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We study theoretically and experimentally the solvent-mediated critical Casimir force acting on colloidal
particles immersed in a binary liquid mixture of water and 2,6-lutidine and close to substrates which are
chemically patterned with periodically alternating stripes of antagonistic adsorption preferences. These pat-
terns are experimentally realized via microcontact printing. Upon approaching the critical demixing point
of the solvent, normal and lateral critical Casimir forces generate laterally confining effective potentials for
the colloids. We analyze in detail the rich behavior of the spherical colloids close to such substrates. For
all patterned substrates we investigated, our measurements of these effective potentials agree with the corre-
sponding theoretical predictions. Since both the directions and the strengths of the critical Casimir forces can
be tuned by minute temperature changes, this provides a new mechanism for controlling colloids as model
systems, opening encouraging perspectives for applications.

Keywords: Solvation forces, critical Casimir effect, colloidal suspension, chemically patterned substrates

1. Introduction

The structures and the dynamics of colloidal suspensions are to a large extent determined

by the effective interactions among the mesoscopic colloids which are mediated by the

solvent surrounding them. A rather intriguing example of such solvation forces is the

critical Casimir effect [1] which occurs close to a critical point of the solvent. As a soft-

matter analogue of the quantum-electrodynamic Casimir effect [2, 3], the confinement of

the concentration fluctuations within a near-critical binary liquid mixture by the surfaces

of the colloidal particles results in an attractive or repulsive effective interaction [4–6].

Upon approaching the bulk critical demixing point of the mixture at temperature T =
Tc the critical fluctuations become long-ranged so that the resulting effective interaction

among colloids can extend well beyond the molecular scale of the solvent; it may act even

at distances comparable to the size of the colloids. The strength and the spatial range of the

critical Casimir force depend sensitively on temperature because the correlation length ξ ,

which characterizes the extension of the spatial correlations of the critical fluctuations and
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therefore sets the interaction range, diverges as ξ ≃ ξ0|(T −Tc)/Tc|−ν upon approaching

the critical point, T → Tc, where ν ≃ 0.63 is a standard bulk critical exponent1 and ξ0

is a solvent-specific microscopic length. The critical Casimir effect is universal in the

sense that all quantities related to it, such as the various components of the force and the

associated potentials, can be suitably expressed in terms of scaling functions which are

identical for all those fluids undergoing the same kind of transition, irrespective of their

molecular details and material properties, which actually enter only via two independent

non-universal amplitudes, such as ξ0 and the value of Tc.

Besides some indirect quantitative experimental determinations of the critical Casimir

force acting within wetting films [7–9], its direct effect on a spherical colloid close to a

substrate and immersed in a critical water-lutidine mixture was measured only recently

[10]. These experiments clearly demonstrated that, upon approaching the critical point,

the critical Casimir force can modify the effective interaction between the colloid and

the substrate by several multiples of kBT . Moreover, depending on the preference of the

confining surfaces for lutidine or water — denoted as as (+) and (−) effective bound-

ary conditions (BC) for the order parameter, respectively — the critical Casimir force

between the colloid and the substrate is attractive [for (±,±) boundary conditions] or re-

pulsive [for (+,−) boundary conditions] [10]. In addition, these critical Casimir forces

depend strongly on the geometrical shape of the confining surfaces so that topographically

structured surfaces experience also a component of the force which is parallel to the walls

[11], whereas nonspherical particles are subject to a torque [12].

One can combine these features of the critical Casimir effect by using surfaces which

are chemically patterned on the micron-scale in order to obtain also lateral critical

Casimir forces [13]. The critical Casimir interaction between a colloid and a substrate

which is chemically patterned with stripes of alternating adsorption preferences results

in a laterally confining potential for the colloid, which can be controlled and reversibly

switched on and off by varying the temperature of the near-critical solvent [14–16]. Re-

cently, such a substrate has been realized by removing via a focused ion beam a regular

pattern of equally spaced stripes from the hydrophobic HMDS-coating of a glass sur-

face [14]. The effective interaction between this chemically patterned substrate and a col-

loidal particle has then been measured by monitoring via digital video microscopy the

behaviour of a dilute solution of colloidal particles as the demixing critical point of the

binary mixture of water and lutidine is approached [14]. In comparing these data with

the corresponding theoretical predictions [15] it turned out that the critical Casimir poten-

tial resulting from a chemical pattern depends rather strongly on its geometrical details

and it actually provides a sensitive tool to probe these microscopic features, which might

not be easily accessible otherwise [15]. Indeed agreement between the theoretical predic-

tions of Ref. [15] and the experimental data of Ref. [14] for the spatially varying effective

potential was found only by assuming that the chemical steps between two subsequent

stripes within the pattern were not microscopically sharp due to fluctuations inherent to

the preparation process of the structures [15]. However, in spite of this improvement in

the comparison between the shapes of the theoretical and experimental potentials, the

analysis of the temperature dependence of the corresponding potential depths renders an

amplitude ξ0 of the correlation length ξ (treated as a fitting parameter) which is about

twice as large [15] as the one known from independent previous measurements. This per-

sisting discrepancy, together with the necessity to test independently the aforementioned

assumption used in Ref. [15], calls for a more detailed experimental study of the critical

Casimir force acting in the presence of patterned substrates.

Colloidal suspensions are not only relevant as model systems in soft-matter physics

1Here we quote the value of ν belonging to the Ising universality class, which is relevant for the interpretation of experi-
mental data concerning classical binary liquid mixtures.
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but they may find also applications in integrated micro- and nano-devices. Since critical

Casimir forces provide a tool to exert active control over the strength and the direction

of interactions between colloids in such devices, a thorough quantitative understanding of

the underlying physics is essential. Recently, it was theoretically predicted that for suitable

geometrical parameters colloids can even levitate in a stable position above chemically

patterned substrates [16]. Such a “critical Casimir levitation” may even help in overcom-

ing the problem of stiction which hampers the functioning of currently available micro-

and nano-electromechanical devices. Therefore, in order to benefit from this wide range of

possibilities, a theoretical understanding of the phenomenon and the experimental demon-

stration of its applicability are essential.

Here, we report on experimental studies of the critical Casimir interaction between a

colloid and substrates which are chemically structured by microcontact printing of alkane-

thiols. We shall see below that, in the present context the substrates prepared by this tech-

nique turn out to exhibit higher chemical and geometrical resolution than those prepared

via focused ion beam, which was used in previous experiments [14]. A dilute suspension

of hydrophilic spherical colloids of radius R which impose (−) boundary conditions to

a near-critical water-lutidine mixture is exposed to patterned substrates consisting of al-

ternating and periodically repeating stripes of width L± with boundary conditions (±) so

that the periodicity is P = L++ L− along the x-direction, whereas the pattern is trans-

lationally invariant along the orthogonal y-direction. In order to extend previous inves-

tigations [14, 15] to a wider range of chemical patterns, we consider here sequences of

stripes with various periodicities P and stripe widths L−. In particular this allows us to

investigate the case in which the effects of neighboring chemical steps interfere, which

strongly affects the resulting forces acting on the colloid. As in Ref. [14] we measure

the laterally varying equilibrium spatial distribution of the colloids by digital video mi-

croscopy and define an effective potential on the basis of the equilibrium number density

of the colloids projected along the vertical z direction (orthogonal to x and y). We analyze

theoretically this potential and the ensuing surface-to-surface distance z of the colloid

from the substrate and compare our findings with the experimental data. Our theoretical

analysis provides accurate information also about the vertical probability distribution of

the positions of the colloidal particles which, however, cannot be resolved by the kind of

video microscopy used in the current experiment. For all stripe widths and temperatures

studied we find quantitative agreement between the measurements and the theoretical pre-

dictions. Both the shapes and the depths of the measured potentials agree very well with

the theoretical analysis. Moreover, the uncertainty of the actual position of the subsequent

chemical steps is significantly reduced by using the present microcontact printing in order

to structure the substrate. The amplitude ξ0 of the bulk correlation length, which we esti-

mate by comparing the depth of the measured potentials with the theoretical predictions,

turns out to be in quantitative agreement with previous, independent estimates. Thus, our

detailed comparison of experimental data and theory demonstrates that indeed the full

benefits of the critical Casimir force can be reaped reliably and may be utilized in poten-

tial applications, opening a new route for using colloids as model systems or in micro-

and nano-devices.

