c1 + μ2c2)Vk(x1,0)
]

+ (μ1c1 + μ2c2)
[
λ1Vk(x1 + 1,1) + λ2Vk(x1,2) + (μ1 + μ2)Vk(x1,1)

+ μ1c1Vk(x1 − 1,1) + μ2c2Vk(x1,0)
]
, (46)

where in the last step we rearranged the terms. Since (8) holds by induction for Vk(·),
(46) is equal to μ2Vk+1(x1,0) + (μ1c1 + μ2c2)Vk+1(x1,1). Hence, (43) is proved.

Now assume x1 > 0 and x2 > 1. By definition of Vk+1(·) we can write

μ2Vk+1(x) + μ1c1Vk+1(x − e1) + μ2c2Vk+1(x − e2)

≤ μ2
[
λ1Vk(x + e1) + λ2Vk(x + e2) + μ1Vk(x) + μ2Vk(x − e2)

Queueing Syst (2010) 65: 43–92 85

+ μ1c1Vk(x) + μ2c2Vk(x)
]

+ μ1c1
[
λ1Vk(x) + λ2Vk(x − e1 + e2) + μ1Vk(x − e1) + μ2Vk(x − e1 − e2)

+ μ1c1Vk(x − e1) + μ2c2Vk(x − e1)
]

+ μ2c2
[
λ1Vk(x + e1 − e2) + λ2Vk(x) + μ1Vk(x − e2) + μ2Vk(x − 2e2)

+ μ1c1Vk(x − e2) + μ2c2Vk(x − e2)
]

(47)

Rearranging terms in (47), gives

λ1
[
μ2Vk(x + e1) + μ1c1Vk(x) + μ2c2Vk(x + e1 − e2)

]

+ λ2
[
μ2Vk(x + e2) + μ1c1Vk(x − e1 + e2) + μ2c2Vk(x)

]

+ μ1
[
μ2Vk(x) + μ1c1Vk(x − e1) + μ2c2Vk(x − e2)

]

+ μ2
[
μ2Vk(x − e2) + μ1c1Vk(x − e1 − e2) + μ2c2Vk(x − 2e2)

]

+ (μ1c1 + μ2c2)
[
μ2Vk(x) + μ1c1Vk(x − e1) + μ2c2Vk(x − e2)

]
. (48)

Since (8) holds by induction for Vk(·), (48) is less than or equal to

λ1
[
μ2Vk(x + e1 − e2) + μ1c1Vk(x + e1) + μ2c2Vk(x + e1)

]

+ λ2
[
μ2Vk(x) + μ1c1Vk(x + e2) + μ2c2Vk(x + e2)

]

+ μ1
[
μ2Vk(x − e2) + μ1c1Vk(x) + μ2c2Vk(x)

]

+ μ2
[
μ2Vk(x − e2) + μ1c1Vk(x − e1 − e2) + μ2c2Vk(x − 2e2)

]

+ (μ1c1 + μ2c2)
[
μ2Vk(x) + μ1c1Vk(x − e1) + μ2c2Vk(x − e2)

]

= μ2
[
λ1Vk(x + e1 − e2) + λ2Vk(x) + (μ1 + μ2)Vk(x − e2)

+ μ1c1Vk(x − e1 − e2) + μ2c2Vk(x − 2e2)
]

+ (μ1c1 + μ2c2)[λ1Vk(x + e1) + λ2Vk(x + e2) + (μ1 + μ2)Vk(x)

+ μ1c1Vk(x − e1) + μ2c2Vk(x − e2)
]
, (49)

where in the last step we rearranged the terms. Since (8) holds by induction for
Vk(·), (49) is equal to μ2Vk+1(x − e2) + μ1c1Vk+1(x) + μ2c2Vk+1(x). Hence, (43)
is proved. �

Appendix B: Proof of Lemma 3.4

We use t+ to denote any element in an interval (t, t + δ], for a sufficiently small
δ > 0. Throughout the proof we use the fact that

Wi(t) > 0 implies Wi

(
t+

)
> 0, and that

Wi(t) = 0 implies Wi

(
t+

) = 0.
(50)

86 Queueing Syst (2010) 65: 43–92

This follows since the workload process Wi(t), i = 1,2, is right continuous and in-
creases only with an arrival.

Note that Si(t), i = 1,2, is continuous. In order to show relation (9), we there-
fore consider the first time instant t such that (9) holds with equality and is violated
immediately after time t . So Sπ

1 (t) = Sπ̃
1 (t), and by (1) also Wπ

1 (t) = Wπ̃
1 (t), while

sπ
1 (t+) < sπ̃

1 (t+), so that Sπ
1 (t+) < Sπ̃

1 (t+). Since Wπ
1 (t) = Wπ̃

1 (t), by (50) and by
construction of policy π we find that sπ

1 (t+) ≥ sπ̃
1 (t+). This gives contradiction and

hence (9) holds for all t ≥ 0.
Let time t be the first time instant such that either (10) or (11) holds with equality

and is violated immediately after time t . We will show that such a t does not exist.
The remainder of the proof consists of two parts, depending on whether equation (10)
or equation (11) is the first to be violated.

