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Compensation of compliance errors in parallel
manipulators composed of non-perfect
kinematic chains

Alexandr Klimchika,b, Anatol Pashkevicha,b, Damien Chablata and Geir Hovlandc

Abstract The paper is devoted to the compliance errors compensation for parallel
manipulators under external loading. Proposed approach is based on the non-linear
stiffness modeling and reduces to a proper adjusting of a target trajectory. In contrast
to previous works, in addition to compliance errors caused by machining forces,
the problem of assembling errors caused by inaccuracy in the kinematic chains is
considered. The advantages and practical significance of the proposed approach are
illustrated by examples that deal with groove milling with Orthoglide manipulator.

Key words: parallel robots, nonlinear stiffness modeling, compliance error com-
pensation, non-perfect manipulators

1 Introduction

In many robotic applications such as machining, grinding, trimming etc., the in-
teraction between the workpiece and technological tool causes essential deflections
that significantly decrease the processing accuracy and quality of the final product.
To overcome this difficulty, it is possible to modify either control algorithm or the
prescribed trajectory, which is used as the reference input for a control system [1].
This paper focuses on the second approach that is considered to be more realistic in
the practice. In contrast to the previous works, the proposed compliance error com-
pensation technique is based on the non-linear stiffness model of the manipulator
that is able to take into account significant external loading [2].

Usually, the problem of the robot error compensation can be solved in two ways
that differ in degree of modification of the robot control software:

aInstitut de Recherche en Communications et Cybernetique de Nantes, France;
bEcole des Mines de Nantes, France; cUniversity of Agder, Norway;
e-mail: alexandr.klimchik@mines-nantes.fr, anatol.pashkevich@mines-nantes.fr,
damienl.chablat@irccyn.ec-nantes.fr, geir.hovland@uia.no

1



2 A. Klimchik, A. Pashkevich, D. Chablat and G. Hovland

Fig. 1 Robot error compensation methods.

(a) by modification of the manipulator model (Fig. 1a) which better suits to the real
manipulator and is used by the robot controller (in simple case, it can be lim-
ited by tuning of the nominal manipulator model, but may also involve essential
model enhancement by introducing additional parameters, if it is allowed by the
robot manufacturer);

(b) by modification of the robot control program (Fig. 1b) that defines the prescribed
trajectory in Cartesian space (here, using relevant error model, the input trajec-
tory is generated in a such way that under the loading the output trajectory coin-
cides with the desired one, while input trajectory differs from the target one).

It is clear that the first approach can be implemented in on-line mode, while the
second one requires preliminary off-line computations. But in practice it is rather
unrealistic to include the stiffness model in a commercial robot controller where
all transformations between the joint and Cartesian coordinates are based on the
manipulator geometrical model. In contrast, the off-line error compensation, based
on the second approach, is attractive for industrial applications.

For the geometrical errors, relevant compensation techniques are already well
developed. Comprehensive review of related works is given in [3]. In the frame of
this work, it is assumed that the geometrical errors are less essential compared to
the non-geometrical ones caused by the interaction between the machining tool and
workpiece. So, the main attention will be paid to the compliance errors and their
compensation techniques.
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2 Problem of compliance error compensation

For the compliance errors, the compensation technique must rely on two compo-
nents. The first of them describes distribution of the stiffness properties through-
out the workspace and is defined by the stiffness matrix as a function of the joint
coordinates or the end-effector location [2]. The second component describes the
forces/torques acting on the end-effector while the manipulator is performing its
manufacturing task (manipulator loading). In this work, it is assumed that the sec-
ond component is given and can be obtained either from the dedicated technological
process model (that take into account the tool wear, type of machining process, cut-
ting speed, rake angle, cutting fluid, workpiece shape etc) or by direct measurements
using the force/torque sensor integrated into the end-effector.

The stiffness matrix required for the compliance errors compensation highly de-
pends on the robot configuration and essentially varies throughout the workspace.
From general point of view, full-scale compensation of the compliance errors re-
quires essential revision of the manipulator model embedded in the robot controller.
In fact, instead of conventional geometrical model that provides inverse/direct co-
ordinate transformations from the joint to Cartesian spaces and vice versa, here it
is necessary to employ the so-called kinetostatic model [4]. It is essentially more
complicated than the geometrical model and requires intensive computations.