2. Theory

2.1. Critical Casimir potential

According to renormalization group theory, in the vicinity of the critical point at T = Tc

the normal and lateral critical Casimir forces as well as the corresponding potential can

be described by universal scaling functions (see, e.g., Refs. [4, 5, 17]). These scaling

functions are universal in the sense that they do not depend on molecular details but only
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on the gross features of the system and of the confining surfaces. These gross features,

among which there are the spatial dimension d, the symmetries of the system, and the

geometry of the boundaries, determine the so-called bulk [4, 5] and surface [4, 18–20]

universality classes of the associated critical point. The relevant thermodynamic proper-

ties which emerge upon approaching the point of the continuous phase transition can be

understood and analyzed in terms of the fluctuations of the so-called order parameter φ
of the phase transition. For the consolute point of phase segregation of a binary liquid

mixture φ is given by the difference between the local and the mean concentration of one

of the two components of the mixture; thus, it is a scalar quantity and the bulk univer-

sality class is of the so-called Ising type (see, e.g., Refs. [10, 21]). For classical binary

liquid mixtures, the surfaces generically exhibit preferential adsorption for one of the two

species of the mixture, which results in a local enhancement of the order parameter φ
close to the surface. This enhancement is effectively described by symmetry-breaking

surface fields [4, 18–20] and it is usually denoted by (+) and (−) boundary conditions

(BC) corresponding to having a preference for φ > 0 and φ < 0, respectively, at the sur-

face. For the water-lutidine mixture we are interested in, one conventionally indicates the

preferential adsorption for lutidine and water as (+) and (−) BC, respectively (see also

Refs. [10, 21]). In the experimental setup described below, the lower critical demixing

point of the water-lutidine mixture is always approached from the homogeneous (mixed)

phase at temperatures T < Tc upon increasing T at fixed critical composition of the mix-

ture. From the experimental point of view it is rather difficult to quantify the strength of

the adsorption preference exhibited by the different portions of the surfaces. Therefore

the comparison with theoretical predictions requires assumptions, which can be verified a

posteriori. In the present case we have qualitative experimental evidence that the chemical

treatment of the surfaces results in rather pronounced adsorption preferences and therefore

we shall assume that the surfaces are characterized by the so-called strong critical adsorp-

tion fixed point [18, 19]. We consider here neither the opposite case of weak adsorption

at the surfaces (see, e.g., Refs. [22, 23]) nor the effects due to off-critical compositions of

the mixture, which might lead to a bridging transition analogous to capillary condensation

(see, e.g., Refs. [21, 24–29]).

For the film geometry — in which the binary liquid mixture is confined between two

parallel, planar, and macroscopically extended walls at a distance L — the normal critical

Casimir force per unit area is given by [17]

f(+,±)(L,T ) = kBT
1

Ld
k(+,±)(L/ξ ), (1)

where the index (+,±) denotes the combination of BC (+) and (−) at the two walls. (In

the absence of a symmetry-breaking bulk field within the film, which would correspond to

an off-critical concentration of the mixture, one has f(−,−)= f(+,+).) The universal scaling

functions k(+,±) depend only on the scaled variable L/ξ , i.e., on the film thickness L in

units of the bulk correlation length ξ . The functions k(+,±) have been calculated exactly

in d = 2 [30], for d < 4 using perturbative field-theoretical methods [31] or effective

theories [32], and in d = 3 numerically via Monte Carlo simulations [33–35]. At present,

a quantitatively reliable theoretical determination of both k(+,+) and k(+,−) in d = 3 is

provided only by Monte Carlo simulations. For a chemically structured wall opposing

another planar wall forming a film geometry, the critical Casimir force has been obtained

within mean-field theory (MFT) [13] and from Monte Carlo simulations [36, 37].

For a spherical colloid with (−) BC opposite to a chemically patterned substrate with

alternating (+) and (−) BC the critical Casimir potential has been calculated both nu-

merically within full mean-field theory (corresponding to d = 4) and by resorting to the

so-called Derjaguin approximation exploiting the full knowledge of k(+,±) in the film ge-

ometry for d = 3 [16]. Accordingly, the critical Casimir force and the critical Casimir
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potential for a colloid close to a chemically patterned wall can be expressed in terms of

universal scaling functions which take the geometry into account and which depend on

the following scaled quantities:

• Θ = z/ξ , where z is the surface-to-surface distance between the colloid and the sub-

strate,

• ∆ = z/R, where R is the radius of the spherical colloid,

• Ξ = x/
√

Rz, where x is the lateral coordinate of the center of the colloid such that x = 0

corresponds to the colloid being located opposite to the center of a stripe with (−) BC,

• Π = P/
√

Rz, where P is the periodicity of the stripe pattern along the x-direction,

• λ = L−/P, where L− is the width of the stripes with (−) BC.

In particular in d = 3 the critical Casimir potential ΦC can be written as [16]

ΦC(L−,P,x,z,R,T ) = kBT
R

z
ϑ (λ ,Π,Ξ,Θ,∆), (2)

where ϑ is a universal scaling function. The realization of the present geometrical setup

of a sphere facing a plane still represents a challenge for lattice based Monte Carlo simu-

lations. Accordingly, up to now it is not possible to obtain accurate numerical data for this

three-dimensional geometry and therefore one has to rely on the Derjaguin approxima-

tion (DA), based on the assumption of additivity, in order to calculate approximately the

critical Casimir potential (see Ref. [16]). Within the Derjaguin approximation, the scaling

function ϑ [Eq. (2)] can be expressed in terms of the known scaling functions k(±,−) for

the film geometry [16]:

ϑ (λ ,Π,Ξ,Θ,∆ → 0) =
ϑ(+,−)(Θ)+ϑ(−,−)(Θ)

2
+

ϑ(+,−)(Θ)−ϑ(−,−)(Θ)

2
ω(λ ,Π,Ξ,Θ),

(3)

where

ϑ(±,−)(Θ) = 2π
∫ ∞

1
dβ (β −1)β−3k(±,−)(βΘ) (4)

are the scaling functions of the critical Casimir potential of a colloid in front of a homo-

geneous wall as calculated within the Derjaguin approximation [10], and

ω(λ ,Π,Ξ,Θ) = 1+
∞

∑
n=−∞

{

ωs(Ξ+Π(n+ λ
2
),Θ)−ωs(Ξ+Π(n− λ

2
),Θ)

}

(5)

with ωs given by

ωs(Ξ ≷ 0,Θ) =∓1±
Ξ4

∫ ∞
1 ds

sarccos(s−1/2)−
√

s−1

(1+Ξ2s/2)d ∆k
(

Θ[1+Ξ2s/2]
)

ϑ(+,−)(Θ)−ϑ(−,−)(Θ)
, (6)

where ∆k(Θ) = k(+,−)(Θ)− k(−,−)(Θ). For Θ = 0 and Θ ≫ 1 there are analytic expres-

sions for ωs (see Eqs. (6) and (7) in Ref. [15], respectively). The accuracy of the Derjaguin

approximation has been checked numerically within mean-field theory and it has turned

out that this approximation describes quantitatively the actual behavior of those numer-

ical data which correspond to Θ & 4 for ∆ . 1 and Π & 0.5, as well as to 0 ≤ Θ . 4

with ∆ . 0.3 and Π & 2 [16]. In the experiments discussed further below the correspond-

ing values of Θ, ∆, and Π vary within these ranges so that, assuming that the previous

quantitative conclusions extend to d = 3, we expect the Derjaguin approximation to be

quantitatively reliable.
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2.2. Background forces

In addition to the critical Casimir force due to the critical fluctuations of the solvent, the

colloidal particles of the suspension are subjected to additional effective forces which are

characterized by a smooth and rather mild dependence on temperature. Typical back-

ground forces acting within the colloidal suspensions of present interest are due to

(screened) electrostatic and dispersion interactions and to the gravitational field. In a first

approximation, which neglects possible mutual influences of these forces, their total po-

tential is given by the sum of the corresponding contributions: (i) the electrostatic potential

Φel, (ii) the gravitational potential Φg, (iii) the van der Waals interaction ΦvdW, and (iv)

the effective critical Casimir potential ΦC.