Part I: Assume (10) is the first equation that fails to hold, i.e., Sπ
1 (t) + Sπ

2 (t) =
Sπ̃

1 (t) + Sπ̃
2 (t), and by (1) also Wπ

1 (t) + Wπ
2 (t) = Wπ̃

1 (t) + Wπ̃
2 (t), while sπ

1 (t+) +
sπ

2 (t+) < sπ̃
1 (t+) + sπ̃

2 (t+), so that Sπ
1 (t+) + Sπ

2 (t+) < Sπ̃
1 (t+) + Sπ̃

2 (t+). We will
show that

Wπ
1 (t) + Wπ

2 (t) = Wπ̃
1 (t) + Wπ̃

2 (t) implies Wπ
i (t) = Wπ̃

i (t), i = 1,2. (51)

By (50) and by construction of policy, Wπ
i (t) = Wπ̃

i (t), i = 1,2, implies that
sπ

1 (t+) + sπ
2 (t+) ≥ sπ̃

1 (t+) + sπ̃
2 (t+), and hence we reach a contradiction. So let us

prove (51).

• We first assume that there is an interval [u, t) in which policy π̃ has more work
in the system compared to policy π , i.e., Wπ

1 (v) + Wπ
2 (v) < Wπ̃

1 (v) + Wπ̃
2 (v) for

all v ∈ [u, t), and at time t , Wπ
1 (t) + Wπ

2 (t) = Wπ̃
1 (t) + Wπ̃

2 (t). We can choose
this interval such that π̃ has made up for the lost capacity in one of the three
ways described below. Define Mπ̃

c (u, t) as the cumulative amount of time that
both classes are served in parallel under policy π̃ in the time interval [u, t).

(i) During the interval [u, t) policy π̃ has work in the system, while policy π has
an empty system.

(ii) In the interval [u, t) we have Mπ̃
c (u, t) > 0, while policy π serves class 1 with

service capacity 1. Hence Wπ
2 (v) = 0 and Wπ

1 (v) > 0, for all v ∈ [u, t).
(iii) In the interval [u, t) we have Mπ̃

c (u, t) > 0, while policy π serves class 2 with
service capacity 1. Hence Wπ

1 (v) = 0 and Wπ
2 (v) > 0, for all v ∈ [u, t).

Note that the three cases are mutually exclusive. We will show that (51) holds for
(i), (ii) and (iii). Although not mentioned explicitly, in all three cases we use the
fact that a possible arrival at time t alters the workload in both systems in the same
way. Let t− denote any element in an interval [t − δ, t) with δ > 0 sufficiently
small.

In case (i) we have Wπ
i (t−) = 0 for i = 1,2. Since at time t we have Wπ

1 (t) +
Wπ

2 (t) = Wπ̃
1 (t) + Wπ̃

2 (t), we find that Wπ̃
i (t−) = 0, i = 1,2. Hence, we have

Wπ
i (t) = Wπ̃

i (t), i = 1,2.
In case (ii) we have that Wπ

2 (t−) = 0, hence Wπ
2 (t) ≤ Wπ̃

2 (t). From Wπ
1 (t) +

Wπ
2 (t) = Wπ̃

1 (t) + Wπ̃
2 (t) and Wπ

1 (t) ≤ Wπ̃
1 (t) (follows from (1) and (9)), we

obtain Wπ
2 (t) ≥ Wπ̃

2 (t). Hence, Wπ
i (t) = Wπ̃

i (t), i = 1,2.

Queueing Syst (2010) 65: 43–92 87

In case (iii) we have

Mπ̃
c (u, t)(c1 + c2 − 1) = Wπ̃

1 (u) + Wπ̃
2 (u) − Wπ

2 (u), (52)

since the total amount of additional capacity that policy π̃ gets compared to pol-
icy π in the interval [u, t) (left-hand side in (52)), is equal to the difference in
the total workload at time u (right-hand side in (52)). Since Wπ