If the compliance errors are relatively small, composition of conventional geo-
metrical model and the stiffness matrix give rather accurate approximation of the
modified mapping from the joint to Cartesian space. In this case, for the first com-
pensation scheme (see Fig. 1a), the kinetostatic model can be easily implemented
on-line if there is an access to the control software modification. Otherwise, the
second scheme (see Fig. 1b) can be easily applied. Moreover, with regard to the
robot-based machining, there is a solution that does not require force/torque mea-
surements or computations [1] where the target trajectory for the robot controller is
modified by applying the ”mirror” technique. However, this approach is only suit-
able for the large-scale production where the manufacturing task and the workpiece
location remains the same. Hence, to be applied to the robotic-based machining, the
existing compliance errors compensation techniques should be essentially revised to
take into account essential forces and torques as well as some other important error
sources (inaccuracy in serial chains, for instance).

3 Nonlinear technique for compliance error compensation

In industrial robotic controllers, the manipulator motions are usually generated us-
ing the inverse kinematic model that allows us to compute the input signals for
actuators ρ0 corresponding to the desired end-effector location t0, which is assigned
assuming that the compliance errors are negligible. However, if the external loading
F′ is essential, the kinematic control becomes non-applicable because of changes in
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the end-effector location. It can be computed from the nonlinear compliance model
as

tF = f−1 (F|t0) (1)

where the subscripts ’F’ and ’0’ refer to the loaded and unloaded modes respec-
tively, and ’| ’ separates arguments and parameters of the function f (). Some de-
tails concerning this function are given in our previous publication [2]. It should be
mentioned that function (1) takes into account loop-closure constraints and validates
both for serial and parallel manipulators.

To compensate this undeterred end-effector displacement from t0 to tF, the target
point should be modified in a such way that, under the loading F, the end-effector is
located in the desired point t0. This requirement can be expressed using the stiffness
model in the following way

F = f
(

t0|t(F)
0

)
(2)

where t(F)
0 denotes the modified target location. Hence, the problem is reduced to

the solution of the nonlinear equation (2) for t(F)
0 , while F and t0 are assumed to be

given. It is worth mentioning that this equation completely differs from the equation
F = f (t|t0), where the unknown variable is t. It means that here the compliance
model does not allow us to compute the modified target point t(F)

0 straightforwardly,
while the linear compensation technique directly operates with Cartesian compli-
ance matrix [5].

Since t0 and t(F)
0 are close enough, to solve equation (2) for t(F)

0 , the Newton-
Raphson technique can be applied. It yields the following iterative scheme

t(F)
0
′
= t(F)

0 +K−1
t.p.(t0|t(F)

0 )
(

F− f (t0|t(F)
0 )
)

(3)

where the prime corresponds to the next iteration and Kt.p.(t0|t(F)
0 ) is the stiffness

matrix computed with respect to the second argument of the function F = f
(
t|t0
)

at the original target point (i.e. for t = t0) assuming that unloaded configuration is
modified and corresponds to the end-effector location t(F)

0 . Here F stands for the

solution of equation (2), while the function f
(

t0|t(F)
0

)
defines the loading for the

current end-effector location under the loading t(F)
0 .

To overcome computational difficulties related to the evaluation of the matrix
Kt.p.(t0|t(F)

0 ), it is possible to use its simple approximation that does not change
from iteration to iteration. In particular, assuming that t and t0 are close enough and
the stiffness properties do not vary substantially in their neighborhood, the stiffness
model (2) can be approximated by a linear expression F = KC(t− t0), which in-
cludes the conventional Cartesian stiffness matrix KC. This allows us to replace the
above derivative matrix Kt.p. by −KC and to present the iterative scheme (3) as

t(F)
0
′
= t(F)

0 −αK−1
C (t0|t(F)

0 )
(

F− f (t0|t(F)
0 )
)

(4)
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where α ∈ (0,1) is the scalar parameter ensuring the convergence. Using the non-
linear compliance model (1), this idea can also be implemented in an iterative algo-
rithm

t(F)
0
′
= t(F)

0 +α

(
t0− f−1(F|t(F)

0 )
)

(5)

which does not include stiffness matrices KC or Kt.p.. Obviously, this is the most
computationally convenient solution and it will be used in the next section.

It should be mentioned that the considered case deals with a perfect parallel ma-
nipulator where end-points of all kinematic chains are aligned and matched. How-
ever, in practice, kinematic chains may include some errors that do not allow us to
assemble them in a parallel manipulator with the same end-effector location. In this
case it is required to compensate two types of errors (caused by the external loading
F and inaccuracy in the serial chains). The second source of errors can be taken into
account by changing of target location ∆ t0i for each kinematic chain

∆ t0i = ∆ t0 +∆ tε − εi (6)

where ∆ tε is the end-effector deflections due to assembling of non-perfect kinematic
chains and εi is shifting of the end-point location of ith kinematic chain because of
geometrical errors. Using the principle of virtual work it can be proved that ∆ tε can
be computed as

Fig. 2 Procedure for compensation of compliance errors in parallel manipulator.
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∆ tε =

(
m

∑
i=1

K(i)
C

)−1 m

∑
i=1

(
K(i)

C εi

)
(7)

where K(i)
C defines the Cartesian stiffness matrix of i-th kinematic chain that can be

computed using techniques proposed in [2] and m is the number of kinematic chains
in the parallel manipulator. More detailed presentation of the developed iterative
routines is given in Fig. 2.