Electrostatics — This interaction originates from the fact that, due to the formation

of charge double-layers, the surface of the colloids and of the substrate acquire a sur-

face charge once immersed in the liquid solvent. As a result, the polystyrene colloids of

radius R = 1.2µm and (−) BC immersed in water-lutidine mixtures experience an elec-

trostatic repulsion from the substrate. The screened electrostatic potential of the colloid

at a surface-to-surface distance z from a homogeneous substrate with (±) BC is well ap-

proximated by

Φel,±(z)/(kBT ) = exp{−κ(z− z±0 )}, (7)

where κ−1 is the screening length and z±0 describes the strength of the electrostatic repul-

sion from the substrate with (±) BC. Although the values of these parameters are deter-

mined by the surface charge of the colloid, the dielectric constant of the mixture etc. [38],

here they will be treated as fitting parameters of the actual experimental data for Φel,±. In

experimental conditions similar to the present ones as far as the mixture and the colloids

are concerned, one finds κ−1 ≃ 12nm [10, 21, 23] and z±0 ≃ 0.1−0.2µm [10, 15, 21, 23]

as typical values at T ≃ Tc ≃ 307K. In view of a possible difference between z+0 and z−0 ,

the resulting electrostatic potential of a colloid close to a patterned substrate such as the

one described above depends on the lateral position x of the colloid. Such a dependence

can be accounted for theoretically within the Derjaguin approximation (by repeating the

calculations described in Appendices A.2, B, and C in Ref. [16] for ΦC), which is ex-

pected to be particularly accurate due to the exponential decay of Φel,± in Eq. (7) as a

function of the distance z from the substrate. For this electrostatic potential Φel(x,z) one

therefore finds (for a colloid facing the center of a (−) stripe at x = 0)

Φel(x,z) =
Φel,+(z)+Φel,−(z)

2
+

Φel,+(z)−Φel,−(z)
2

Ω(x), (8)

where

Ω(x) = 1+
∞

∑
n=−∞

{θ ([x+nP+L−/2]/Λ)−θ ([x+nP−L−/2]/Λ)} , (9)

with θ (u) = −erf(u) and Λ =
√

2Rκ−1 ≃ 0.17µm. Ω and Φel depend on the geometric

parameters L− and P describing the pattern.

Dispersion forces — For the particular choice of materials and conditions used in the

present experiments, van der Waals forces turn out to be negligible compared with the

other contributions [10, 15, 21, 39]. In addition, the temperature dependence of the dielec-

tric permittivity of the water-lutidine mixture is negligible (see footnote 4 in Ref. [15]) and

therefore no significant changes are expected to occur in ΦvdW and Φel within the range

of temperatures explored experimentally.

Gravity — Due to buoyancy the colloid immersed in the solvent above the patterned
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substrate experiences a gravitational potential given by

Φg(z) = (ρPS−ρWL)g
4π

3
R3 z ≡ Gz, (10)

where ρPS ≃ 1.055g/cm3 and ρWL ≃ 0.988g/cm3 [40] are the mass densities of the

polystyrene colloid and of the water-lutidine mixtures at the critical composition and

near Tc, respectively, and g ≃ 9.81m/s2 is the gravitational acceleration. Accordingly, at

T ≃ 307K one has G ≃ 1.12kBT/µm and therefore, compared to the other contributions,

it turns out that the gravitational potential depends rather mildly on the distance z because

it varies only over a few kBT on the relevant length scale of a few microns. The expres-

sion in Eq. (10) assumes that the colloidal particle of mass density ρPS is floating in a

homogeneous medium of mass density ρWL. However, the laterally varying adsorption

preferences of the substrate induce the formation of alternating water-rich or lutidine-rich

regions close to the surface of the patterned substrate, which laterally alter the resulting

mass density of the solvent as a consequence of water and lutidine having different mass

densities. This implies that the effective gravitational constant G acquires a dependence

on x. In addition, the preferential adsorption of the colloid, with the ensuing formation of

an adsorption profile around it, can lead to a modification of the effective density ρPS of

the colloid itself. However, on the basis of our estimates, we expect all these effects to be

negligible for the present experimental conditions [15].

2.3. Total potential

The total potential Φ of the sum of the forces acting on the colloid is given by

Φ(x,z,T ) = ΦC(L−,P,x,z,R,T )+Φel(x,z)+Φg(z), (11)

where the theoretical expressions for the individual contributions are given by Eqs. (2),

(8), and (10). Here and in the following we do not indicate the dependence of Φ on L−,

P, and R, because the values of these parameters are fixed for each individual experiment.

Figure 1 shows the total potential Φ(x,z,T) of a single colloid with (−) BC opposite to

a chemically patterned substrate, as a function of both x and z and for three values of the

temperature T close to the critical value Tc. These three values correspond to different

correlation lengths ξ , as indicated in the figure. The gray area in the x-z plane indicates

the vertical projection of the stripe with (−) BC, the center of which corresponds to x = 0.

In Fig. 1 the white part of the x-z plane corresponds to the projection of the stripe with (+)
BC, the center of which is located at x = P/2 = 0.9µm. The potential of the forces acting

on the colloid is translationally invariant along the y-direction which is not shown in Fig. 1.

Φ(x,z,T ) in Fig. 1 has been calculated by using geometrical and interaction parameters

which mimic the actual experimental conditions and by using values of the correlation

length ξ which are experimentally available. As anticipated above, Fig. 1 clearly shows

that the gravitational tail of the potential, which characterizes Φ(x,z,T) at large values

of z, is indeed rather flat on the scales of kBT and of hundreds of nm. As a consequence

of thermal fluctuations — which cause the colloid to explore a region of space within

which the total potential Φ differs from its minimum by a few kBT — the particle is

expected to display large fluctuations ∆z ≃ kBT/G along the vertical direction. At small

particle-substrate distances electrostatic forces are responsible for the strong repulsion of

the colloid from the substrate. In Fig. 1 we allowed for a lateral inhomogeneity of the

electrostatic potential (i.e., z+0 6= z−0 ), which might occur due to different surface charges

on the different stripes. This is clearly visible in panel (a) of Fig. 1, which corresponds

to a rather small value of the correlation length ξ so that, within the range z ≃ 0.1µm
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Figure 1. Total potential Φ(x,z,T ) of a colloid with radius R = 1.2µm opposite to a chemically patterned substrate with
L− = 0.9µm and P = 1.8µm for three temperatures corresponding to (a) ξ = 5nm, (b) ξ = 22nm, and (c) ξ = 26nm,
respectively. The electrostatic potential corresponds to z−0 = 0.12µm, z+0 = 0.08µm, and κ−1 = 12nm (see the main text for

details). At small separations z . z±0 , the colloid is strongly repelled from the substrate due to electrostatics. The effective
gravitational potential associated with buoyancy is rather flat, with a spatial slope G ≃ 1.12kBT/µm. Accordingly, the
surface-to-surface particle-substrate distance z exhibits large thermal fluctuations of the order of kBT/G ≃ 1µm as long as
ξ is small. Upon approaching the critical point [from (a) to (c)], ξ increases and a deep, local potential minimum arises
rapidly as a function of ξ above that part of the substrate (indicated by the shaded area) with the same preferential adsorption
as the colloid. The colloid is eventually confined in this deep potential well at a distance z ≃ z−0 with almost no vertical
fluctuations. The black lines correspond to cuts through the potential surface at constant values of z and x, respectively.

Fig. 1(a) refers to, the contributions of the critical Casimir force are negligible. In this

case, the x-dependent electrostatic contribution dominates at small values of z, whereas

the laterally homogeneous gravitational potential dominates at larger distances. However,

upon approaching the critical point [Figs. 1(b) and 1(c)], the correlation length ξ increases

and the critical Casimir force acting on the colloid builds up; it is repulsive within the

region with (+) BC whereas it is attractive within the region with (−) BC. In the latter

case the behavior of the colloid is eventually determined by the electrostatic repulsion

and the attractive critical Casimir force, whereas in the former case it is determined by

gravitation and the repulsive Casimir effect. Above a certain threshold value of ξ , which

depends on the specific choice of the various geometrical and physical parameters, a very

deep and steep potential well develops rapidly close to the stripe with (−) BC, which

therefore confines the vertical motion of the colloid at much smaller values of z than

before with very limited thermal fluctuations of the particle-wall distance. In contrast, the

vertical repulsive critical Casimir force, which the colloid experiences above the stripe

with (+) BC, pushes it further away from the surface, but the corresponding fluctuations

of the vertical position z (still limited only by the gravitational tail) are not significantly

affected. Thus, the full theoretical analysis of the various forces at play reveals a rather

interesting energy landscape which is strongly temperature dependent.

2.4. Measured potential

In order to measure experimentally the total potential Φ of the forces acting on a colloid

a very effective approach consists in monitoring the equilibrium Brownian motion of a

single particle and inferring from the sampled probability distribution function P̄(x,y,z)∝
exp(−Φ(x,z,T)/(kBT )) the potential as Φ/(kBT ) = − ln P̄ + const, where x and y are

the lateral coordinates of the projection of the colloid center onto the substrate surface.

