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In a three dimensional bounded possibly multiply-connected domain, we give gradient
and higher order estimates of vector fields via div and curl in LP theory. Then, we
prove the existence and uniqueness of vector potentials, associated with a divergence-
free function and satisfying some boundary conditions. We also present some results
concerning scalar potentials and weak vector potentials. Furthermore, we consider the
stationary Stokes equations with nonstandard boundary conditions of the form u x n =
g X n and ™ = mo on the boundary I'. We prove the existence and uniqueness of weak,
strong and very weak solutions. Our proofs are based on obtaining Inf — Sup conditions
that play a fundamental role. We give a variant of the Stokes system with these boundary
conditions, in the case where the compatibility condition is not verified. Finally, we give
two Helmholtz decompositions that consist of two kinds of boundary conditions such as
w-nand u X non I
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1. Introduction

In many problems of fluids mechanics, the operators div and curl play an important
role in the mathematical study of these problems. In particular, we need some
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inequalities to estimate the gradient of vector fields via div and curl as for instance:
IV 0]l zr (o) < C([|div v|| Lo (@) + [[curlv]|zr (), (1.1)

for all v € W, (), where Q is a bounded open set of R? with boundary T' of
class C '. However, in some physically problems, we need to consider vectors fields
with either vanishing tangential components or vanishing normal components on
the boundary. In this case, the inequality (1.1) is not true. Indeed, in the case
where the first Betti number I or the second Betti number J do not vanish, the
following kernels:

K% (Q) ={veLP(Q), divv=0, curlv =0in Q2 and vxmn=0onT},
KL (Q) ={veL’(Q), divv=0, curlv=0inQ and v-n=0onT}
have dimensions I > 1 and J > 1 respectively.

In this paper, we are interested in some inequalities of type (1.1), in the case where
) has arbitrary Betti numbers and for vectors fields with vanishing tangential com-
ponents or vanishing normal components on the boundary.

We assume that € is a connected subset of R3, such that:

(i) We do not assume that its boundary T' is connected and we denote by T,
0 < ¢ < I, the connected components of I', T'y being the boundary of the only
unbounded connected component of R3\Q2. We also fix a smooth open set O with
a connected boundary (a ball, for instance), such that Q is contained in O, and
we denote by ;, 0 < ¢ < I, the connected component of (’)\Q with boundary
F,’ (FO U oo for i = O)

(ii) We do not assume that € is simply-connected. Observe that each component T';,
0 < ¢ < 1, is an orientable manifold of dimension two and hence is homeomorphic

I
to a torus with p; holes (see Ref. 17 for these properties). We set J = Y p; and

=0
we make the following assumption that permits to “cut ”adequately 2 in order to
reduce it to a simply-connected region.

In order to study the vector potentials, we have to describe with more precision
the geometry of the domain. We first need the following definition.

Definition 1.1. A bounded domain in R? is called pseudo-C ™! if for any point z
on the boundary there exist an integer r(x) equal to 1 or 2 and a strictly positive
real number py such that for all real numbers p with 0 < p < pg, the intersection of
Q with the ball with centre & and radius p, has r(x) connected components, each
one being C 1'%

Hypothesis 1.1. There exist J connected open surfaces ¥;, 1 < j < J, called “cuts
” . contained in €2, such that:
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i) each surface ¥; is an open part of a smooth manifold M,

(
(ii) the boundary of X; is contained in 99 for 1 < j < J,
(iii) the intersection X; N'Y; is empty for i # j,

(

iv) the open set

J
=0\
j=1

is pseudo-C ! simply-connected.

For J =1 with I = 3, see for example Fig. 1.

The hypothesis (iv) is important but not common. In general, boundary values
problems are solved in a Lipschitz domains. In section 3, we need to solve some
elliptic problem (see Lemma 3.4) in ° which is not Lipschitz continuous. Moreover,
the regularity C 1! is necessary to obtain solutions in W 7(Q).

We need Sobolev spaces W *P(T;) on the connected component T';, for 0 <i < I,
—2 < s < 2and for 1 < p < co. We can also define Sobolev spaces on the cuts
W SP(%,) as restrictions to X; of the distributions belonging to W *¥(M;). We
will note by W *P(X;)’ the dual space of W *F(%;).

Let us introduce some notations. For any vector field v on I', we shall denote
by v, the component of v in the direction of n, while we shall denote by v; the
projection of v on the tangent hyperplane to I'. In other words v,, = v-n and vy =
v — v, n. Let us now consider any point P on I' and choose an open neighbourhood
W of P in I' small enough to allow the existence of two families of C? curves
on W. The lengths s, so along each family of curves, respectively, are a possible
system of coordinates in W. We denote by 71, 72 the unit tangent vectors to each
family of curves, respectively. With this notations, we have v; = Zi:l VLT, where
Vg =V - Tk

Fig. 1. .
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We denote by []; the jump of a function over X;, i.e. the differences of the traces,
for 1 < j < J and by (-,-)x x+ the duality product between a space X and X'.
We shall use bold characters for the vectors or the vector spaces and the non-bold
characters for the scalars. The letter C' denotes a constant that is not necessarily
the same at its various occurrences. Finally, for any function ¢ in W 1*(Q°), grad ¢
is the gradient of ¢ in the sense of distributions in D’(2°). It belongs to L”(Q2°) and
therefore can be extended to L”(Q). In order to distinguish this extension from the
gradient of ¢ in D’'(2), we denote it by g/_r;j.q.

We shall show for every 1 < p < oo the following first inequality concerning tan-
gential vector fields:

J
IV vl zr() < C(ldiv v o) + lleurl o] o) + > [(v - n, 1)x,]), (1.2)
j=1
and the second concernes the normal vector fields :
I
IV vll o0y < C(Idiv vl o) + [eurlv]l o) + Y [(v - n, D). (1.3)
i=1

By means of the representation formula for v € W '*(Q) and by introducing inte-
gral operators, Von Wahl,2® obtained (1.2) and (1.3) without the flux through the
cuts X; for 1 < j < J and the components I'; for 1 < 4 < I on the right hand
sides. So, he proved that such homogeneous estimates hold if and only if I = 0, i.e.
Q is simply connected in the case of v x n = 0 and if and only if J = 0, i.e. Q
has only one connected component of the boundary I' in the case u-n =0 on I,
respectively. In Ref. 9, the authors prove C*-estimates of type (1.2) and (1.3) in a
bounded smooth open set. Our estimates are then a generalization of Von Wahl’s
estimates which are a special case of ours. Our proofs are based on the Calderén
Zygmund inequalities and the traces properties. Using the Peetre-Tartar Theorem,
we deduce the following first Poincaré’s inequality for every function w € W 17 (Q)
with u x n =0 on I

1
w0y < Cleurl w] o) + [div w|lLe) + Y [{w - n, D,

i=1

)

and a second for every function u € W P(Q) with w-n =0 on I:

J

”w”LP(Q) < C(chrlw”m(ﬂ) + ||div w||Lr>(Q) + Z (w - n, 1>2j|)
=1

Besides, we can deduce the following inequality by using the results in Section 3:

lollw 5@ < ClIlvllze @)+ leurlv]| o) +|div vl o) +lv-nll o1, (1.4)

<r>)’
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lollw 150 < CIl0]lzr @+ leurlvl| e @) +H|div ol o @) Hloxnl i1, (1.5)

(r>>’

Moreover, we shall show the corresponding estimates for v in higher order Sobolev
spaces W ™P(Q) with m € N* via divu and curlu when v X n or v - n does not
vanish on I'. These inequalities will be useful in order to prove regularity results
of solution of Stokes problem and elliptic problems that we will solve. In addition,
we will also consider the case of fractionary Sobolev spaces W *P(Q) with a real
number s possibly not integer.

Next, we will give some generality results concerning vector, scalar potentials and
weak vector potentials in LP theory with 1 < p < oo, thus extending the results
established by Amrouche, Bernardi, Dauge and Girault,? and by Amrouche, Ciarlet
and Ciarlet, Jr,® in the hilbertian case (see also for exemple the results established
by D. Mitrea, M. Mitrea and J. Pipher,?®). In particular, we will prove existence
of a first vector potential 1 associated with a divergence-free vector function u
satisfying:

u=curlyy and ¥ -n=0 onl.
Using the classical Helmholtz decomposition and this tangential vector potential,

we prove the following Inf-Sup condition:

Jocurl€ - curlpdx

Vo ee Vi > B (1.6
pevy @ eevi@) [€llxn@ el o
p#0 £#£0

where 1 > 0 and the spaces X17.(Q), V1.(Q) are defined by

X0(Q) ={v e LP(Q); divv € LP(Q), curlv € LP(2) and v-n =0 on I'},
VE5(Q) ={ve X(Q); dive =0 inQand (v-n,l)s, =0, 1 <j<J},
which plays a crucial role in the proof of the solvability of the following weak

Neumann problem: for v € LF(Q), find v € W "?(Q) such that

—Awu=curlv and divu=0 inQ,
(1.7)

u-n=0, (curlu—v)xn=0 onl.