1 (u) = 0, from (1)
and (11) we find that c1W

π
2 (u) = (1 − c2)W

π
1 (u) + c1W

π
2 (u) ≤ (1 − c2)W

π̃
1 (u) +

c1W
π̃
2 (u). Rewriting, this gives Wπ̃

1 (u) ≤ c1
c1+c2−1 (Wπ̃

1 (u) + Wπ̃
2 (u) − Wπ

2 (u)) =
c1M

π̃
c (u, t). Note that Sπ̃

1 (t) − Sπ̃
1 (u) ≥ c1M

π̃
c (u, t) and A1(u, t−) = 0 (since

Wπ
1 (v) = 0 for all v ∈ [u, t)). Together this gives Wπ̃

1 (t−) = Wπ̃
1 (u)+A1(u, t−)−

(Sπ̃
1 (t) − Sπ̃

1 (u)) ≤ 0. Since we also know that Wπ
1 (t−) = 0, it follows that

Wπ
1 (t) = Wπ̃

1 (t), and hence Wπ
2 (t) = Wπ̃

2 (t).
• Now consider the case when there is an interval [w, t] such that Wπ

1 (v)+Wπ
2 (v) =

Wπ̃
1 (v) + Wπ̃

2 (v) for all v ∈ [w, t] and Wπ
1 (w−) + Wπ

2 (w−) < Wπ̃
1 (w−) +

Wπ̃
2 (w−). From the previous case, we find that Wπ

i (w) = Wπ̃
i (w), i = 1,2. To-

gether with the fact that in the interval [w, t] the total workload is equal under both
policies, and by construction of policy π , it follows that π̃ did not serve class 2
individually while π serves both classes in parallel. Hence, Wπ

i (v) = Wπ̃
i (v) for

all v ∈ [w, t], i = 1,2.

Part II: Assume (11) is the first equation that fails to hold, i.e., (1 − c2)S
π
1 (t) +

c1S
π
2 (t) = (1 − c2)S

π̃
1 (t) + c1S

π̃
2 (t), and by (1) also (1 − c2)W

π
1 (t) + c1W

π
2 (t) =

(1 − c2)W
π̃
1 (t) + c1W

π̃
2 (t), while (1 − c2)s

π
1 (t+) + c1s

π
2 (t+) < (1 − c2)s

π̃
1 (t+) +

c1s
π̃
2 (t+). So that (1 − c2)S

π
1 (t+) + c1S

π
2 (t+) < (1 − c2)S

π̃
1 (t+) + c1S

π̃
2 (t+). With

slight abuse of notation, let f1(t
+), f2(t

+), fc(t
+), f0(t

+) be the coefficients that
define the capacity vector in the capacity region S under policy π̃ at time t+, i.e.,
(sπ̃

1 (t+), sπ̃
2 (t+)) = f1(t

+) · (1,0)+f2(t
+) · (0,1)+fc(t

+) · (c1, c2)+f0(t
+) · (0,0).

Note that 1 = f1(t
+)+f2(t

+)+fc(t
+)+f0(t

+). We have the following possibilities:

• If Wπ
1 (t) > 0 and Wπ

2 (t) > 0, then by (50) and by definition of policy π we have
(sπ

1 (t+), sπ
2 (t+)) = f1(t

+) · (1,0) + (fc(t
+) + f2(t

+)) · (c1, c2) + f0(t
+) · (0,0),

hence (1 − c2)s
π
1 (t+) + c1s

π
2 (t+) = (1 − c2)(f1(t

+) + c1(fc(t
+) + f2(t

+))) +
c1c2(fc(t

+) + f2(t
+)) = (1 − c2)(f1(t

+) + c1fc(t
+)) + c1(f2(t

+) + c2fc(t
+)) =

(1 − c2)s
π̃
1 (t+) + c1s

π̃
2 (t+).

• If Wπ
1 (t) = 0 and Wπ

2 (t) > 0, then, by definition, policy π serves class 2 individ-
ually for a fraction of time 1 − f0(t

+) and otherwise idles. So (1 − c2)s
π
1 (t+) +

c1s
π
2 (t+) = c1(1 − f0(t

+)). Since c1 + c2 > 1, we have that c1(1 − f0(t
+)) ≥

(1−c2)f1(t
+)+c1(fc(t

+)+f2(t
+)) = (1−c2)(f1(t

+)+c1fc(t
+))+c1(f2(t

+)+
c2fc(t

+)) = (1 − c2)s
π̃
1 (t+) + c1s

π̃
2 (t+).

• If Wπ
1 (t) > 0 and Wπ

2 (t) = 0, then we have (1 − c2)W
π
1 (t) = (1 − c2)W

π̃
1 (t) +

c1W
π̃
2 (t) and Wπ

1 (t) ≤ Wπ̃
1 (t) (by (9)). Hence Wπ

1 (t) = Wπ̃
1 (t) and 0 = Wπ

2 (t) =
Wπ̃

2 (t). By (50) we obtain f2(t
+) = 0, so by definition of policy π , sπ

i (t+) =
sπ̃
i (t+), i = 1,2.