This approach forms the basis of total internal reflection microscopy, which has been

used in Refs. [10, 21, 23] to study critical Casimir forces. Alternatively, one can study

a colloidal suspension which is sufficiently dilute so that the inter-particle interaction is

negligible. In this case, the mean equilibrium number density ρ(x,y,z) of the colloids at

position (x,y,z) is proportional to the single-colloid probability distribution function P̄

and therefore it is again given by ρ(x,y,z) ∝ exp(−Φ(x,z,T)/kBT ). In the experimental

setup described below, the positions of the centers of the colloids are monitored via a

digital video camera positioned below the substrate. Accordingly, the surface-to-surface
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distances z of the colloids from the substrate are not resolved and the camera records

only the projected number density ρP(x,y) ≡
∫ ∞

0 dz ρ(x,y,z). Due to the translational

invariance of the chemical pattern along the y direction of length l ≫ P,R, the density

ρP(x,y) can be conveniently projected further onto the x-axis, resulting in an effective

number density ρ̂(x) = l−1
∫ l

0 dy ρP(x,y) = l−1
∫ l

0 dy
∫ ∞

0 dz ρ(x,y,z), which depends only

on x. This projection increases the statistics and therefore the accuracy with which this

projected density can be determined experimentally. Subsequently, an effective potential

V̂ (x) (up to an irrelevant additive constant) can be associated with ρ̂(x) such that ρ̂(x) ∝
exp(−V̂ (x)/(kBT )). (Note that due to the thermal fluctuations of the colloids along the

vertical direction, even if one knows the average distance zavg(x) of the colloid from the

substrate at a certain lateral position x, the effective potential V̂ (x) is not simply given by

Φ(x,zavg(x),T )+const, as it was implicitly assumed in Ref. [14].) The measured potential

δV̂ (x) = V̂ (x)−V̂(P/2) =−kBT ln(ρ̂(x)/ρ̂(P/2)) (12)

is eventually defined such that it vanishes for a colloid opposite to the center of a repulsive

(+) stripe at x = P/2. We emphasize that δV̂ (x) contains universal ingredients stemming

from the scaling function associated with ΦC (see Eq. (11)) as well as nonuniversal con-

tributions due to Φel and Φg.

2.5. Non-ideal stripe patterns

Due to the preparation process (see below) the actual position x = xs(y) of each chemical

step separating two adjacent stripes might vary smoothly along the y-axis. This variation

affects the measured effective potential V̂ of the colloids as long as it occurs on a length

scale which is comparable or smaller than the typical distance ℓmsd along the y-axis which

each particle explores during the acquisition of the images by the camera. The images

aquired during the experiments allow one to estimate such a mean-square displacement

ℓmsd to be of the order of tens of µm [14, 15, 41]. The projection along the y-axis, which

yields the density ρ̂(x), effectively causes a broadening of ρ̂(x) compared to the case of

straight (ideal) chemical steps with xs(y) = const. In addition, locally a smooth intrinsic

chemical gradient of the step leads to such an effect, too. For illustration purposes, we first

consider a single chemical step, which is ideally located at x = 0 and which generates a

potential Φ(x,z,T ). (This reasoning can be extended to the periodic chemical pattern we

are presently interested in by assuming additivity of the forces, see Ref. [16] for details.)

In order to estimate the effect of these variations of the actual position of the step along

the y-axis, we assume that the local position xs(y) of the step does not change significantly

along the y-axis on the scale of the radius R of the colloid, so that on this scale it can be

considered as ideal and therefore generates a potential Φ(x− xs(y),z,T). For xs(y) we

assume an effective Gaussian distribution p(xs) along the y-axis, with zero average and

standard deviation ∆x. Accordingly, the projection l−1
∫ l

0 dy along the y-axis turns into
∫ ∞
−∞ dxs p(xs) and affects the resulting projected density ρ̂(x) and the resulting potential

V̂ (x) [see Eq. (12)].

2.6. Particle-substrate distance

The theoretical knowledge of the total potential Φ(x,z,T ) [see Eq. (11)] allows one to

predict the particle-substrate distance z as a function of the lateral variable x and tempera-

ture, a quantity which is not accessible to the experiments discussed below. As anticipated

above, the rather small value of G in Eq. (10) is responsible for rather large fluctuations

of the particle-substrate distance z around the position z = zmin(x) at which the potential

Φ(x,z,T ) has a minimum as a function of z for a fixed lateral position x of the particle
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and which corresponds to the position of mechanical equilibrium. In the presence of these

large fluctuations it is convenient to consider the x-dependent mean particle-substrate dis-

tance zavg(x), which is determined by the probability distribution function P̄ of the colloid,

i.e., by the total potential as2

zavg(x) =
1

N(x)

∫ ∞

0
dz z exp{−Φ(x,z,T)/(kBT )}, (13)

where N(x) =
∫ ∞

0 dz exp{−Φ(x,z,T)/(kBT )} is the normalization. In order to describe

the thermal fluctuations of the vertical position of the colloid it is convenient to consider

the probability P̄<(z;x) that for a fixed lateral position x the colloid has a surface-to-surface

distance from the substrate smaller than a given z:

P̄<(z;x) =
1

N(x)

∫ z

0
dz′ exp{−Φ(x,z′,T )/(kBT )}. (14)

In order to generalize the notion of “standard deviation” to the present case of an asym-

metric distribution of the particle-substrate distances at fixed lateral position, we define

a lower value zlow(x) and an upper value zupp(x) of the particle-substrate distances such

that

P̄<(zlow(x);x) = 0.159 and P̄<(zupp(x);x) = 1−0.159, (15)

so that the probability of the colloid to be at a distance z with zlow(x) < z < zupp(x)
is ≃ 68%, whereas the probability to find it at distances smaller (larger) than zlow(x)
(zupp(x)) is ≃ 16%; these two properties define the standard deviation for a Gaussian

distribution.

Figure 2 shows the behavior of the colloid with (−) BC above a chemically patterned

substrate for the two lateral positions (a) x = 0 and (b) x = P/2 at which the colloid is

floating above the center of a (−) and of a (+) stripe, respectively, as a function of the

correlation length ξ . In Fig. 2 the values of the geometrical parameters (P, R, L−) are cho-

sen to correspond to the actual experimental conditions, whereas the parameters z±0 gov-

erning the electrostatic repulsion from the substrate are varied within a range which was

determined by previous independent experiments. Panel (a) clearly demonstrates that the

fluctuations of z for a colloid opposite to an attractive stripe decrease significantly upon in-

creasing the correlation length ξ above a certain threshold value ξ ∗ which depends on z−0 .

This reflects the emergence of the deep potential well shown in Fig. 1 which results from

the competition between an increasingly attractive critical Casimir force and a repulsive

electrostatic repulsion, the former being always overwhelmed by the latter around z = z−0 .

Indeed, for small values of ξ the average position zavg(x = 0) is typically determined

by the competition between the electrostatic repulsion and the gravitational part, such

that zavg(x = 0) ≃ z−0 + kBT/G ≃ 1µm with fluctuations of the order of kBT/G ≃ 1µm.

On the other hand, for larger values of ξ , one has zupp,avg,low,min(x = 0) ≃ z−0 and there

are only very small thermal fluctuations of the particle-substrate distance, at most a few

tens of nm. Depending on the relative strength of the electrostatic repulsion and the criti-

cal Casimir attraction, one can have zmin < zlow if the former dominates the latter, i.e., at

small values of ξ or the opposite at large values of ξ . From Fig. 2(a) one concludes that the

choice of z−0 strongly affects the behavior of the particle, both in determining the values of