The problem (1.7) for the vector fields is in fact the equivalent of the Neumann
problem for the scalar functions: for f € LP(Q), find x € W P(Q)

—Ax=divf in and (Vx—f)-n=0 onT. (1.8)

As a consequence of the resolution of (1.7), we can prove the existence of a second
vector potential satisfying:

u=curlyy and Y xn=0onT
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and then the following Inf-Sup condition:
Jocurl - curl pde

Vyeev > o (1.9
eevr @ eevi @ lElxz@lellxr g
p#0 £#0

where 2 > 0 and the spaces X1 (), V& (Q) are defined by

X% (Q) ={v e LP(Q); dive € LP(Q), curlv € LP(Q) and v x n =0 on I'},
VE(Q) ={ve X} (Q); dive=0inQand (v-n, I)r, =0, 1 <i<I}.

As a consequence of the Inf-Sup condition (1.9), we can solve the following problem:
for v € L(Q), find w € W "?(Q) such that

—Au=curly and divu=0 inQ,
(1.10)

uxn=~0 onl’

which is then well-posed (see Section 5 for more general right hand sides in the dual
space of HY (curl, Q)). We can check this with another way. Indeed, the problem
(1.10) is equivalent to:

—Awu = curlv in Q
divu=0, and uxn=0 onl,

but where we have replaced the condition divu = 0 in by dive =0 on I'.

With the help of the results obtained on the vector potentials, we are able to describe
Helmholtz decomposition of LP-vector fields on € in a more precise manner through
solutions of the boundary value problems (1.7) and (1.10). So, we will prove the
following LP-Helmholtz decomposition:

v=2z+Vx+curlu, (1.11)

where z € K%.() is unique, x € W P(Q) is unique up to an additive constant
and w € W "P(Q) is the unique solution up to an additive element of K ¥ (Q) of
the problem (1.10). A similar decomposition to (1.11) is recently shown by Kozono
and Yanagisawa,?? in the case of C*°-boundary I' by using the theory of Agmon-
Douglis-Nirenberg. In the case p = 2, Buffa and Ciarlet. Jr in Ref. 11 and Ref. 12
obtained some Hodge decompositions on the boundary of Lipschitz polyhedra. See
also Ref. 18 and Ref. 30. On the other hand, we will see that every v € LP(Q) can
be also decomposed as

v=2z+Vx+curlu, (1.12)
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where x € W,P(Q), z € KE(Q) are unique and w € W "P(Q) is the unique
solution up to an additive element of K2 (1) of the boundary value problem (1.7).

For uw € H*(Q) with s > 0 and Q of class C*°, Bendali, Dominguez and Gallic,°
obtained the decompositions (1.12) and (1.11).

As an application, we will consider the Stokes equations with non standard
boundary conditions:

{Au+V7r—f and dive =yx in{Q, (113)

uxXxn=gxn and T=mg onl,

where f, x, g, and my are given functions. We denote by n the outward normal
vector to I" and the variables w and 7 usually represent velocity and pressure in fluid
mechanics. In some physical situations, it is reasonable to prescribe the pressure on
some part of the boundary as for instance in the case of blood vessels, pipelines.
This boundary condition is naturally not sufficient to obtain a well-possed problem.
In addition, we need to prescribe a second condition relating here to the tangential
part of the velocity on the boundary. In the literature, many authors treat the case of
mixed boundary conditions both numerical and theoretical as for instance (Ref. 14,
Ref. 13, Ref. 7, Ref. 8, Ref. 20, Ref. 21, Ref. 24). Such problem come up in many
practical applications e.g. fluids mechanic, electromagnetic fluids applications and
decomposition of vector fields. However, for now, there are only theoretical papers
on the solvability of such problem in Hilbert spaces. We propose in our work to
develop a LP theory to solve the problem (1.13). We prove existence and regularity
of solutions for any 1 < p < co. We also give a proof of the existence of a very
weak solution when data are not regular enough, based on density arguments and
functional framework adequate to define rigorously the trace of the vector functions
which are living in subspaces of LP(2). Many authors consider a mixed method
to solve (1.13), using a vector potential ) satisfying curley = u. Due to the non
standard boundary conditions:

UXN=gXn, T=Tg on I,

the pressure is decoupled from the system. More precisely, we find that 7 is a
solution of the problem:

Ar=divf+Ax inQ and m=m onT.

Then, 7 can be found independently of u. Observe that if divf + Ax = 0 in Q
and mg = 0 on I', the pressure 7 is zero, unlike the Stokes problem with Dirichlet
boundary condition, where the pressure can not be constant.

With 7 known, we set F' = f — V7 and we obtain a system of equations involving
only the velocity variable u, that is:
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{—Au =F and divu=yx in, (1.14)

UXN=gXn onl'.

Here, we should remark that two different approachs to solve (1.14) are fully es-
tablished. A first one by Schwarz,2®, where his method is based on the theory of
pseudo-differential operator with the Lopatinski-Sapiro condition. The second one
by Kozono and Yanagisawa,??, where their method is based on the theory of Agmon-
Douglis-Nirenberg. Kozono and Yanagisawa,?? treat the case where 2 is a bounded
domain of R?® with a C*°-boundary I', F = curlv with v € L(Q2), g = 0 and
x = 0. Since the system (1.14) is not an elliptic boundary value problem in the
sense of Agmon-Douglis-Nirenberg,! they rewrite (1.14) by replacing, in the case
where y = 0 in 2, the condition divu = 0 in Q by divu = 0 on I'. They verify that
this modified problem is an elliptic boundary value problem in the sense of Agmon-
Douglis-Nirenberg and they show that it fulfils the complementing condition in
the sense of Agmon-Douglis-Nirenberg. But they consider that it is not possible to
apply the theory of existence and regularity of solutions to the elliptic boundary
problem to solve it, because, with a given v € LP(Q), they can only expect that
u e WHP(Q), so the value div u on T’ cannot be well-defined. In fact, this is possi-
ble because due to Ref. 5, since divu € LP(Q2) and Adivu € W ~1P(Q), the trace
of divau on T has a sense in W ~1/PP(T"). Our proof of solvability of (1.14) is not
based on the theory of Agmon-Douglis-Nirenberg but on a variational formulations
and Inf-Sup conditions (1.6) and (1.9).

This paper is organized as follows. In Section 2, we will introduce some notations
and we will state our main results. Section 3 is devoted to prove two kinds of Sobolev
inequalities such as (1.2) and (1.3). Then, in Section 4, we will give some results
concerning vector potentials depending on some boundary conditions on a given
function w. We will prove the existence and uniqueness of an associated vector
potential also satisfying some gauge and boundary conditions. In the same section,
we will treat the case of scalar potentials and weak vector potentials. In Section 5,
we will solve problem (1.13). We will show the existence, uniqueness and regularity
of the solution. We also study the existence of very weak solutions. Next, we will
introduce a variant of the problem (1.13) which can be treated similarly but without
assuming compatibility conditions. Finally, in Section 6, we will give the proof of
the two Helmholtz decompositions (1.11) and (1.12).

2. Results

Before stating our results, we introduce some functions spaces. Let LP(2) denotes
the usual vector-valued LP—space over 2, 1 < p < co. Let us define the spaces:

HP?(curl,Q) = {v € LP(Q); curl v € LP(Q)},
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with the norm

=

ol eurty = (19017 5oy + llewrl o] )"

H?(div, Q) = {v € LP(Q); div v € LP(Q)},

with the norm

1
[l aiv.o = (101500 + ldiv ol17 0 )"

and X ?(Q) = HP(curl, Q)N H?(div, ), equipped with the graph norm. As in the

case of Hilbert spaces, we can prove that D(2) is dense in H P (curl, Q), H ?(div, Q)
and X P(Q).