88 Queueing Syst (2010) 65: 43–92

• If Wπ
1 (t) + Wπ

2 (t) = 0, then 0 = (1 − c2)W
π̃
1 (t) + c1W

π̃
2 (t). By (50) we have

Wπ
i (t+) = Wπ̃

i (t+) = 0, and hence (1−c2)s
π
1 (t+)+c1s

π
2 (t+) = (1−c2)s

π̃
1 (t+)+

c1s
π̃
2 (t+) = 0.

For all the four possibilities we reached a contradiction with (1 − c2)s
π
1 (t+) +

c1s
π
2 (t+) < (1 − c2)s

π̃
1 (t+) + c1s

π̃
2 (t+) and this concludes the proof. �

Appendix C: Proof of Lemma 4.3

We construct policy π below. Note that uπ
2 (t) = 0 when nπ

1 (t) > 0.

• If nπ
1 (t) > 0 and nπ

2 (t) > 0, then uπ
c (t) = uπ̃

2 (t) + uπ̃
c (t), uπ

1 (t) = uπ̃
1 (t) and

uπ
2 (t) = 0.

• If nπ
1 (t) = 0 and nπ

2 (t) > 0, then uπ
c (t) = min(uπ̃

2 (t) + uπ̃
c (t),

ρ1
c1

), uπ
1 (t) =

min(uπ̃
1 (t), ρ1 − c1u

π
c (t)) and uπ

2 (t) = uπ̃
c (t) + uπ̃

1 (t) + uπ̃
2 (t) − uπ

c (t) − uπ
1 (t).

• If nπ
1 (t) > 0 and nπ

2 (t) = 0, then uπ
c (t) = min(uπ̃

2 (t)+uπ̃
c (t),

ρ2
c2

), uπ
1 (t) = uπ̃

c (t)+
uπ̃

1 (t) + uπ̃
2 (t) − uπ

c (t) and uπ
2 (t) = 0.

• If nπ
1 (t) = 0 and nπ

2 (t) = 0, then take uπ(t) such that ρi = uπ
i (t) + ciu

π
c (t), i =

1,2.

Once nπ
1 (t) + nπ

2 (t) = 0, policy π will keep the system empty from that moment on
(this is possible since the stability conditions are satisfied). Therefore, we will focus
on states with nπ

1 (t) + nπ
2 (t) > 0.

For policies π and π̃ , we will prove the following inequalities:

Uπ
1 (t) + c1U

π
c (t) ≥ Uπ̃

1 (t) + c1U
π̃
c (t) (53)

Uπ
1 (t) + Uπ

2 (t) + (c1 + c2)U
π
c (t) ≥ Uπ̃

1 (t) + Uπ̃
2 (t) + (c1 + c2)U

π̃
c (t) (54)

(1 − c2)U
π
1 (t) + c1

(
Uπ

2 (t) + Uπ
c (t)

) ≥ (1 − c2)U
π̃
1 (t) + c1

(
Uπ̃

2 (t) + Uπ̃
c (t)

)
. (55)

They are similar to the inequalities of the stochastic model (9)–(11) when setting
Si(t) = Ui(t) + ciUc(t). When multiplying (53) by μ1 − μ2 ≥ 0 and (54) by μ2 and
adding the two inequalities, we obtain μ1U

π
1 (t)+μ2U

π
2 (t)+ (μ1c1 +μ2c2)U

π
c (t) ≥

μ1U
π̃
1 (t) + μ2U

π̃
2 (t) + (μ1c1 + μ2c2)U

π̃
c (t). By (13) we get nπ

1 (t) + nπ
2 (t) ≤

nπ̃
1 (t) + nπ̃

2 (t) for all t ≥ 0, which was to be proved. The remainder of the appendix
is devoted to the proof of inequalities (53)–(55). Throughout the proof, we consider
the workload fluid processes wi(·) = ni(t)/μi , i = 1,2.

Note that Uj (t), j = 1,2, c, is continuous. In order to show (53), we therefore
consider the first time instant t such that (53) holds with equality and is violated
immediately after time t . So Uπ

1 (t) + c1U
π
c (t) = Uπ̃

1 (t) + c1U
π̃
c (t), and by (13) also

nπ
1 (t) = nπ̃

1 (t), while uπ
1 (t+)+c1u

π
c (t+) < uπ̃

1 (t+)+c1u
π̃
c (t+), so nπ

1 (t+) > nπ̃
1 (t+).

Since nπ
1 (t+) > 0, by construction of policy π we obtain uπ

1 (t) + c1u
π
c (t) ≥ uπ̃

1 (t) +
c1u

π̃
c (t), which gives contradiction. Hence (53) holds for all t ≥ 0.
Let time t be the first time instant that either (54) or (55) holds with equality and

is violated immediately after time t . The remainder of the proof consists of two parts,
depending on whether (54) or (55) is the first to be violated.