2Note that the Derjaguin approximation holds only for distances which are small on the scale of the particle size (a detailed
analysis of its applicability for the system under consideration is given in Ref. [16]). However, in Eq. (13) also large values
of z occur. But at these large particle-wall distances the critical Casimir force as well as the electrostatic force are negligibly
small compared to the gravitational force, so that using this approximation is nonetheless not detrimental.
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Figure 2. Distances of the colloid from the substrate, for a fixed lateral position (a) x = 0 and (b) x = P/2, as a function
of the bulk correlation length ξ . Here, P = 1.8µm, R = 1.2µm, L− = 0.9µm, whereas zupp, zavg , zlow , and zmin indicate
the upper, average, lower, and potential-minimum distances of the colloid, respectively (see the main text). The solid lines
correspond to the choice z−0 = z+0 = 0.09µm, the dashed lines to z−0 = 0.12µm and z+0 = 0.09µm, and the dotted lines to

z−0 = 0.09µm and z+0 = 0.15µm. As expected, the fluctuations of the particle-substrate distance z for a colloid opposite to
an attractive stripe [x = 0, panel (a)] decrease significantly upon increasing the correlation length ξ , due to the fact that
the particle is mainly localized around the deep potential well which forms as a consequence of the action of the critical
Casimir force. In fact, zupp,avg,low,min ≃ z−0 for large ξ . The actual value of z−0 strongly affects the behavior of the particle,
both in determining the values of zupp,avg,low,min close to the critical point and in setting the threshold value ξ ∗ of ξ at
which one observes such a sharp transition towards strong spatial confinement for ξ > ξ ∗. From panel (a) one infers, e.g.,
that ξ ∗ ≃ 17nm and ξ ∗ ≃ 27nm for the solid and dashed curves, respectively. On the other hand, the dependence on z+0 is
not pronounced and indeed in panel (a) the dotted lines practically coincide with the solid ones. For a colloid opposite to a
repulsive stripe [x = P/2, panel (b)], due to the repulsive nature of both the electrostatic and the critical Casimir force and
the very weak gravitational attraction one has zmin < zlow and the average position is typically of the order of 1µm with
fluctuations of the same order. As anticipated, also in this case the actual value of z+0 is not very relevant, in particular for

large values of ξ . Analogously, the behavior of the colloid at x = P/2 is not affected by the choice of z−0 and in panel (b)
the dashed lines practically coincide with the solid ones.

zupp,avg,low,min and in setting the threshold value ξ ∗ of ξ above which the particle becomes

strongly confined, whereas the dependence on z+0 is negligible for the behavior at x = 0,

because z+0 controls the electrostatic interaction with the adjacent stripe. Analogously, the

behavior of a colloid at x = P/2 as shown in Fig. 2(b), i.e., opposite to a repulsive stripe

is not affected by the choice of z−0 . However, for this configuration, also the actual value

of z+0 does not affect significantly the resulting behavior of the particle-substrate distance

at x = P/2, in particular for large values of ξ . Indeed, due to the repulsive nature of both

the electrostatic and the critical Casimir force and the weak gravitational attraction, the

average position is typically of the order of zavg(x = P/2)≃ z+0 +kBT/G ≃ kBT/G (with

an additional linear contribution ∝ ξ for large values of ξ ) allowing fluctuations of the

order of kBT/G ≃ 1µm.

In Fig. 3 the particle-substrate distance (characterized via zavg,upp,low) and the position

of mechanical equilibrium zmin are reported as functions of the lateral coordinate of the

colloid within the period P and for two different temperatures, i.e., two different values of

ξ . In Fig. 3, the choice of the parameters corresponds to actually experimentally accessi-

ble values. Figure 3 clearly shows that for ξ = 10nm (dashed lines) the particle-substrate

distance is laterally constant and the colloid does not react to the presence of the chemical

pattern on the substrate, apart for a possible effect due to a change in the electrostatic in-

teraction (which here is taken to be the same on the different stripes). On the other hand,

for ξ = 20nm (solid line) the colloid is strongly attracted to that part of the substrate with

the same preferential adsorption (in Fig. 3 indicated by a shaded background), as a con-

sequence of the emerging critical Casimir forces. Indeed for |x| . L−/2 the particle is

abruptly localized at a distance z ≃ z−0 , which is primarily set by the electrostatic repul-
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Figure 3. Particle-substrate distance z (characterized via zupp,avg,low, see the main text) and position of mechanical
equilibrium zmin as functions of the lateral coordinate of the particle for ξ = 10nm (dashed curves) and ξ = 20nm (solid
curves). Here, z−0 = z+0 = 0.09µm, P = 1.8µm, R = 1.2µm, and L− = 0.9µm. For small values of the correlation length
ξ the various characteristic distances are almost independent of the lateral coordinate, whereas above a certain threshold
value ξ ∗ of ξ (see also Fig. 2) the colloid opposite to the attractive stripe is strongly confined close to the wall at a distance
z ≃ z−0 with almost no fluctuations.

sion and which corresponds to the position zmin(0) of the minimum of the potential, with

almost no thermal fluctuations. In the region above the repulsive stripes (in Fig. 3 indi-

cated by a white background) and within the temperature range considered here, instead,

the repulsive critical Casimir force pushes the colloid only slightly further away from the

substrate, by a distance of the order of the increasing correlation length ξ . But the am-

plitude of the thermal fluctuations of the particle-substrate distance are barely affected by

the onset of the repulsive critical Casimir force.

The analysis of the particle-substrate distance shows that the behavior of the colloidal

particle and the resulting potential are drastically influenced by the strong attraction of

the colloid close to an attractive stripe. Accordingly, the electrostatic repulsion from this

stripe, i.e., the value of z−0 , affects significantly the total potential and has therefore to be

considered carefully in the comparison between theoretical predictions with the experi-

mental data. On the contrary, the actual value of z+0 as well as the actual value of κ do

not significantly affect the resulting behavior of the potentials as long as they are within

the range appropriate for the present experiment which can be inferred from previous,

independent measurements [21].

3. Experimental setup

In the present context of critical Casimir forces, surfaces with a periodic pattern of alter-

nating stripes with opposite adsorption preferences for the two components of the binary

mixture of water and lutidine were obtained by micro-contact printing (µCP) of alkane-

thiols. Since there is a vast literature covering this technique [42–44] here we shall de-

scribe it only briefly. Stamps were prepared by casting poly(dimethylsiloxane) (PMDS)

onto a master which was topographically structured by a lithographic process. After the

PMDS is cured one obtains an elastic stamp which exhibits the negative structure of the

master. In the next stept the stamp is wetted with a 1mM ethanolic solution of nonpolar

HS(CH2)17−CH3 thiol. When the excess liquid is removed, the stamp is brought into

mechanical contact for several seconds with a glass substrate coated by a 30nm layer of

gold. This results in hydrophobic regions the geometry of which corresponds to the pro-

truding parts of the stamp. Finally, the substrate is dipped into a 1mM ethanolic solution

of polar HS(CH2)11−OH thiol for several minutes in order to render the remaining bare
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gold surface hydrophilic. With this technique we were able to produce periodic arrays of

hydrophilic and hydrophobic stripes of widths between 0.9µm and 3µm over a typical

total extension of 0.5cm2. The typical lateral edge resolution of the chemical structures

is of the order of 50− 100nm. In previous studies [14] the chemical patterns were cre-

ated by removing locally a hydrophobic monolayer from a hydrophilic surfaces with a

focused ion beam (FIB). Although under ideal conditions the resolution of FIB is within

the range of several nanometers, in the case of non-conducting surfaces we observed dis-

tortions/deflections of the ion beam due to an electrostatic charging of the glass surface,

leading to deviations of the chemical steps from straight lines. This causes considerable

discrepancies between the measured critical Casimir forces acting on particles near such

surfaces and the corresponding theoretical predictions, which assume straight and sharp

boundaries for the stripes [15]. Since such charging effects are basically absent in µCP,

here we have an improved control of the geometrical structure of the imprinted chemical

pattern and therefore much better agreement with theory (see below).

In order to probe the critical Casimir forces which act on a colloidal particle exposed

to the patterned substrates prepared as described above, we used polystyrene (PS) probe

particles with radius R= 1.2µm. Their surface charge, as provided from the manufacturer,

is 10µC/cm2 which renders them hydrophilic, realizing (−) boundary conditions. The

particles were dissolved in a critical water-2,6-lutidine mixture which has a lower critical

demixing point at a lutidine mass fraction of cc
L
∼= 0.286 and a critical temperature of Tc =

307K. Particle positions were monitored by digital video microscopy which allows one

to track the projection of their centers onto the substrate plane with a spatial resolution of

about 50 nm. For each measurement the particle trajectories were recorded for 40 minutes

with a frequency of 4 frames per second. Within the field of view of 290µm×225µm

around 20 to 40 particles have been monitored, corresponding to a projected density of one

particle per square of the size of 25×25 to 17×17 particle diameters. Thus, the particle

density was sufficiently small to exclude the presence of critical Casimir forces among

neighboring colloids, such that only their interaction with the patterned substrate is probed

during the measurements.