We also define the subspaces:
Hl(curl,Q) ={v € H?(curl,Q); v x n=0o0nT},

H[(div,Q) ={ve H?(div,Q); v-n=0o0nT},

X)) ={veXP(Q);vxn=0onTl}, XP(Q) ={veXP(Q);v-n=00onT}
and XP(Q) = X 2(Q) N X2(Q).

We have denoted by v x n (respectivelly v - n) the tangential (}respectively normal)
boundary value of v defined in W ~»P(T') (respectively W ~»"P(I")) as soon as v
belongs to H?(curl, ) (respectively H ?(div,)). More precisely, any function v
in H?(curl, ) (respectively H ?(div,€2)) has a tangential (respectively normal)
trace v X n (respectively v-n)in W _%’p(f‘) (respectively W_%’p(I‘)), defined by

Vo e WhP(Q), <'v><n,ap>rz/v-curlcpdcc—/curlv~<pd:c, (2.1)
Q Q

Vo e WHP(Q), (v-m,¢)p = / v-grad pdz + / (divv)pdz, (2.2)
Q Q
. _1 1—1 .
where (-,-)r denotes the duality bracket between W ~»P(T') and W~ »P(T) in
1 1
(2.1) and between W ~#?(I') and W'~ #®(T") in (2.2).
We can prove as for the case p = 2 in Ref. 27 and Ref. 19, that D(2) is dense in
HP(curl,Q) and in HJ(div, ) for any 1 < p < cc.
Our main results now reads as follows: first, we have the following gradient
I
estimates of vector fields via div and curl and the quantities > [(v - m, 1)p,| or

i=1

J
> [{v-n, 1)x,| following the boundary condition that we consider. (Se Section 3)
j=1

Theorem 2.1.
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(i) Any function v e W'P(Q) withvx n=0 onT satisﬁef:
IV vllzr () < C(Ildiv vl o) + lleurl vl oy + 3 [0+ n, 1r ).

i=1

(ii) Any function ve WP(Q) with v-n=0 on T satisﬁes;
IV vl g0y < C(lldiv vll ooy + leurl vl pogay + 3 v m, 15, ).

j=1

The following theorem gives two fundamental Inf-Sup conditions. (See Subsection
4.3 and Subsection 5.1 )

Theorem 2.2. The following Inf-Sup conditions hold :

(i) There exist a constant 51 > 0 such that

1¢- lpd
ot sup Jocurlé - curl p de > 8,
ee vy @ eevi (@) €llxz @llell o

(i) There exist a constant Sz > 0 such that
Jocurlé - curl pdz

> Bs.

inf sup
PEVE (Q) EEVE(Q) 1€]l %2 (02) ||90||Xz%’(9)

The next result concerns the existence and uniqueness of the weak, strong and very
weak solution of the problem (Sy). (See Section 5)

Theorem 2.3. (Weak, Strong and Very weak solutions for (Sy))

(i) Let f, g, mo be such that
fe (Hgl(curl, ), ge WVPP(D), 1y e wi-V/Pe(D)

satisfying the compatibility condition:

Vve Kﬁ] (), (£, ’U>[Hdp/(0ur1 Q) xHY (curl ,Q) — /FWO v-ndo=0. (2.3)

Then, the Stokes problem (Sy) has a unique solution (u, 7) € WhP(Q) x
W LP(Q) satisfying the estimate:

lallwrsey + 17w r@) < O g o,y 19 % Wl wassmmey +

ol r-2/mnr )

(ii) Moreover, if fe LF(Q2), g€ W2~YPP(), my € W 1-1/P2(T), then the solution
(u, 7) belongs to W2P(Q) x W P(Q) and satisfies the estimate:
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| wllwer @)+ 7 llwir@) < C(Hf‘ILP(Q)+||g><n||W2*1/P’P(1")+||7TO||W1*1/%1’(1“))'

(iii) Let f, g, and mo with
fe[HY (curl, Q)), ge WV/PP(D), mg e W —1/P# (D),

and satisfying the compatibility condition (2.3). Then, the Stokes problem (S )
has exactly one solution u € LP(Q) and 7 € LP(Q2). Moreover, there exists a
constant C' > 0 depending only on p and Q0 such that:

lellzo) + o) < € (1) g curr, e+ 9l w2smmey + 170l w1701 )

When the compatibilty condition (5.20) is not satisfied, we are reduced, as in Ref. 14,
to solve a variant of the Stokes problem (see Subsection 5.4)

3. LP-Sobolev Inequalities for Vector Fields

The aim of this section is to prove continuous imbeddings of both spaces X7.(Q)
and X% (Q) in WP(Q). In a first step, we introduce an integral operator that
allows to estimate V v by curlwv, divv and the flux of v past the boundary I'; for
1 < i < I provided that v x n = 0 on I'. In a second step, we introduce another
integral operator to estimate V v by curlwv, divev and the flux of v past the cuts
3,1 <j < J provided that v-n =0onT.

3.1. Estimates with tangential boundary conditions

We introduce the linear integral operator

0
T(@) = 5= [ M) rle— € doe.

The next lemma gives some properties of this operator.

Lemma 3.1. We have the following properties:

(i) The operator T is compact from LP(T) into LP(T).

(i) The space Im(Id+T) is a closed subspace of LP(I") and Ker(Id+T) is of finite
dimension. It is spanned by the traces of the functions grad ¢ -n|p, 1 <i <1,
where each g is the unique solution in W 2P(S2) of the problem

—AgN =0 in Q,
q@¥lr, =0 and ¢|r, = constant, 1<k <1, (3.1)

<8’n qf\/’ 1>Fk = 6ika 1 < k < Ia and <a’n qf\f’ 1>F0 = _17



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

12

C. Amrouche and N. Seloula

(see Subsection 4.3).

(iii) For any v € WP (Q) we have:

I
v n Loy < C(I(Id+ T)(v-n)ll Loy + Y (v n, ),
=1

). (3.2)

Proof.

(i)

(iii)

According to Von Wahl,28, we have T € L(LP(T"), W 1:P(T)). Since the embed-
ding of the space W P(T") in LP(T") is compact, we obtain that T is compact
from LP(T') into LP(T").

By virtue of the first point and the Fredholm alternative, we have that the
space Ker(Id+T) is of finite dimension and Im(Id+T) is a closed subspace of
LP(T). Since the functions grad ¢¥, 1 < i < I are linearly independent, it is
readily checked that grad q{v - n|r are also linearly independent for 1 <4 < T
(for the properties of ¢V, see Section 4).

Now, let v € D(). Then the quantity v - n satisfies on ' the following repre-
sentation (see Ref. 28):

(Fd+T)(w-m) = —o- (grad/ﬂ |wly|divy'v(y)dy> ‘n

1 1
~ 5 (curl/Q meurly v(y)dy) -n

+ % (curl/F ﬁ(v x n)(€) dag) -n. (3.3)
As D(Q) is dense in W "7(Q), this relation is still valid for v € W (). Since
grad ¢ belongs to W LP(Q) and grad qg¥ xmn =0onT, due to (3.3), for each
1 < i < I the function grad ¢}¥ - n belongs to Ker(Id+T'). Since the dimension
of Ker(Id + T) is equal to I (see Ref. 28), the set {grad¢” - n|r, 1 <i < I}
is a basis of Ker(Id +T).

The operator Id+T is linear, continuous and surjective from L?(I") onto Im(7d+
T). Since Ker(Id + T) is of finite dimension, through the theorem of open
application we deduce the existence of a constant C' > 0 such that (3.2) holds

The result of the next theorem is a generalization of the one in Ref. 28 to the

case I > 1. So, we expect that for an estimate of V u in addition to divwv and

I
=1

curl u the quantity > (v -n, 1)r, if v X n vanish on T

K3
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Theorem 3.1. Let v € W'P(Q) be such that vx n=0 on T. Then the following
estimate holds
I

IV vll o0y < C(IIdiv vl Lo () + leurlvlle@) + > [(v-n, Dr,|), (3.4)

i=1

where the constant C' depends only on p and €.