Hence, using the proposed computational techniques, it is possible to compen-
sate the essential compliance errors by proper adjusting the reference trajectory that
is used as an input for robotic controller. In this case, the control is based on the
inverse kinetostatic model (instead of kinematic one) that takes into account both
the manipulator geometry and elastic properties of its links and joints. Efficiency of
this technique is confirmed by an example presented in the next section.

4 Illustrative example: compliance error compensation for
milling

Let us illustrate the compliance errors compensation technique by an example of the
circle groove milling with Orthoglide manipulator (Fig. 3). Detailed specification
of this manipulator can be founded in [6]. According to [7], such technological
process causes the loading Fr = 215N; Ft = −10N; Fz = −25N that together with
angular parameter ϕ = [0,360◦] define the forces Fx and Fy (Fig. 3b,c). Here, the
tool length h is equal to 100mm. It is assumed that the manipulator has two sources
of inaccuracy:

1. the assembling errors in the kinematic chains (assembling errors in actuator angu-
lar locations of about 1◦ around the corresponding actuated axis) causing internal
forces and relevant deflections in joints and links;

2. the external loading ‖F‖ = 217N which generates essential compliance deflec-
tions causing non-desirable end-platform displacement.

Fig. 3 Milling forces and trajectory location for groove milling using Orthoglide manipulator.
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In order to illustrate influence of different error sources on the machining trajec-
tory, let us focus on the 1 mm radius of the circle that should be machined. In this
case, the stiffness matrix is almost the same along the trajectory. Modeling results
for the neighborhood of point Q1 (see [2] for details) are presented in Fig. 4. They
show the influence of different error sources on the machining trajectory without
compensation and the revised machining trajectory that should be implemented in
robot controller in order to follow the target trajectory while machining. Here, path
5 compensates the effects seen in path 4 such that circle 1 is achieved. It can be seen
that the center of path 5 is on the opposite side of circle 1 compared to path 4. It can
also be seen that the main elliptic direction in path 4 becomes the smallest elliptic
direction in path 5. It should be mentioned that because of the torque induced by
the cutting forces (tool length 100 mm), the target trajectory and shifted trajectory
under the cutting forces are intersecting.

(1) Target trajectory;

(2) Shifting of target trajectory caused by errors
in serial chains (assembling errors);

(3) Shifting of target trajectory caused by cutting
force (compliance errors);

(4) Shifting of target trajectory caused by cutting
force and errors in serial chains;

(5) Adjusted trajectory, that insure following the
target trajectory while machining.

Fig. 4 Influence of different error sources on the machining trajectory.

Figure 5 presents results for the milling of the 50 mm circle. In this case, with-
out compensation, the compliance errors can exceed 0.8 mm. After compensation,
the above mentioned errors are reduced to zero (it is obvious that in practice, the
compensation level is limited by the accuracy of the stiffness model). This com-
pensation is achieved due to the modification of the actuator coordinates ρ along
the machining trajectory. Compared to the relevant values computed via the inverse
kinematics, the actuator coordinates differ up to 1.7 mm. Corresponding forces in
actuators can reach 300 N. Some more results on the compliance errors compen-
sation are presented in Fig. 5, which includes plots showing modifications of the
actuator coordinates ∆ρ , values of compensated end-effector displacement ∆ t and
the torques in actuators τ . It should be mentioned that while implementing target
trajectory in the robot controller additional control errors may arise.

Hence, the developed algorithm demonstrates good convergence. It is able to
compensate the compliance errors and can be efficient both for off-line trajectory
planning and for on-line errors compensation.
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Fig. 5 Compliance error compensation for Orthoglide milling application.

5 Conclusions

The paper presents a new technique for on-line and off-line compensation of the
compliance errors caused by external loadings in parallel manipulators (including
over-constrained ones) composed of both perfect and non-perfect serial chains. In
contrast to previous works this technique is based on nonlinear stiffness model (in-
verse kinetostatic model) that gives essential benefits for robotic-based machining,
where the elastic deflections can be essential. The advantages and practical signifi-
cance are illustrated by groove milling with Orthoglide manipulator.
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