The temperature of the sample was controlled by the procedure described in detail in

Ref. [14]. With this setup, temperatures close to Tc could be stabilized within 10 mK
over several hours. In contrast to temperature changes, which could be resolved within

mK accuracy, larger errors in the determination of absolute temperatures (in particular the

measured critical temperature) occur. This is due to the fact, that the metal-resistance ther-

mometer (Pt100) could not be placed within the sample cell but it was instead attached

outside but close to the field of view. Indeed, the thermometer measures a temperature

T out lower than the actual temperature T inside the sample cell. We associate the temper-

ature T out = T out
c with the critical temperature T = T

exp
c of the solvent in the sample at

that particular temperature for which critical opalescence is observed when shining a laser

beam into the sample cell. This leads to systematic errors on the absolute temperature of

T out
c and T

exp
c of the order of 50 mK. Using the assumption that T −T out = const (this

constant could not be determined and is inter alia dependent on the ambient temperature),

we have measured the temperature difference ∆T = T out
c − T out and identified it with

T
exp

c −T ≡ ∆T . Since the comparison with the theoretical predictions depends crucially

on the actual value Tc ≃ 307K of the critical temperature, in the analysis below we account

for such a possible systematic error by considering ∆T ∗
c = Tc −T

exp
c as an additional fit-

ting parameter, where Tc ≃ 307K is the actual critical temperature of the water-lutidine

mixture.
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4. Comparison of theory with experiments

The total potential Φ of the forces [Eq. (11)] acting on the colloidal particle has been

calculated on the basis of the Derjaguin approximation with k(±,−) [see Eqs. (1) and (6)]

obtained from Monte Carlo simulations. In the following we shall use for the scaling

functions k(±,−) of the critical Casimir force between two planar walls with (±,−) BC

the numerical estimate referred to as “approximation (i)” in Figs. 9 and 10 of Ref. [34].

We have checked that different [34] or more recent and accurate [35] estimates for k(±,−)

actually lead to essentially the same effective potentials, the only difference being a small

additional overall shift of the resulting fitted value of the critical temperature (see further

below). A detailed analysis in spatial dimension d = 4 suggests that the Derjaguin approx-

imation we have used in our theoretical predictions for d = 3 should be rather accurate in

describing the actual potential of the colloid within the range of parameters experimen-

tally studied here [16]. As anticipated above, in order to predict the effective potential V̂

we need to fix also the value of the parameters which determine the electrostatic inter-

action. For the comparison between theory and experiment we fix the screening length

κ−1 to the value κ−1 = 12nm which has been reported from independent measurements

on the same system (see, e.g., Ref. [21]). In order to fit our theoretical predictions to the

experimental data, we vary instead the unknown values of the parameters z±0 [Eqs. (7)

and (8)] within the range 0.08− 0.15µm, which can be reasonably expected on the ba-

sis of previous measurements on homogeneous substrates [21]. However, the results for

δV̂ (0) are hardly affected by the particular choice of z+0 so that in the following we keep

it fixed at z+0 = 0.09µm. The amplitude ξ+
0 of the correlation length has been determined

by independent experiments as ξ+
0 ≃ 0.20± 0.02nm (see, e.g., Tab. III in Ref. [21]) so

that we vary ξ+
0 within the range 0.18− 0.22nm in order to obtain the best fit to the ex-

perimental data by the theoretical scaling functions. Moreover, as mentioned above, the

experimental uncertainty in the determination of the absolute value of the critical tem-

perature T
exp

c is taken into account by considering as an additional fitting parameter the

shift ∆T ∗
c = Tc − T

exp
c (see the end of Sec. 3) of up to |∆T ∗

c | ≃ 100mK. (The values of

∆T ∗
c may be different for the individual stripe widths L− which characterize the substrates

investigated in independent experimental runs.) However, the relative uncertainty in the

determination of the temperature within a single experimental run for a given stripe width

L− is smaller than ±10mK (see above). Thus, for the comparison carried out below, we are

left with ∆T ∗
c , z−0 , ξ+

0 , and ∆x (see Subsec. 2.5) as fitting parameters which, however, are

all limited to rather small ranges of values in order to be in accordance with independent

and previous experimental results.

4.1. Depth of the potential

The depth of the measured laterally confining potential is given by ∆V̂ = −δV̂ (0) > 0

[see Eq. (12)]. Figure 4(a) shows ∆V̂ as a function of the deviation ∆T = T
exp

c − T of

the temperature from the experimentally determined critical demixing temperature T
exp

c ,

for various stripe widths L− and measured in independent experimental runs as described

above. The periodicities P of the various patterns the stripes belong to are determined from

the photolithography mask and are given in Tab. 1. The potential depth ∆V̂ is determined

as the difference of the potential between its value at the center of a repulsive stripe and

at the center of an attractive stripe, carrying an uncertainty of ±0.15kBT near the critical

temperature Tc ≃ 307K. Upon approaching Tc, for a stripe width L− . 1.5µm the effects

of two adjacent chemical steps interfere, which results in an effectively reduced potential

depth compared to the case of a very wide stripe (see the dashed curves in Fig. 4(b);

in Fig. 4(a) the experimental uncertainty in determining the critical temperature T
exp

c is

responsible for the relative displacements among the various curves).
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Figure 4. Depth ∆V̂ of the effective potentials of a colloid close to patterned substrates, with periods P = L−+L+ and (−) stripe widths L−
given in Tab. 1, as a function of the temperature deviation from the critical temperature. The symbols represent the experimental data which
are affected by an experimental uncertainty of ±0.15kBT for the potential depth and of ±0.01K for the temperature differences between the
various data points belonging to one and the same value for L−.

∆T = T
exp

c −T [K]

∆
V̂

[k
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T
]
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L− = 0.90 µm
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(a)

(a) ∆V̂ as a function of ∆T = T
exp

c − T . (For better visibility, the data for
L− = 3.25µm are shifted by 0.1K along the ∆T axis, as indicated by the red
arrow.) The solid lines represent the best fit of the theory to the experimental
data for each individual value of L− with fixed parameters κ and z+0 which
do not affect the resulting behavior significantly as discussed in the main
text. ξ+

0 has been varied within the reasonable range 0.18nm. ξ+
0 . 0.22nm

known from the literature The values of all parameters corresponding to the
solid lines are given in Tab. 1. Clearly, for each individual L− the actual
critical temperature Tc is shifted by ∆T ∗

c = Tc −T
exp

c from the value T
exp

c

determined experimentally, with ∆T ∗
c being within the experimental accu-

racy |∆T ∗
c | . 0.1K. The dashed curves represent a common fit to all data.

For this latter fit we have assumed ξ+
0 and z−0 to be the same for the various

independent experimental runs, independently of the corresponding value of
L−, whereas ∆T ∗

c = Tc −T
exp

c (besides ∆x as determined below) is used for
adjustment to the data for each individual L−. The best fit for all these pa-
rameters renders ξ+

0 = 0.22nm, z−0 = 0.11µm, and the values reported in
Tab. 2.

∆T +∆T ∗
c = Tc −T [K]

∆
V̂

[k
B

T
]

L− = 3.25 µm

L− = 2.25 µm

L− = 1.60 µm

L− = 1.30 µm

L− = 0.90 µm

0

1

2

3

4

5

6

0.15 0.2 0.25

(b)

(b) ∆V̂ as a function of ∆T +∆T∗
c = Tc −T using the val-

ues of ∆T ∗
c for the best common fit (see dashed lines in (a))

given in Tab. 2. This plot takes into account the experimen-
tal uncertainty of measuring the absolute value of T

exp
c .

The data points, which have been shifted accordingly, ba-
sically fall on top of each other within their error bars. The
dashed lines correspond to the dashed ones shown in (a)
and represent the theoretical predictions. For L− ≥ 1.60µm
the various curves are almost indistinguishable from each
other, whereas for L ≤ 1.30µm the potential depth is ef-
fectively reduced due to the interference of the effects of
two neighboring steps and due to the fact that the steps are
non-ideal.

The effect of non-ideal chemical steps may result in an effectively reduced potential

depth as well (see, for example, Fig. 4(b) and, c.f., Fig. 6(b)). Accordingly, in comparing

the experimental data for ∆V̂ with the theoretical predictions we allow for an uncertainty

in the local position of the boundary between adjacent stripes, as described in Subsec. 2.5.

However, as will be shown below, we are able to determine ∆x rather precisely from the

lateral variation of the potential. The values of ∆x, which yield the best agreement and

which are used for the comparison shown in Fig. 4, are given in Tab. 1. On the basis

of our theoretical analysis, it turns out that the temperature dependence of the potential

depth becomes independent of the stripe width when the latter is sufficiently large. Adopt-

ing for the geometrical and physical parameters the values corresponding to the present

experimental conditions, this is expected to occur for L− & 2µm. From Fig. 4 one can

see, however, that the experimentally determined data for individual experimental runs

are shifted along the temperature axis with respect to each other, which reflects the uncer-

tainty of up to 100mK in measuring the absolute value of the critical temperature. On the

other hand, within a single individual experimental run corresponding to a certain stripe

width, the temperature difference between the various data points can be measured with

the high accuracy of less than 10mK. Upon comparing the experimental data shown as

symbols in Fig. 4 with our theoretical predictions we take this into account by introduc-

ing, for each value of L−, a possible shift ∆T ∗
c (L−) = Tc −T

exp
c (L−) between the actual

critical temperature Tc and the value T
exp

c determined in that particular experiment. Ac-

cordingly, for the data corresponding to a certain L−, the actual distance from the critical
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Table 1. Values of the parameters for which best agreement is obtained between theory and the data

for δV̂ (x) for each individual experimental run, corresponding to a single value of L− (see Fig. 4(a)).