Proof. We use the same arguments as in Ref. 28 and we proceed in two steps.
First, we prove that for any function v of W P(Q) with v x n = 0 on I' we have:

I

< C(Hdiv 'UHLP(Q) + ||Curlv||Lp(Q) + Z |<'v -n, 1>pi‘). (3.5)
=1

o mll 2

Let v € W 'P(Q) with v x n = 0 on I'. By using the trace inequality and next the
Caldéron-Zygmund inequality in the integral representation (3.3) we obtain

[(Id+T)(v-n)| ey < C ([div ol o) + |lcurlv| gy q)) -
Thus, it follows directly by using (3.2) that

I

v 1oy < C(|div o i) + [[curl o] gr ) + Z (v -n,1)r,]). (3.6)
i=1

Moreover, from the equality (3.3), since T € L(LP(T'), W '*(T')) and using the trace
inequality, we obtain

) < C(H’U . nHLP(F) + ’

1
v-n _1 grad/idiv v(y dyH
fo-nll,. [y dvee)

»P(r W LP(Q)

1
+ chrl/ ———curl, v(y dyH )
PR R 2] P

We use again the Calderén-Zygmund inequalities and (3.6) to obtain (3.5), which
completes the proof of the first step.

Secondly, as v belongs to W 1_%”"(1"), due to the trace theorem, there exists a
u € W'P(Q) such that

v=u onl and  [|ullw1r) < OHU”W”%”’(F)'
Since v X n =0 on ', we have v|r = (v - n)n. Then, by using (3.5) we have

Il ey < Clo- il g

I
< C(Hdiv V| ey + lleurl v o) + > (v - n, 1>ri\)- (3.7)

i=1
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We know that, for any function w of WO1 P(Q), we have the following integral
representation

1 1 1 1
w=—-grad — | —— div, w(y)d —&-curl—/icurl w(y)dy.
g 47T/Q‘$_y| yw(y)dy I o o=y S (y)dy
Using the Calderén-Zygmund inequalities, we have
IV wl|ze@) < C([ldivw| g o) + [[eurl w] gz (o)) (3.8)
Applying (3.8) to v —u € Wol’p(ﬂ), we obtain
IV (v—u)|gr) < C<||div V|| (o) + || div u||Lp(Q)+chrlvHLp(Q)—i—chrlu||Lp(Q)).

Finally, the assertion (3.4) follows directly by using (3.7). ]

Remark 3.1. We recall that if p = 2, any function v of H *(Q) N X (Q) satisfies
(see Lemma 2.11 of Ref. 2 )

IV 022 0 = llourl ][22 g + [ldiv o]|2 o) — / (TrB)(v - n)? dr,

where B is the curvature tensor of the boundary and Tr B denote the trace of B.
In the case p # 2, We have the inequality (3.4) which allows us to estimate V v by

curlv, divv and Z [(v-n, L)r,|. Note that

1
|/ (Tr B)(v - n) dT|<C/|'v\2 5||Vv||2L2(Q)+O\|v||§2(m.

We can then deduce the following inequality:

IV vllz2(0) < C(lvllz2(0) + lldiv v]|L2(0) + leurl v]| 2 (). (3.9)

Corollary 3.1. Let v W'P(Q) be such that vx n= 0 on I'. Then, we have the
following estimate:

IV vl zro) < C(1v]l pr ) + Idiv o] o) + leurl v]| e ). (3.10)

Proof. Let i € [1, I] fixed. For any € W'=/2"2(I';), we can find o € W' (Q)
such that

p=ponl; and ¢=0 onTly foranyk #i
and satisfies the estimate

||<PHWLP’(Q) < CHN”Wl*l/P"P’(I‘i)'
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Moreover, if v € H?(div, Q), then

(v-n, wWr, = / v-Vede —|—/ pdivode
Q Q
and taking u = 1, we obtain
[(v-n, r,| < C([v]lzr @) + ldiv o] s ))-
We then deduce from (3.4) the estimate (3.10). m|

Now, we give the following density result. This result is proven in Ref. 2 for
p = 2 and we give here a generalization in a different way for any 1 < p < oco.

Lemma 3.2. The space W'P(Q) N X% (Q) is dense in the space X5 (Q).
Proof. Let £ belongs to (X%,(Q2))’, the dual space of X% (2). We know that there
exist f € IP (), g € L’ (Q) and h € LP' () such that

(Z,'U)z/f-vdw—i-/hdivvda:—i—/g-curl’udw, Vo e X5 (Q). (3.11)
Q Q Q

We suppose that

(€, v) =0 Yvec W?(Q)nXE(Q). (3.12)
So, we have in the sense of distributions in 2
f—Vh+curlg =0. (3.13)
Therefore, due to (3.12) and (3.11), we have for any y € W 2P(Q) N W, *(Q)
/f~de:c+/hAxd:z::0. (3.14)
Q Q

Note that divf = Ah € WL (Q). Because h € LP (Q), we know that h. €
W —1/P'2"(I") and we have (see ®) for any x € W 22(Q) N W,"?(Q)

. dx
/QhAXdZL' — <lef7 X>W71~PI(Q)XW01’p(Q) = <h, % >I‘.

/Qf -Vxdz = —(div f, X>W*1=P'(Q)><W01’P(Q)7
it follows from (3.14) that

ox
<ha 87'":

Now, let x4 be any element of Wlwr (T"). Then, there exists an element x of
W 2P() N W, P(Q) such that ‘Z—T’f = g onT'. Hence, (3.15) implies that

:0’

r=0, YxeW?2P(Q)nW, P Q). (3.15)

h /
< ) :U'>Wfﬁ,p (F))(Wlii‘p(r)
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and h=0in W 7" (I'). Because A h belongs to W ~1#'(Q) and h € L¥'(£2), then
h € W, (Q). As a consequence, due to (3.13), curl g belongs to L¥ (). Finally,
let v in X% (€). From (3.13) and since h € W, (Q), we can write

/Qf-vd:c—i—/ghdivvdw—f—/gcurlg-vd:c:O, Vo e X5(2).  (3.16)
As g€ H” (curl, Q), we have also

Vv € Hf(curl, ), /curlg.vda::/gcurlvda:.
Q Q

Then it follows from the last equality and (3.16) that £ vanishes on X%, (€2), thus
proving the required density. O

As a consequence, we have the following result.

Theorem 3.2. The space X% () is continuously imbedded in WP (Q) and there
ezists a constant C, such that for any v in X3 (Q):

I

ol w0y < C (10l 2o () +IIdiv o]l Lo (o) + eurl o] gogoy + D [{v-n, 1r.]). (3.17)
i=1

Proof. Let v be any function in X%, (2). Due to Lemma 3.2, there exists a sequence
(vi)r of W HP(Q) N X7R(Q) which converges to v in X (). Applying the estimate
(3.4) to vy for each k, we see that the sequence (vy)g is bounded in W ().
Hence it admits a subsequence which converges weakly in W () and the limit
is nothing else but v. The inequality (3.17) follows directly from (3.4) and it gives
the continuity of the imbedding. |

Remark 3.2. It is proved in Ref. 16, when the set 2 is a convex polyhedra that
there is a real number po > 2 such that for all p, 2 < p < pq, any function v in
X7%.(Q2) belongs to W ?(Q) and satisfies the estimate (3.17) where po depends on
the geometry of the domain 2. Theorem 3.2 is an extension of this result to any p,
1 < p < oo when  is of class C1!.

We give now a non-compactness result of the space X?() into LP(2), where
the proof is exactly the same in Ref. 2 for the case p = 2.

Proposition 3.1. The imbedding of X?(Q) into LP(2) is not compact.

We state the following result which proves that the vanishing of the tangential
component on the boundary implies the compactness. A proof in the case p = 2
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can be found in Ref. 29. Our proof for p # 2 is based on the continuous imbedding
of X%(Q) in W ?(Q) and the compactness of W (Q) in L?(f).

Lemma 3.3. The imbedding of the space XX () into L¥(2) is compact.

Corollary 3.2. On the space X%,(2), the seminorm

I
w > [[eurl w|| s (q) + |div wl|Le) + D [(w-n, Dr,], (3.18)
i=1
is equivalent to the norm |- || x»(q). In particular, we have the following Poincaré’s
inequality for every function u € %’le(Q) with ux n=0 onI':

I
lwll w1 () < Clllcurlwl| o) + [[div wllis @) + Y [(w-n, Lr,))
i=1

and the norm (3.18) is equivalent to the full norm || - | w1 q) on X3 ()

Proof. The proof consistes in applying “Peetre-Tartar Lemma” (cf. Ref. 19, Chap-
ter I, Theorem 2.1), with the following correspondance: £y = X% (), Ey =
LP(Q) x LP(Q), B3 = LP(Q), Au = (div u, curl u), B = Id, the identity operator.
Due to the compactness result of Lemma 3.3, the canonical imbedding Id of F; into
E5 is compact. Besides, let G = K {(2) and M : X% (Q) — KX (2) be the follow-
I I
ing mapping: u — Mu =Y (u-n, 1)r, Vg¥. Weset |[Mullg = Y [(u-n, L),
i=1 i=1
is clear that M € L(X X (), KX (9Q)). Next, it is clear that if u € Ker A = K §(Q),
then Mu = 0 < u = 0 and this finishes the proof. O

LIt

3.2. Estimates with normal boundary conditions

In order to prove the corresponding theorem for the space X 2(12), we introduce the
following linear integral operator

_ 1 A€)
RX(z) = 27T-/Fcurl(kl; —5\) x ndog.