Queueing Syst (2010) 65: 43–92 89

Part I: Assume (54) is the first equation that fails to hold, i.e., Uπ
1 (t) +

Uπ
2 (t) + (c1 + c2)U

π
c (t) = Uπ̃

1 (t) + Uπ̃
2 (t) + (c1 + c2)U

π̃
c (t), and by (13) also

wπ
1 (t) + wπ

2 (t) = wπ̃
1 (t) + wπ̃

2 (t), while uπ
1 (t+) + uπ

2 (t+) + (c1 + c2)u
π
c (t+) <

uπ̃
1 (t+) + uπ̃

2 (t+) + (c1 + c2)u
π̃
c (t+). In what follows we use the following impli-

cation, which will be proved later on:

wπ
1 (t) + wπ

2 (t) = wπ̃
1 (t) + wπ̃

2 (t) implies wπ
i (t) = wπ̃

i (t), i = 1,2. (56)

We now distinguish between three cases: (i) If wπ
1 (t+) > 0 and wπ

2 (t+) > 0, then
by construction of policy π , uπ

c (t+) ≥ uπ̃
c (t+). (ii) If wπ

1 (t+) = 0, then 0 = wπ
1 (t)

(= wπ̃
1 (t)), since w1(·) is continuous. Policy π is able to keep class 1 empty at time

t+ while π̃ might not, so we have ρ1 = uπ
1 (t+)+ c1u

π
c (t+) ≥ uπ̃

1 (t+)+ c1u
π̃
c (t+). In

particular, uπ̃
c (t+) ≤ ρ1/c1, and by construction of policy π , this implies uπ

c (t+) ≥
uπ̃

c (t+). (iii) If wπ
2 (t+) = 0, then 0 = wπ

2 (t)(= wπ̃
2 (t)), since w2(·) is continuous. In

a similar fashion as in the previous item, we find that uπ
c (t+) ≥ uπ̃

c (t+). Hence, in all
cases we have uπ

c (t+) ≥ uπ̃
c (t+). Together with c1 + c2 ≥ 1 and uπ

1 (t+) + uπ
2 (t+) +

uπ
c (t+) = uπ̃

1 (t+) + uπ̃
2 (t+) + uπ̃

c (t+), we can conclude that uπ
1 (t+) + uπ

2 (t+) +
(c1 +c2)u

π
c (t+) ≥ uπ̃

1 (t+)+uπ̃
2 (t+)+ (c1 +c2)u

π̃
c (t+), and we reach a contradiction.

It now only remains to prove that the implication in (56) is satisfied. We distinguish
between the following two cases.

• Assume there is an interval [u, t) in which policy π̃ has more work in the system
compared to policy π , i.e., wπ

1 (v) + wπ
2 (v) < wπ̃

1 (v) + wπ̃
2 (v), for all v ∈ [u, t). If

the interval is such that wπ
1 (v) > 0 and wπ

2 (v) > 0, for all v ∈ [u, t), then policy
π̃ can never catch up with π (by construction of policy π). Hence, we can choose
the interval [u, t) such that:
(i) For all v ∈ [u, t), wπ

2 (v) = 0 and wπ
1 (v) > 0.

(ii) For all v ∈ [u, t), wπ
1 (v) = 0 and wπ

2 (v) > 0.
Note that the two cases are mutually excluding. We show that (56) holds in both
cases.

By continuity of wπ
2 (·), in case (i) we have as well wπ

2 (t) = 0. Hence, wπ
1 (t) =

wπ̃
1 (t) + wπ̃

2 (t). By (13) and (53) we have wπ
1 (t) ≤ wπ̃

1 (t). Together this gives
wπ̃

2 (t) = 0 (= wπ
2 (t)) and wπ̃

1 (t) = wπ
1 (t). Hence, in case (i) relation (56) is

proved.
Let Mπ̂

j (u, t) = ∫ t

u
uπ̂

j (s)ds be the cumulative amount of time that activity j

occurs under policy π̂ in the time interval [u, t). The total amount of additional
capacity that policy π̃ gets compared with policy π in the interval [u, t) is

(c1 + c2)M
π̃
c (u, t) + Mπ̃

1 (u, t) + Mπ̃
2 (u, t)

− (c1 + c2)M
π
c (u, t) − Mπ

1 (u, t) − Mπ
2 (u, t)

= (c1 + c2 − 1)
(
Mπ̃

c (u, t) − Mπ
c (u, t)

)
,

where we used that Mπ̃
c (u, t) + Mπ̃

1 (u, t) + Mπ̃
2 (u, t) = Mπ

c (u, t) + Mπ
1 (u, t) +

Mπ
2 (u, t).