The values κ−1 = 12nm and z+0 = 0.09µm are fixed because their choice does not affect significantly the

resulting theoretical curves in Fig. 4.

P[µm] a L
exp
− [µm] b L−[µm] c ξ+

0 [nm] z−0 [µm] ∆T ∗
c [mK] ∆x[µm] d

6.0 3.0 3.25 0.22 0.103 86 0.15
5.4 2.7 2.25 0.21 0.128 -5 0.10
4.2 2.1 1.60 0.22 0.095 88 0.22
3.6 1.8 1.30 0.19 0.140 -18 0.19
1.8 0.9 0.90 0.20 0.121 -28 0.09

aMost of the experimental data for the potential δV̂(x) discussed here are not influenced by
the actual value of P as long as P & 2L−. Accordingly, we assume the periodicity to be the
one determined by the inscribed photolithographic mask pattern reported here.

bWidth of the stripes of the photolithographic mask pattern. Due to the µCP stamping pro-
cess we estimate the uncertainty of the actual width of the thiol stripes to be up to ±0.5µm.

cValue of the stripe width for which best agreement between theory and experiment is ob-
tained.

dValue of ∆x for which best agreement between theory and experiment is obtained (see
Figs. 5 and 6).

Table 2. Values of the parameters for which best agreement is obtained between theory and all

experimental data together (see Fig. 4(b)), so that the values of ξ+
0 and z−0 are the same, and ∆T ∗

c (in

addition to ∆x determined from the shape of the potentials; see below) is the only parameter allowed

to vary for the various stripe widths L− . As in Tab. 1, the values of κ−1 = 12nm and z+0 = 0.09µm

are fixed. (For a description of the parameter values P, L
exp

− , and L− see the footnotes in Tab. 1.)

P[µm] a L
exp
− [µm] L−[µm] ξ+

0 [nm] z−0 [µm] ∆T ∗
c [mK] ∆x[µm]

6.0 3.0 3.25 0.22 0.110 49 0.15
5.4 2.7 2.25 0.22 0.110 54 0.10
4.2 2.1 1.60 0.22 0.110 0 0.22
3.6 1.8 1.30 0.22 0.110 72 0.19
1.8 0.9 0.90 0.22 0.110 29 0.09

point is given by Tc −T = ∆T +∆T ∗
c (L−).

The dashed curves in Fig. 4 correspond to the common fit to all experimental data

which leads to the fitting parameters ξ+
0 and z−0 taking the same values ξ+

0 = 0.22nm and

z−0 = 0.11µm for all L− as obtained from the least-square method. On the other hand, the

individual temperature shifts ∆T ∗
c (L−) are given in Tab. 2 for each data set corresponding

to a single value of L−. The values of ξ+
0 and z−0 are both in agreement with independent

previous findings [21]. Figure 4(b) shows the depth of the potentials as a function of

∆T +∆T ∗
c (L−) = Tc −T , i.e., shifted along the temperature axis by ∆T ∗

c (L−) as given in

Tab. 2. This accounts for the uncertainty in determining experimentally the absolute value

of the temperature (see the discussion at the end of Sec. 3), and indeed, as expected for

significantly wide stripes L− ≫ ξ , the data overlap with each other within the error bars,

reflecting that in this limit ∆V̂ is independent of L−.

The solid lines in Fig. 4(a) correspond to fits of the theoretical predictions to each

individual experiment dealing with a specific stripe width. Distinct from the previous

common fit, here for each stripe width L− we allow for a variation of the values of ξ+
0 and

z−0 in addition to ∆Tc and ∆x. On the basis of a least-square fit, best agreement is obtained

for the values given in Tab. 1, which agree with those obtained in independent previous

studies [21] within the corresponding experimental accuracy.

4.2. Shape of the potentials

Figures 5 and 6 show the total potential of the forces acting on the colloid as a function of

its lateral position for various temperatures and for two stripe widths. Symbols represent

the experimental data, whereas the solid and dashed lines are the corresponding theoretical
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Figure 5. Lateral variation of the effective potential δV̂ (x) (see Eq. (12)) for a colloid opposite to a chemically patterned substrate and immersed in the
water-lutidine binary liquid mixture at its critical concentration for various temperatures T

exp
c − ∆T . Symbols indicate experimental data, whereas the

lines are the corresponding theoretical predictions for ideal (dashed lines) and non-ideal (solid lines) stripe patterns. The parameters used to calculate the
theoretical curves are given in Tab. 1.
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(a) L− = 3.25µm. From top to bottom the critical point is approached and
the measured temperature deviations ∆T are 0.3, 0.18, 0.15 (0.153), 0.145
(0.14), 0.13 (0.128), 0.12, 0.11 (0.113), and 0.10 K with an uncertainty of up
to ±0.01K with respect to each other. If indicated, the values in brackets are
corrected values (but compatible within the experimental inaccuracy) which
have been used for evaluating the theoretical predictions.
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(b) Same as (a) for L− = 2.25µm and ∆T = 0.175 (0.165), 0.16 (0.152),
0.145 (0.143), 0.13, 0.115, 0.10 K.

predictions with ξ+
0 , z−0 , and ∆T ∗

c fixed to the values reported in Tab. 1, which have been

determined from the fit of the depth ∆V̂ of the potential. In addition, for a few cases

and as indicated in the figure captions, we use the leeway provided by the experimental

uncertainty of ±10mK for the temperature value. The dashed lines in Figs. 5 and 6 are

based on the assumption that the stripe patterns are ideal whereas the solid ones refer

to non-ideal patterns for which we fitted the parameters ∆x (see Subsec. 2.5) in order

to obtain the best agreement between theoretical predictions and the set of experimental

data at distinct temperatures. The resulting values of ∆x for the various widths of the

pattern are reported in Tab. 1. In fact, the broadness of the transition regions across the

chemical steps of δV̂ (x) between its extremal values is affected practically exclusively

by ∆x. We have checked that the other parameters and potential additional effects such

as polydispersity and weak adsorption cannot account for the discrepancies of the slopes

of the dashed curves and the experimentally determined ones (see also Ref. [15]). Thus,

∆x and L− are determined de facto independently of the choice of ξ+
0 , z−0 , and ∆T ∗

c and

in the following they can be regarded fixed upon variation of the values of these latter

parameters. In particular, this is important for narrow stripes as shown in Fig. 6, where

even the depth of the potential depends on L− and ∆x, in contrast to broader stripes.

As anticipated, in the case of rather large stripe widths L− = 3.25µm and L− = 2.25µm

shown in Fig. 5 and for the temperatures considered here the effects of two neighboring

chemical steps do not interfere and the resulting potential across the center of the attrac-

tive chemical stripe is flat. Accordingly, from the comparison between the experimental

data for the shapes of the potentials and the corresponding theoretical prediction we can

infer the width L− of the stripes — now treated as a fitting parameter — independently

of its initially assumed value L
exp
− determined by the width of the photolithography mask.

Indeed, the actual width of the stripe imprinted by the mask may differ by up to ±0.5µm

from L
exp
− characterizing the mask itself. It is only L

exp
− which is controlled during the

preparation process [41]. On the other hand, the actual value of P is the same as the

one of the photolithography mask because the periodicity is not affected by the stamping
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Figure 6. Effective potential δV̂(x) (see Eq. (12)) for various temperatures T
exp

c −∆T and relatively small widths of the attractive stripes. Symbols indicate
experimental data, whereas the lines are the corresponding theoretical predictions for ideal (dashed lines) and non-ideal (solid lines) stripe patterns. The
parameters used to calculate the theoretical curves are given in Tab. 1.
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(a) Same as Fig. 5(a) for L− = 1.60µm and ∆T = 0.3, 0.23 (0.218), 0.21
(0.198), 0.19 (0.182), 0.17, 0.15 (0.153) K.
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(b) Same as (a) for L− = 1.30µm (left panel) and L− = 0.9µm (right panel)
with ∆T = 0.3, 0.12, 0.1, 0.09 (0.083), 0.08 K for L− = 1.30µm and ∆T =
0.3, 0.18, 0.16, 0.145, 0.13 K for L− = 0.9µm.

process. (Note that, within the parameter range investigated in Fig. 5, the effects of neigh-

boring chemical steps do not influence each other and therefore the actual value of the

periodicity P of the pattern does not affect the determination of L−.) In agreement with

this observation, the comparison with the theoretical predictions leads to fitted values L−
which are within the aforementioned range indicated in Tab. 1. From Fig. 5 we find that

the experimental techniques described above lead to rather sharp chemical steps between

two stripes with an uncertainty of only ∆x ≤ 0.15µm.