We give some properties of this operator.

Lemma 3.4. We have the following properties:

(i) The operator R is compact from LP(T") into LP(T").
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(ii) The space Im(Id + R) is a closed subspace of LP(T') and Ker(Id + R) is of
finite dimension. It is spaned by the the traces of the functions grad q]T X n|r,
1 <5 < J, where each q;‘.F is the unique solution in W 2P (2°) of the problem
—quT =0 in Q°,
g, =0 onT,

[q]T]k = constant and [J, q]T]k =0, 1<k<J, (8:19)
(Ondqj 1>Ek =0k 1<k<J,
(see Subsection 4.2 ).
(iii) For any v € WP (Q) we have:
J
v 7 gory < C(II(Td + R) (v x n)l|zory + Y [{v-n1)s,]). (3.20)
j=1

Proof.

(i) According to Ref. 28, we have R € L(LF(T'), W “?(I)). The compact imbed-
ding of the space W "*(T') in L*(T") implies that R is compact from L”(I) into
().

(ii) By virtue of the first point and the Fredholm alternative, we have that the space
Ker(Id+ R) is of finite dimension and Im(Id+ R) is a closed subspace of LP(T).
We will see later in Section 4 that the functions grad qu belong to W 1P(Q).

Since the functions g/r;aqf, 1 < j < J are linearly independent, it is readily

checked that g/;éaq? x m|p are also linearly independent for 1 < j < J.

For v € D(), the quantity v x n satisfies on I" the following representation
(see Ref. 28):

2T

1 1
+ Py (grad/F m(v -n)(€) da§> X 1
1 1
~ 5 (curl/Q chrly v(y)dy) xmn. (3.21)

As D(Q) is dense in W 17(Q), this relation is still valid for v € W ?(Q). Since
g/r;iqf belongs to W "(Q), due to (3.21), for each 1 < j < J the function
g/r\a_laqf x n belongs to Ker(Id 4+ R). Since the dimension of Ker(Id 4+ R) is J
(see Ref. 28), the set {g/;éfiqf x n|p, 1 <j<J}is a basis of Ker(Id + R).

(Id+ R)(v x n) = S (grad/Q ﬁdivy v(y)dy) X 1
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(iii) The operator Id+ R is linear, continuous and surjective from L?(T") onto Im(Id+
R). Since Ker(Id + R) is of finite dimension, through the theorem of open
application we deduce the existence of a constant C' > 0 such that (3.20) holdgl

The result of the next theorem is a generalization of the one in Ref. 28 to the
case J > 1. So, we expect that for an estimate of Vv in addition to divv and

J

curlv the quantity ) (v -n, 1)x; if v - n vanish on I'. We skip the proof because
=1

it is similar to than of Theorem 3.1.

Theorem 3.3. Let v € WHP(Q) be such that v-n = 0 on I'. Then the following
estimate holds
J

IV vl| o () < Cldiv o]l ooy + eurl o] oy + > [(v-n, 1)), (3.22)

j=1
where the constant C' depends only on p and ).

We give now the correspending density result for the space X7(€2) where the
proof is exactly the same in Ref. 2 for the case p = 2.

Lemma 3.5. The space W'P(Q) N X2(Q) is dense in the space X2 ().

As a consequence, the following theorem can be proved as in Theorem 3.2 by using
Lemma 3.5 and Theorem 3.3.

Theorem 3.4. The space X2(Q) is continuously imbedded in W () and for any
function v in XZ(Q), we have the following estimate:

J

1ol wn () < C (Il ze() +1div ol ooy + lleurl ol| gy + Y [{v-n, 1)s,]). (3.23)
j=1

Remark 3.3. We recall that if p = 2, any function v of H*(Q)N X 2(Q) satisfies
(see Ref. 2, Lemma 2.11)

IV 022 = lleurl o2z g, + [div olf3 ) — / B(v x n,v x n)dr.
r

But for p # 2, we have the inequality (3.22) which allows us to estimate Vv by
J
curlv, dive and }_ [(v - n, 1)x,|. As in Remark 3.1, we can prove the inequality

J=1

(3.9).

Corollary 3.3. Let ve W'P(Q) be such that v-n =0 on I'. Then, we have the
following estimate:

IV 9ll () < C(l|vllze @) + Idiv ol| Lo o) + leurlof| g (q))- (3.24)
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Proof. The proof is similar to that of Corollary 3.1. For this, we use the result of
Lemma 4.2 given in Section 4. D

We give now the following compactness result. The proof can also be found in Ref. 29
for the case p = 2 and our proof for p # 2 is based on the continuous imbedding of
X% (Q) in W 'P(Q) and the compactness of W '*(Q) in L?(Q).

Lemma 3.6. The imbedding of X7(Q) into L?(Q) is compact.

We skip the proof of the next corollary about equivalent norms, because it uses
exactly the same tools as in the proof of Corollary 3.2.

Corollary 3.4. On the space X4.(2), the seminorm

J
w e [leurl w] g o) + [div wllLe @) + Y [(w- n, s, (3.25)
=1
is equivalent to the norm || - || x» (o). In particular, we have the following Poincaré’s

inequality for every function w € WP(Q) with u-n=0 on I':

J
||v]] wir(Q) < C’(||curl 'U”LP(Q) + ||div v||Lp(Q) + Z(v n, 1>2j). (3.26)

Jj=1

Now, in the following we show that the results of Theorem 3.4 can be extended to
the case where the boundary conditions v-n = 0 on I is replaced by inhomogeneous
one. More precisely, we introduce the following space for s € R, s > 1:

X *P(Q)={ve LP(Q); divo e W~ 1P(Q), curlve W *"17(Q), v-ne W*57(I)}.

Theorem 3.5. The space X P(Q) is continuously imbedded in W'F(Q) and we
have the following estimate for any v in X P(Q):

ol wr ) < C(I9llzr@) + leurl vl g + 1div oll oy +llv-nl sy ) (3:27)

Proof. Let v be any function of X 7(€2). Due to the regularity of €, the following
Neumann problem
Ax =dive inQ and 9dp,x=v-n onl,

has a unique solution y in W 2P(Q) with the estimate

Ixllw =) < C(Idivollze@) + llv-nll i1, (3.28)

(F>)'
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Hence, the function w = v — grad x is a divergence-free function of X7(Q). Ap-
plying Theorem 3.4, we have that w belongs to W '*(Q) and then that v is in
W YP(Q). So applying the inequality (3.10) of the point ii) of Remark 3.3 to w we
obtain

w10 < C(lwle ) + lcurlw| g (o).

Then, the inequality (3.27) follows directly from (3.28). |

The following result is a generalization of Theorem 3.5.

Corollary 3.5. Let m € N* and Q of class C"™*. Then X"™P(Q) is continuously
imbedded in W"™P(Q) and for any v in W"P(Q), we have the following estimate

0]l wmr ) < C(||v]l g ) Fllcurl o] yrm-1.0(q)+||div Vwm-re@Hllonll .- r )-

m— <7
) P

(3.29)

Proof. We consider the same proof than the one made in the case p = 2 by
Foias and Temam,'®. For m = 1, the result is given by Theorem 3.5. To simplify
the discussion, we shall write the proof for m = 2 and the proof is similar when
m > 3. Let v € LP(Q) such that dive € W'P(Q), curlv € W'P(Q) and v -

n ¢ szl/p’p(lﬂ). We already know that v € Wl’p(ﬂ). We set, for ¢ = 1, 2, 3,

0
u; = 8—;] and we prove that u; € W "?(Q). We know that u; € L*(Q), divu; €

LP(Q)) and curlu; € LP(2). Since  is of class C*!, the normal vector n can be
extended to a vector field, still denoted by m, such that n € C11(Q). We have then:

0 (v-n)—v on
o 0 Z; 0 €Z;
By the hypothesis on the normal trace of v, we can consider v - n as the trace of

0
a function in W2?(Q) and then 5 (v-n)|lp € W=V/PP(T). Moreover, the fact

u; - n in Q. (3.30)

?

that v € W ™V/PP(I') and g—n e W 1°°(Q) implies that v - gn e Wi-1/pp(I),
€T; i

So, by (3.30) u; - n € W'=1/P2(I"). According to Theorem 3.5, u; € W P(Q) for
i=1,2,3. As a consequence v belongs to W »P(Q) with the estimate (3.29). O

Using an interpolation argument, we can prove the following result.