90 Queueing Syst (2010) 65: 43–92

This is equal to the difference in the total workload at time u, so (c1 +
c2 − 1)(Mπ̃

c (u, t) − Mπ
c (u, t)) = wπ̃

1 (u) + wπ̃
2 (u) − wπ

1 (u) − wπ
2 (u). In case (ii),

wπ
1 (u) = 0, hence we obtain from (13) and (55) that c1w

π
2 (u) = (1 − c2)w

π
1 (u) +

c1w
π
2 (u) ≤ (1 − c2)w

π̃
1 (u) + c1w

π̃
2 (u). Rewriting, this gives

wπ̃
1 (u) ≤ c1

c1 + c2 − 1

(
wπ̃

1 (u) + wπ̃
2 (u) − wπ

2 (u)
) = c1

(
Mπ̃

c (u, t) − Mπ
c (u, t)

)
.

(57)
Note that ρ1(t − u) = c1M

π
c (u, t) + Mπ

1 (u, t) (since in case (ii) class 1 is kept
empty under policy π), and Mπ̃

1 (u, t) ≥ Mπ
1 (u, t) (by definition of policy π). To-

gether with (57) this gives

wπ̃
1 (t) = wπ̃

1 (u) + ρ1(t − u) − c1M
π̃
c (u, t) − Mπ̃

1 (u, t) ≤ 0.

By continuity of wπ
1 (·), in case (ii) we have as well wπ

1 (t) = 0. Hence it follows
immediately from wπ

1 (t) + wπ
2 (t) = wπ̃

1 (t) + wπ̃
2 (t) that wπ

i (t) = wπ̃
i (t), i = 1,2.

• Now consider the case when there is an interval [v, t] such that wπ
1 (u) + wπ

2 (u) =
wπ̃

1 (u) + wπ̃
2 (u) for all u ∈ [v, t] and wπ

1 (v−) + wπ
2 (v−) < wπ̃

1 (v−) + wπ̃
2 (v−).

From the previous item, we find that wπ
i (v) = wπ̃

i (v), i = 1,2. Together with the
fact that in the interval [v, t] the total workload is equal under both policies, and
by construction of policy π , it follows that π does exactly the same as policy π̃ .
Hence, wπ

i (u) = wπ̃
i (u) for all u ∈ [v, t], i = 1,2.

Part II: Assume (55) is the first equation that fails to hold, i.e., (1 − c2)U
π
1 (t) +

c1(U
π
2 (t) + Uπ

c (t)) = (1 − c2)U
π̃
1 (t) + c1(U

π̃
2 (t) + Uπ̃

c (t)), and by (13) also
(1 − c2)w

π
1 (t) + c1w

π
2 (t) = (1 − c2)w

π̃
1 (t) + c1w

π̃
2 (t), while (1 − c2)u

π
1 (t+) +

c1(u
π
2 (t+) + uπ

c (t+)) < (1 − c2)u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)). We have the fol-
lowing possibilities:

• If wπ
1 (t+) > 0 and wπ

2 (t+) > 0, then by definition of policy π we have (1 −
c2)u

π
1 (t+) + c1(u

π
2 (t+) + uπ

c (t+)) = (1 − c2)u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).
• If wπ

1 (t+) = 0 and wπ
2 (t+) > 0, then we distinguish between the following three

cases:
(i) If ρ1 ≤ c1(u

π̃
2 (t+)+uπ̃

c (t+)), then uπ
1 (t+) = 0, uπ

2 (t+) = uπ̃
1 (t+)+uπ̃

2 (t+)+
uπ̃

c (t+) − ρ1
c1

and uπ
c (t+) = ρ1

c1
. Since c1 + c2 > 1, we have

(1 − c2)u
π
1

(
t+

) + c1
(
uπ

2

(
t+

) + uπ
c

(
t+

))

= c1
(
uπ̃

1

(
t+

) + uπ̃
2

(
t+

) + uπ̃
c

(
t+

))

≥ (1 − c2)u
π̃
1

(
t+

) + c1
(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

))
.

(ii) If c1(u
π̃
2 (t+)+uπ̃

c (t+)) < ρ1 ≤ uπ̃
1 (t+)+c1(u

π̃
2 (t+)+uπ̃

c (t+)), then uπ
1 (t+) =

ρ1 −c1(u
π̃
2 (t+)+uπ̃

c (t+)), uπ
2 (t+) = uπ̃

1 (t+)−ρ1 +c1(u
π̃
2 (t+)+uπ̃

c (t+)) and
uπ

c (t+) = uπ̃
2 (t+) + uπ̃

c (t+). Together with c1 + c2 > 1, we obtain

(1 − c2)u
π
1

(
t+

) + c1
(
uπ

2

(
t+

) + uπ
c

(
t+

))

= (1 − c2)
(
ρ1 − c1

(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

)))

Queueing Syst (2010) 65: 43–92 91

+ c1
(
uπ̃

1

(
t+

) + uπ̃
2

(
t+

) + uπ̃
c

(
t+

) − ρ1 + c1
(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

)))

= (1 − c1 − c2)ρ1 + c1(c1 + c2)
(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

)) + c1u
π̃
1

(
t+

)

≥ (1 − c1 − c2)
(
uπ̃

1

(
t+

) + c1
(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

)))

+ c1(c1 + c2)
(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

)) + c1u
π̃
1

(
t+

)

= (1 − c2)u
π̃
1

(
t+

) + c1
(
uπ̃

2

(
t+

) + uπ̃
c

(
t+

))
.