The comparison for narrower stripe widths L− . 2µm is shown in Fig. 6. Even for these

cases, in which the effects of two neighboring chemical steps do interfere, the experi-

mental data agree very well with the theoretical predictions obtained from the Derjaguin

approximation. Whereas for L− = 1.6µm and L− = 1.3µm we have to take into account

an uncertainty ∆x of the position and associated with the shape of the chemical steps of

about 0.2µm, for the smallest stripe width L− = 0.9µm the chemical pattern turns out to

be almost ideal with ∆x < 0.1µm (see Tab. 1).

5. Conclusions and Outlook

5.1. Summary

We have presented a detailed theoretical and experimental study of the effective solvent-

mediated forces acting on colloids suspended in a near-critical binary liquid mixture of

water and 2.6-lutidine and close to chemically patterned substrates. In contrast to ear-

lier investigations [14] we have obtained a chemical pattern of stripes of different widths

and with laterally alternating adsorption preferences for either lutidine [(+) boundary

condition] or water [(−) boundary condition] by monolayers of thiols deposited on gold-

coated substrates via microcontact printing. The solute colloidal particles — 2.4µm di-

ameter polystyrene spheres — were rendered hydrophilic, corresponding to (−) boundary

conditions, due to their surface charge. Based on digital video microscopy our main ex-

perimental findings are the following.

1. At the fixed critical composition of the water-lutidine mixture, upon raising the tem-

perature T towards its lower critical demixing point at T = Tc, lateral forces acting on
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the colloidal particles arise gradually. These critical Casimir forces cause the colloidal

particles to be attracted to those chemical stripes which have the same adsorption pref-

erence as the particles and to be repelled from those stripes with the opposite adsorption

preference.

2. These lateral and normal contributions to the total effective forces (compare Sub-

sec. 2.2) are negligible at temperatures T more than a few hundred mK away from the

critical value Tc but they increase significantly upon approaching Tc. Eventually, they

lead to laterally confining potentials for the colloidal particles with potential depths of

several kBT (see Fig. 4). These potentials can be reversibly tuned by minute temperature

changes.

3. Across a chemical step the critical Casimir potentials vary rather abruptly between

two plateau values on a length scale of ≈ 0.8µm (see Fig. 5). This indicates that the

microscopic structures of the chemical steps formed by imprinted layers of alkanethiols

with different endgroups are much sharper than those created previously by a focused

ion beam [14].

4. For rather narrow stripes of widths . 2µm the effects of two neighboring chemical

steps interfere and consequently reduce the potential depth and lead to rounded shapes

of the effective potentials (see Fig. 6).

These experimental observations can be consistently interpreted in terms of the occurrence

of the critical Casimir effect, and it is possible to quantitatively compare the measured

potentials with the corresponding theoretical predictions. We have derived the effective

potentials within the Derjaguin approximation (see Subsec. 2.1 and Ref. [16]) based on

universal scaling functions for the critical Casimir force between two plates with (±,±) or

(+,−) boundary conditions as obtained from Monte Carlo simulation data. (Differences

in estimates for these scaling functions as obtained from various Monte Carlo simulations

do not affect our results significantly.) In contrast to the present experimental measure-

ments we are able to theoretically analyze the spatially fully resolved critical Casimir

potential acting on a colloid. The resulting energy landscape for a colloidal particle is

rather rich due to the interplay of several relevant forces, which we have taken into ac-

count (see Fig. 1). Typically, thermal fluctuations lead to large fluctuations of the lateral

position and the distance between the colloidal particles and the substrate (see Fig. 2).

Upon approaching Tc, however, strong normal and lateral critical Casimir forces abruptly

localize the colloids very close to and above stripes exhibiting the same adsorption pref-

erence as the particles (see Fig. 3). Calculating the effectively one-dimensional, projected

potentials for a single colloid, as they are obtained experimentally, we also take into ac-

count the possibility that the chemical pattern is not ideal, in addition to other experimen-

tal uncertainties. Not only the theoretical predictions for the potential depths agree with

the experimental data (see Fig. 4) but also the correlation length ξ , as determined from

our comparison, follows rather well the expected universal power law behavior and the

associated non-universal amplitude ξ0 is in agreement with previous independent experi-

mental determinations (see Tab. 1). Moreover, the shapes of the potentials as a function of

the lateral position of the colloid show good agreement between the theory and the exper-

iments (see Figs. 5 and 6). Since critical Casimir forces probe rather sensitively the details

of the geometry of the patterns [15], we find that the chemical steps obtained by the ex-

perimental method used here are sharp, with deviations of only a few percent in terms of

the stripe width. From the detailed comparison with rather narrow chemical stripes (see

Fig. 6(b)) we infer that even for such cases the Derjaguin approximation describes the

actual behavior quite well, as expected from a corresponding theoretical analysis within

mean-field theory [16]. We conclude that the quantitatively successful comparison be-

tween the experimental data and the theoretical predictions demonstrates the significance

and reliability of the critical Casimir effect for colloidal suspensions and reveals a new

means of using them as model systems in soft-matter physics or in applications in inte-
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grated micro- or nano-devices.

5.2. Perspectives

“After many failures, involving many fluid samples, I did succeed in levitating a hard

platelet.”

— Robert Evans.

Since quantum-electrodynamic Casimir forces acting on the scale of nm and µm are typ-

ically always attractive, they are responsible for stiction occurring in micro- and nano-

mechanical devices. According to a generalization of the Earnshaw theorem, for quan-

tum Casimir forces acting on conventional materials in vacuum, stable levitation is not

possible [45]. Therefore, in order to overcome the problem of stiction using the quantum-

electrodynamic Casimir effect the system must be immersed in a fluid and the bodies have

to be designed very specifically [46, 47]. Obviously however, for a system immersed in

a fluid it is natural to use solvent mediated forces such as the critical Casimir forces to

control its behavior. Since one can obtain attractive and repulsive critical Casimir forces

by suitable surface treatments as discussed here, a properly chosen combination of chem-

ical substrate patterns may easily lead to levitation of a colloidal particle at a stable height

above the substrate [16]. One finds that this critical Casimir levitation not only can be

achieved without involving any other additional force but that the stable equilibrium dis-

tance between the wall and the colloid can be tuned steeply by varying the temperature

[16]. Recently [16] it was predicted that the ranges of geometrical parameters for a pattern

of laterally alternating stripes (as discussed here), which allow for critical Casimir levita-

tion of colloidal particles, are rather large. Moreover, critical Casimir levitation is robust

even in the presence of other forces and of thermal fluctuations [16] as they occur typ-

ically in colloidal suspensions, so that an experimental realization of this effect appears

to be possible. These results show, that chemical patterning of substrates allows one to

design the critical Casimir effect over a wide range of properties.

“Ions are the invention of the devil.”

— Robert Evans.

By adding salt to the solvent of the colloidal suspension the electrostatic repulsion be-

tween the substrate and a colloid is strongly screened; this provides the possibility to ex-

plore the spatial variation of critical Casimir forces over a much wider range of distances

and correlation lengths of the fluid. Moreover, a rather complex behavior of the resulting

forces acting on the colloid can be expected because electrostatic forces induced by ions

lead to rather delicate physical features. Recently, preliminary measurements have shown

a rich and novel behavior of a colloid immersed in a salt-rich solvent upon approaching

the critical point [48]. The onset of strong attractive forces even several K below the crit-

ical temperature is observed and, in addition, these forces are found to remain attractive,

independent of the boundary conditions, (±,±) or (+,−), throughout a large tempera-

ture range. Currently it is not clear whether these observations can be entirely attributed

to critical Casimir forces or whether, e.g., the coupling between electrostatic interactions

and critical fluctuations has to be considered. Thus, using these intriguing effects together

with a chemical patterning of substrates may open a new field of phenomena with poten-

tial applications in colloid science.
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