Corollary 3.6. Let s=m+o0, m € N* and 0 < o <1, Assume that Q is of class
C™tLY Then, the space X*P(Q) is continuously imbedded in W*P(Q) and for any
function v in W*P(Q), we have the following estimate

vl wer ) < C (10l zr) + lleurl vl gre-p o) + |div vlly e-1.0(0) +

+ |lv- nHW&,,%,p(F)). (3.31)
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A similar estimate can be found in Ref. 10, where s > 3/p + 1. In Ref. 15, we find
a close result with «, divu and curl w in L?(2) and with u x n or u - n in L?(T).

4. Vector Potentials and Inf-Sup Conditions

In this section, we want to prove some results concerning the vector potentials.
In Subsection 4.1, we first give a basic result about the vector potentials without
boundary conditions useful for the sequel of this section (see Lemma 4.1). Next, Sub-
sections 4.2 and 4.3 are respectively devoted to the proof of existence and uniqueness
of tangential vector potentials and normal vector potentials. For the construction
of these vector potentials, an important tool is the characterization of some kernels.
In Subsection 4.4, we will get interested in an other type of vector potentials with
vanishing trace on the boundary. Next, we present some results concerning scalar
potentials and weak vector potentials.

4.1. Vector potentials without boundary conditions

This subsection is devoted to the proof of the following basic lemma. A detailed
proof of the case p = 2 can be found in Lemma 3.5 of Ref. 2 or in Chapter I, Theorem
3.4. of Ref. 19, For 1 < p < oo, we give a different proof using the fundamental
solution of the laplacian.

Lemma 4.1. A vector field u in H?(div, Q) satisfies

diveu=0 inQ and (u-m, L)p =0, 0<i<I, (4.1)
if and only if there exists a vector potential 1, in WP (Q) such that
u = curly,. (4.2)
Moreover, we can choose 1pg such that divpy = 0 and we have the estimate
Yol wir) < Cllullr ), (4.3)
where C' > 0 depends only on p and €.

Proof.

(i) The necessity of conditions (4.1) can be established exactly with the same
arguments than in Ref. 2.

(ii) Conversely, let u be any function satisfying (4.1). The idea is to extend u to the
whole space so that the extended function u belongs to LP(R?), is divergence-
free and has a compact support. Then, it will be easy to construct its stream
function by means of the fundamental solution of the Laplacian. Let then xq
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in W P(Q) be the unique solution up to an additive constant of the following
Neumann problem

—Axo=0in Qy and Ipxo=u-n only, JIpxo=0 on 00,

(see the introduction for the notations), and let x; € W P(Q) with 1 <i < I,
be the unique solution up to an additive constant of the problem:

—Ax; =0 1in Q; and 0O,x; =w-n on I,
with the estimate:
IXillw 1) < Cllullzr )

and where n denotes the unit outward normal to €2 and O. Now we can extend
u as follows

u in Q,
u=( grady; inQ;, 0<:¢<I,
0 in R3\O.

Clearly, u belongs to H ?(div, R?) and is divergence-free in R3. The function
Y, = curl( E % u ), with E the fundamental solution of the laplacian, satisfies

curlypy =u and divepy =0 inR>.
Applying the Calderén Zygmund inequality, we obtain
IV Pollze sy < ClIA (B 0)| 1o sy < Cllwlze@s) < Cllul o)

Due to Proposition 2.10 of Ref. 4, 9,|q belongs to W 17(Q). As a consequence,
1), satisfies the condition (4.2) and the estimate (4.3). |

4.2. Tangential vector potentials

In this subsection we focus our attention on the construction of vector potentials in
X P(£2). We require the following preliminaries which are the equivalent to those in
2 for an arbitrary p with 1 < p < oc.

Lemma 4.2. If belongs to H] (div, Q), the restriction of ¢ - n to any X; belongs
to the dual space w'TwP (3,), and the following Green’s formula holds:

J
T e W (@), 3 (g m, [x],)y, = 1p-gradxda:+/ vdiverds, (4.4)
j:l QO o

where we recall that [x|; is the jump of x through ;.

We introduce the space

or — {7‘ c WLP(Q"); [r]; = constant, 1 < j < J}~
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The next lemma is an extension of Lemma 3.11 in Ref. 2 to the case 1 < p < o0,
where the proof is similar and gives a characterization of the space OP.

Lemma 4.3. Let r belong to W P (Q°). Then r belongs to O if and only if

curl(g/r\z;i r)=0 inQ.

As shown in Proposition 3.14 of Ref. 2, the space K7(Q) is spanned by the
functions grad qu, 1 < j < J, where each qu belongs to H'(Q°), is unique up to
an additive constant and satisfies the problem (3.19).

Corollary 4.1. The functions g/r\é:iq}ﬂ, 1 < j < J belong to WH1(Q) for any
1 < ¢ < oo and the space K%.(S2) is spanned by these functions.

Proof. First, let us check that g/r?iaqf belongs to K4.(Q) for each 1 < j < J.
According to Ref. 2, the functions g/I‘;iqf belong to K2T(Q) Then, it suffices to
show that g/r\é:lqu belong to LP(£2) when p > 2. Observe that, thanks to Theorem
3.4, we have that g?i?:lq;fr belong to H'(Q). Therefore, by using the Sobolev’s
imbedding, the functions g?r\a_\aqu belong to L(Q) and then to X5(Q). It follows
from Theorem 3.4 and the Sobolev’s imbedding, that g?a/dqu belongs to L°(12).

As a consequence, for any 1 < ¢ < oo, we have g/r\z;iqu € L(Q2). We deduce the
first part of our statement by using again Theorem 3.4. We already know that the
functions g/r;aqu are linearly independent. Let us show now that those functions
span K%.(Q) for any 1 < p < co. Let w € K7 (Q). The function

J
vV=w — Zw n, I)s, gradqj
j=1

belongs to K7(Q) and satisfies (v - n, 1)y, =0, for 1 < k < J. Using (3.22), we
deduce that V v is equal to zero. Then v = @ € R? and a = 0 because a - n =0
on I'. Hence v is zero and this finish the proof. D

As in Ref. 2, we have the following result concerning tangential vector potential.
We skip the proof because it is very similar to the case p = 2.

Theorem 4.1. A function w in H?(div, Q) satisfies (4.1) if and only if there exists
a vector potential ¥ in W P(Q) such that

u=curly and divy=01in Q,

4.5
PY-n=0 on T, (1/J~n,1>gi:0,1§j§J. (45)
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This function 1 is unique and we have the estimate:
[Pl wir ) < Cllullze o) (4.6)
Remark 4.1.
(i) As proved in Ref. 2, the statement of Theorem 4.1 is independent of the par-
ticular choice of the admissible set of cuts {;; 1 <j < J}.
(ii) If Q is only Lipschitz, then 1 € X 2(2) which is included in W () only for

some values of p.

The following result is an extension of Theorem 3.5 by using a normal trace in
fractional Sobolev space.

Proposition 4.1. Let 0 < s < 1. Let

ve LP(), dive € LP(Q), curlv e LP(Q) and v-n € Wk%’p(I‘). (4.7)
Then ve WP(Q) and satisfies the estimate
(4.8)

ol wer) < Clollir @) + leurl vllze() + lldiv ol o) + vl a1

Proof. Let v satisfy (4.7) and x € W *T1:P(Q) a solution of the problem:

0
Ax=divv and X —y.monT.

an
We set f = curl (v — V x). Then, f satisfies:
fer’(Q), divf=0inQ and (f-n,1l)r, =0 forany 1 <i <.
According to Theorem 4.1, there exists a unique ¥ € W 7(Q) satisfying
f=curly and divy =0in Q,
Y-n=0 on I (1/1-n,1)2j:0,forany1§j§J.