(iii) If uπ̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)) < ρ1, then uπ
1 (t+) = uπ̃

1 (t+), uπ
2 (t+) = 0

and uπ
c (t+) = uπ̃

2 (t+) + uπ̃
c (t+). So we have (1 − c2)u

π
1 (t+) + c1(u

π
2 (t+) +

uπ
c (t+)) = (1 − c2)u

π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).

• If wπ
1 (t+) > 0 and wπ

2 (t+) = 0, then by continuity of wπ
2 (·) we have wπ

2 (t) = 0.
Hence, (1 − c2)w

π
1 (t) = (1 − c2)w

π̃
1 (t) + c1w

π̃
2 (t). Since also wπ

1 (t) ≤ wπ̃
1 (t),

this gives wπ
1 (t) = wπ̃

1 (t) and 0 = wπ
2 (t) = wπ̃

2 (t). Note that when wπ̃
2 (t+) = 0,

then uπ̃
2 (t+) + c2u

π̃
c (t+) = ρ2. If instead wπ̃

2 (t+) > 0, then uπ̃
2 (t+) + c2u

π̃
c (t+) <

uπ
2 (t+) + c2u

π
c (t+) = ρ2 (the inequality follows from 0 = wπ

2 (t) = wπ̃
2 (t), and

the fact that policy π is able to keep class 2 empty at time t+, while policy π̃ is
not). Hence, we have uπ̃

2 (t+) + c2u
π̃
c (t+) ≤ ρ2 (so also uπ̃

2 (t+) + uπ̃
c (t+) ≤ ρ2

c2
).

By construction of policy π , this implies uπ
c (t+) = uπ̃

2 (t+) + uπ̃
c (t+), uπ

1 (t+) =
uπ̃

1 (t+) and uπ
2 (t+) = 0. Hence, (1 − c2)u

π
1 (t+) + c1(u

π
2 (t+) + uπ

c (t+)) =
(1 − c2)u

π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)).

For all the three possibilities we reach a contradiction with (1 − c2)u
π
1 (t+) +

c1(u
π
2 (t+) + uπ

c (t+)) < (1 − c2)u
π̃
1 (t+) + c1(u

π̃
2 (t+) + uπ̃

c (t+)) and this concludes
the proof. �

References

1. Ata, B., Kumar, S.: Heavy traffic analysis of open processing networks with complete resource pool-
ing: asymptotic optimality of discrete review policies. Ann. Appl. Probab. 15, 331–391 (2005)

2. Bäuerle, N.: Asymptotic optimality of tracking policies in stochastic networks. Ann. Appl. Probab.
10, 1065–1083 (2000)

3. Bayati, M., Sharma, M., Squillante, M.S.: Optimal scheduling in a multiserver stochastic network.
ACM SIGMETRICS Perform. Eval. Rev. 34, 45–47 (2006)

4. Bell, S.L., Williams, R.J.: Dynamic scheduling of a system with two parallel servers in heavy traffic
with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl. Probab. 11, 608–649
(2001)

5. Bell, S.L., Williams, R.J.: Dynamic scheduling of a parallel server system in heavy traffic with com-
plete resource pooling: asymptotic optimality of a threshold policy. Electron. J. Probab. 10, 1044–1115
(2005)

6. Bhardwaj, S., Williams, R.J.: Diffusion approximation for a heavily loaded multi-user wireless com-
munication system with cooperation. Queueing Syst. 62, 345–382 (2009)

7. Bhardwaj, S., Williams, R.J., Acampora, A.S.: On the performance of a two user MIMO downlink
system in heavy traffic. IEEE Trans. Inf. Theory 53, 1851–1859 (2007)

8. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)
9. Bonald, T., Proutière, A.: Flow-level stability of utility-based allocations for non-convex rate regions.

In: Proc. CISS 2006 Conference on Information Sciences and Systems (Princeton University) (2006)

92 Queueing Syst (2010) 65: 43–92

10. Borst, S.C., Leskelä, L., Jonckheere, M.: Stability of parallel queueing systems with coupled service
rates. Discrete Event Dyn. Syst. 18, 447–472 (2008)

11. Cesari, L.: Optimization—Theory and Applications. Springer, New York (1983)
12. Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North-Holland,

Amsterdam (1983)
13. Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid

limit models. Ann. Appl. Probab. 5, 49–77 (1995)
14. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York

(1986)
15. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann-Hilbert problem.