Next, we set

J
z=v—Vx—9—Y (v-Vx—19)-n, 1)y gradg].

j=1
Then, z belongs to LP(£2) and satisfies
curlz =0, divz=0, z-n=0 onT, and (z-n, I)s, =0.

Using the characterization of the kernel K%.(2), we deduce that z = 0. This implies
that v € W*P(Q). The estimate (4.8) is then immediate. m|
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4.3. Normal vector potentials and first elliptic problem

This subsection is devoted to the normal vector potentials. As previously, an impor-
tant tool is the characterization of the kernel K% (€2). It is shown in Proposition 3.18
of Ref. 2, that the space K% (f) is spanned by the functions grad gV, 1<i <1,
where each ¢V € H'(Q) is the unique solution of the problem (3.1). Adapting the
argument used in the proof of Corollary 4.1, we have the following result

Corollary 4.2. The functions grad ¢” belongs to W () for any 1 < ¢ < oo
and the space KX.(2) is spanned by those functions for 1 <i < 1.

Theorem 4.2. Let X and M be two reflexive Banach spaces and X' and M’ their
dual spaces. Let a be the continuous bilinear form defined on X x M, let A €
L(X; M) and A" € L(M; X') be the operators defined by

Vo e X, Yw e M, a(v,w) = < Av,w > = < v, A'w >

and V = Ker A. The following statements are equivalent:

(i) There exist B > 0 such that

a(v,w)

inf sup (4.9)

eM v w -
ueh vex Tollx Tullu

(ii) The operator A : X/V +— M’ is an isomophism and 1/8 is the continuity
constant of A71.

(i) The operator A’ : M w— X'1V is an isomophism and 1/ is the continuity
constant of (A’)~1.

Proof. First, we note that i) < 4ii) because (X/V) = X'LV where this last
space contains the elements f € X’ satisfying (f, v) = 0 for any v € V. It suffices
then to prove that i) < 4ii). We begin with the implication i) = 4i). Due to (4.9),
we deduce that there exists a constant 3 > 0 such that:
1
Yw e M, ||w|a < = sup la(v, w)|
B vex ||UHX
v#0
So,
1
lwllv < Z[[A"w] x, (4.10)

and A’ is injective. Moreover, Im A’ is a closed subspace of X’ where A’ : M — X'.
Moreover, Im A" = (Ker A)t = X’ L V. It remains to prove that iii) = i). For
this, it suffices to prove that if 4ii) holds, then (4.10) also holds and (4.9) follows
immediately. O
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Remark 4.2. As consequence, if the Inf-Sup condition (4.9) is satisfied, then we
have the following properties:

(i) If V = {0}, then for any f € X', there exists a unique w € M such that
1
Yo e X, a(v,w) =< f,v> and ||wHM§B||f||X/. (4.11)

(ii) If V #£ {0}, then for any f € X', satisfying the compatibility condition:
Yv eV, < f,v > =0, there exists a unique w € M such that (4.11).

(iii) For any g € M’, Jv € X, unique up an additive element of V', such that:
1
Ywe M, a(v,w) = <g,w> and |[v|x/v < gl

Lemma 4.4. The following Inf-Sup Condition holds: there exists a constant 8 > 0,

such that
1€ - lpd
inf sup fQ curl{ - curlpdz > 3. (4.12)
eevr @ eevee) [Elxn@lel g g
PETR S0 T

Proof. We need the following Helmholtz decomposition: every vector function g €
L?(Q) can be decomposed into a sum g = V x + z, where z belongs to H ?(div, Q)
with div z = 0, x belongs to W, ?(Q) and satisfies the estimate

IV xllzr @) < Cllgllze@)- (4.13)
Let ¢ any function of VI}/ (). Due to Corollary 3.4 we can write
Jocurlep - gdx
ol < Clleurlillprgy =€ sup L8

geLP(Q) ||gHL”(Q)
970

(4.14)

We set

zZ=2z— <z~n,1>inqu,

1

I
so, z € LP(Q), divz =0 and (z - n, 1)r, = 0 for each 0 < 4 < I. By Theorem 4.1,
there exists a vector potential ¥ € V7.(Q2) such that Z = curl? in Q. This implies
that

/curlgo~gd:n:/curlcp-zdm:/curlgo~2dm.
Q Q Q

Moreover, we have
I

IZllze() < lzllzoi) + D 1z - DIV @ pe) < I2llzee) +C iz L s
i=1
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Since z belongs to H P(div, Q) and div z = 0, by using the continuity of the normal
trace operator on H ?(div, ), (4.13) and (4.15) we obtain

1Zllzr () < Cllzllzr ) < Cllgllzr - (4.15)
Finally, using Corollary 3.4 we can write

| | curlep - g dx|

| Jcurlep - Z da| <O’f9curlcp~curl¢dw‘
lgllze ()

<C

1Z]| 2 (2 19l xz. 0

O

and the Inf-Sup Condition (4.12) follows immediately from (4.14).

In the next, we illustrate the importance goal of the Inf-Sup Condition by using
it to resolve the following first elliptic system.

Proposition 4.2. Assume that v belongs to LP (). Then, the following problem

—A¢=curlv, divE=0 in 2,
& n=0, (curl€ —v) xn=0 onl, (4.16)
<£n71>2]:071§j§‘]a

has a unique solution in W P(Q) and we have:

1€llwrr ) < Cllvl e @) (4.17)

Moreover, if ve WP(Q) and Q is of class C>, then the solution & is in WP (Q)
and satisfies the estimate:

1€lwzr ) < Cllvllwirq)- (4.18)

Proof.

(i) Existence and uniqueness. Thanks to Lemma 4.4, the following problem:
find € € V1.(Q) such that

curlé - curlpdx = / v -curlpde. (4.19)

woevi, | Q

Q

satisfies the Inf-Sup condition (4.12). So, it has a unique solution & € V.(Q)
since the right-hand side defines an element of (V’:’F/ (©))" . By Theorem 3.4,
this solution & belongs to W (). Next, we want to extend (4.19) to any test
function ¢ in X’%’ (Q). We consider the solution y in W '*'(Q) up to an additive
constant of the Neumann problem:

Ax=dive inQ and g% =0 onl. (4.20)
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Then, we set

J

w=@—grady — Z((Zf; —gradx) - n, 1)y, grad qu. (4.21)
j=1

Observe that ¢ belongs to V’T’: (€2). Hence (4.19) becomes: find & € V1.(Q)
such that

et |

curlé - curlpdx = / v -curlpde. (4.22)
Q

Q

It is easy to proof that every solution of (4.16) also solves (4.22). Conversely,
let € the solution of the problem (4.22). Then,

—A¢ =curlcurlé =curlv in Q.

Moreover, since & belongs to the space V4.(€2) we have div€ =0inQ, &-n =0
on I'and (£ - n, 1), = 0 forany 1 < j < J. Then, it remains to check the
boundary condition curl€ x n = v x n onI' of (4.16). The function z =
curlé — v belongs to HP(curl, Q) with curl z = 0. Consequently, for any
XS X’;(Q) we have:

/Qz~curl<pda: - <zxn’¢>w’%’p(r)xW%’P/(1‘) :/chrlzwpdm:().

Using (4.22), we deduce that

Vg€ X5 (), (2 xn,@)r=0.

Let now p be any element of the space W L= (T"). So, there exists an element
@ of WP (Q) such that @ = p, on I, where p, is the tangential component
of pon I'. It is clear that @ belongs to X7 (Q2) and

<Z X n>H>F = <Z X n7ﬂt>F = <Z X "79~0>F =0.

This implies that z x n = 0 on I' which is the last boundary condition in (4.16).

To prove the estimate (4.17), we apply Remark 4.2 i) .

Regularity. Now, we suppose that v € W '?(Q) and Q is of class C>'. Let
€ € WP(Q) given by the first step and z = curlé — v. Observe that z
belongs to X ¥ (Q) < W P(Q). This implies that curl¢ € W ?(Q). Applying
Corollary 3.5, we deduce that & belongs to W 2P(Q) and satisfies the estimate
(4.18). |

Remark 4.3.
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(i) Note that we can directly prove the uniqueness of the solution of the problem
(4.16) by using the characterization of the kernels K7(Q) and KX ().