Z. Wahr. Verw. Geb. 47, 325–351 (1979)
16. Gajrat, A., Hordijk, A.: Fluid approximation of a controlled multiclass tandem network. Queueing

Syst. 35, 349–380 (2000)
17. Gajrat, A., Hordijk, A., Ridder, A.: Large-deviations analysis of the fluid approximation for a control-

lable tandem queue. Ann. Appl. Probab. 13, 1423–1448 (2003)
18. Harrison, J.M.: Heavy traffic analysis of a system with parallel servers: asymptotic optimality of

discrete-review policies. Ann. Appl. Probab. 8, 822–848 (1998)
19. Harrison, J.M., López, M.J.: Heavy traffic resource pooling in parallel-server systems. Queueing Syst.

33, 339–368 (1999)
20. Liu, X., Chong, E., Shroff, N.: A framework for opportunistic scheduling in wireless networks. Com-

put. Netw. 41, 451–474 (2003)
21. Liu, J., Proutière, A., Yi, Y., Chiang, M., Poor, H.V.: Flow-level stability of data networks with non-

convex and time-varying rate regions. ACM SIGMETRICS Perform. Eval. Rev. 35, 239–250 (2007)
22. Maglaras, C.: Discrete-review policies for scheduling stochastic networks: trajectory tracking and

fluid-scale asymptotic optimality. Ann. Appl. Probab. 10, 897–929 (2000)
23. Mandelbaum, A., Stolyar, A.L.: Scheduling flexible servers with convex delay costs: Heavy-traffic

optimality of the generalized cμ-rule. Oper. Res. 52, 836–855 (2004)
24. Meyn, S.P.: Stability and optimization of queueing networks and their fluid models. In: Mathematics

of Stochastic Manufacturing Systems. Lectures in Applied Mathematics, vol. 33, pp. 175–199. AMS,
Providence (1997)

25. Meyn, S.P.: Control Techniques for Complex Networks. Cambridge University Press, New York
(2008)

26. Osogami, T., Harchol-Balter, M., Scheller-Wolf, A.: Analysis of cycle stealing with switching times
and thresholds. Perform. Eval. 61, 347–369 (2005)

27. Osogami, T., Harchol-Balter, M., Scheller-Wolf, A., Zhang, L.: Exploring threshold-based policies for
load sharing. In: Forty-second Annual Allerton Conference on Communication, Control, and Com-
puting, pp. 1012–1021 (2004)

28. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley,
New York (1994)

29. Righter, R., Shanthikumar, J.G.: Scheduling multiclass single-server queueing systems to stochasti-
cally maximize the number of successful departures. Probab. Eng. Inf. Sci. 3, 323–333 (1989)

30. Seierstad, A., Sydsæter, K.: Optimal Control Theory with Economic Applications. North-Holland,
Amsterdam (1987)

31. Stolyar, A.L.: MaxWeight scheduling in a generalized switch: state space collapse and workload min-
imization in heavy traffic. Ann. Appl. Probab. 14, 1–53 (2004)

32. Squillante, M.S., Xia, C.H., Yao, D.D., Zhang, L.: Threshold-based priority policies for parallel-
server systems with affinity scheduling. In: Proc. of the IEEE American Control Conference, vol. 4,
pp. 2992–2999 (2001)

33. Tezcan, T.: Stability analysis of N-model systems under a static priority rule using augmented fluid
models. Under submission (2010)

34. Verloop, I.M., Núñez-Queija, R.: Assessing the efficiency of resource allocations in bandwidth-
sharing networks. Perform. Eval. 66, 59–77 (2009)

35. Verloop, I.M., Borst, S.C., Núñez-Queija, R.: Delay optimization in bandwidth-sharing networks. In:
Proc. CISS 2006 Conference on Information Sciences and Systems (Princeton University) (2006)

	Asymptotically optimal parallel resource assignment with interference
	Abstract
	Introduction
	Model description and preliminaries
	Stability

	Optimality results
	Stochastic optimality when µ1<=µ1c1+µ2c2
	General characterization of the average-optimal policy

	Fluid analysis and asymptotic fluid optimality
	Optimal policies for the fluid control model
	Case rho1< c1
	Case rho1>=c1

	Asymptotic fluid optimality
	Case rho1<c1
	Case rho1>c1

	Exponential switching curves

	Heavy-traffic regime
	Threshold policies
	Max-Weight policies

	Numerical results
	Linear switching-curve policies for rho1<c1
	Exponential switching curves and threshold-based policies for rho1>c1
	Comparison with Max-Weight policies for moderate loads

	Conclusion and future work
	Acknowledgements
	Appendix A: Proof of Lemma 3.2
	Appendix B: Proof of Lemma 3.4
	Appendix C: Proof of Lemma 4.3
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