(i) When v belongs only to LP(€2), then (curl€ — v) x n € W ~»*(T) but neither
curl ¢ X m nor v x n is defined. However, if v belongs to H ?(curl, ), then
1
v x n and curlé x n have a sense in W ~#»"P(T").

With the previous proposition, the following theorem is the main result of this
subsection

Theorem 4.3. A function u in HP(div, Q) satisfies:
dive=0 inQ, u-n=0 onl' and (u-n, 1>2j =0, 1<j<J, (4.23)
if and only if there exists a vector potential v in W P(Q) such that

u=curly and divep =0in Q,
Pxn=0 on T (4.24)
(-n, 1)p, =0, forany 1 <i<1.

This function v is unique and we have the estimate:

[%llwr (@) < Cllullze @) (4.25)

Proof. The necessity of conditions (4.23) can be established exactly as in 2. The

uniqueness follows from the characterization of the kernel K%, (2). Now, let us es-
tablish the existence of 1. According to Lemma 4.1, there exists 1, € W "*(Q)
with divep, = 0 and such that v = curlt,. Due to Lemma 4.4, the following
problem: find & € V%.(2) such that

vee Vi@, [

curl&curlcpd:c:/'l,b0~curl<pda:—/ curly,-pde, (4.26)
Q Q Q

has a unique solution £ € V%.(Q). We know that due to Theorem 3.4, this solu-
tion & belongs to W (). Next, by using the same arguments as in the proof of
Proposition 4.2, the problem (4.26) is in fact equivalent to

—A€E=0, divE=0 inQ,
E-n=0, curl{ xn =1y xn onl,
(- m )y, =0, 1<j<J

Using Theorem 3.2, the function z = 1, — curl£ belongs to W *?(2). Then, the
required vector potential is given by
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I

1,b:z—;<z~n7 L)r, grad g . O

Remark 4.4. If Q is only Lipschitz, then ¢ € X }(Q) and the previous result
holds only for some values of p.

4.4. Other potentials

In this subsection, we extend some results concerning vectors potentials and scalar
potentials to the non hilbertian case without giving details (see Ref. 2 and Ref. 3
for the case p = 2). The first result is less standard, however it turns out to be
useful in special cases.

Theorem 4.4. A function w in HP(div, Q) satisfies:
dive=0 inQ u-n=0 onl' and (u-n 1)y =0, 1<j<J, (427
if and only if there exists a vector potential ¥ in Wl’p(Q) such that

u=curly and div(Ay)=01in Q,

| | (428)
P=0 on I, (On(divp), 1)y, =0, forany 0 <i<L

This function v is unique and we have the estimate:
%]l wrr ) < Cllullze o)

Remark 4.5. When u in W J"?(Q), for m > 1, satisfying (4.27), we can prove the
existence of a vector potential 1 in W " "P(Q) satisfying div A™+1ep =0 in Q.

Now, we give the following result concerning scalar potential.

Theorem 4.5. Let f € W™ "P(Q) for some integer m > 0. then the following
properties are equivalent:

(i) (f, o) =0 forall g€ {pe W™ (Q): dive =0inQ},

(ii) (f, @)

’
w—meP () x WP (Q)

=0 forall p € {p€D(Q); divep =0inQ},

’
WP () x WP (@)

(iii) There exists a distribution x € W ~™FLP(Q), unique up to an additive constant,
such that f= grad x in €.

If in addition Q is simply-connected, the above properties are equivalent to:

(iv) curl f=0 in Q.
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We note that if  is not simply-connected, properties (ii¢) and (iv) are not equiva-
lent. More precisely, for f € LP(Q) or f in the dual space of H} (div, ), we have
the following result:

Theorem 4.6. For any f in the dual space of Hg’/ (div, Q) with curlf = 0 inQ
and that satisfies

(f, 'v>[H§’(div,Q)]/ng"(div,Q) =0 forallve K7 (Q), (4.29)

there exists a scalar potential x in LP(Q2), unique up to an additive constant, such
that f= grad x and the following estimate holds:

Ixerc@y/m < Ol g oy

Moreover, if f€ LP(R), the scalar potential x belongs to W P(Q) and satisfies the
following estimate:

IxIlw 1) /r < Cll fllze o) (4.30)

Remark 4.6. If  is simply-connected, the condition (4.29) is empty because
K{i/(Q) = {0}. Then, for a distribution f in the dual space [Hé),(div,Q)]’ sat-
isfying curl f = 0 in Q, there exists a unique function x € LP(Q), up to an additive
constant, such that f = grad x.

Now, we are interested into weak vector potentials corresponding to less regular
data. We know that for a given function f in W~ 'P(Q), there exist a unique
u e WiP(Q) and x € LP(Q) such that

f=-Au+Vyx and dive =0 inQ, (4.31)
and satisfying the estimate:
llullw e + [IXllLe@)/r < ClFllw-100)-
Besides, the continuous imbeddings
[HP(curl, Q)] — W ~YPP(Q) and [HE(div, Q)] — W ~V/PP(Q)
hold. By setting z = curl u, we obtain the decomposition
f=curlz+Vyx

with divz =0in Q, z-n = 0 on I'. Now, since z € LP(Q2) and x € LP(Q2), we have
that curl z € [H (curl, Q)] and V x € [H{(div, 2)]". As a consequence

W =P (Q) = [H{ (curl, Q)) + [H{ (div, Q)]',
but the sum is obviously not direct.

In fact, if f € [Hgl (div, )], using the characterization of this last space, the
solution u of the problem (4.31) is more regular:
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Proposition 4.3. For any f in the dual space IIé),(div7 Q)', there exist a unique
ue WHP(Q)N Wy P(Q) and x € LP(Q) solution to (4.31) that satisfy the estimate
[ullwer @) + Xl zr @) /r < C”f”[Hg’(div,Q)]f'

We next consider the following result.

Theorem 4.7. For any f in the dual space of Hgl (curl,Q) with divf =0 inQ
and satisfies

(f, v>[H§/(Cur17Q)],XH§/(CM1’Q) =0 forall ve Ky (Q), (4.32)

there exists a vector potential & in LP(Q), unique up to an additive element of
K.(Q), such that

f=curlg, with divE=0 inQQ and £&-n=0 onl,
and such that the following estimate holds:

€]z )/ 5.2 < ClUFll g2 (curt ) -

Remark 4.7. If we assume that ) has a connected boundary I', then condi-
tion (4.32) is empty because Kf,l(Q) = {0}. Then, a distribution f belongs to
[Hé’l (curl, Q)] such that div f = 0 if and only if there exists a function & € L¥(Q),
such that f = curlg, where divg = 0 in 2 and £ - n = 0 on I'. Moreover, £ is
unique up to an additive element of K7(Q).

5. The Stokes Equations with Normal Boundary Conditions
In this section we will study the following Stokes problem:

—Au+Vr=Ff and divu=0 inQ,
(SN) fuxmn=gxn and 7=mg onT,
(u-n, )r, =0, 1<i<I.

5.1. Weak solutions

The aim of this subsection is to give a variational formulation of problem (S )
and to prove a theorem of existence and uniqueness of weak solutions. Due to the
boundary conditions that we consider, the pressure is decoupled from the system.
It is the reason why we are naturally reduced to solving elliptic problems which
are the Stokes equations without the pressure term. We begin by proving a useful
preliminary result involving Inf-Sup condition.
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Lemma 5.1. The following Inf-Sup condition holds: there exists a constant 8 > 0,

such that
1 led
inf sup Jocurlé - curlp T (5.1)
eevr o eevi @ €l @llel g o
P70 £#0

Proof The proof is very similar to that of Lemma 4.4. Let ® be any function of
%44 £(2). Due to Corollary 3.2, we can write: for any ¢ € Vp ()

| [ycurle - gdm|
= Cllewrllor@ =C 20 ™ Tl
g#0

1l e

We use now the Helmholtz decomposition g = V x + 2z, where x € W 1P(Q) and z
belongs to H ?(div, Q) with divz =0in Q and z - n = 0 on I'. Moreover, we have
the estimate

IV Xz ) < Cllgllze (-
We set

J
= Zznlggradq],
j=1

and we use Theorem 4.3. O

Proposition 5.1. Let f € (Hgf/ (curl, Q)) with divf= 0 in Q and satisfying the
compatibility condition:

Vv e K (Q), =0. (5.2)

<f’ >[Hp curl Q)]’XHP (curl Q)

Then, the following problem
—A¢f=f and div€E=0 inQ,
Exn=0 onl, (5.3)
<€'na 1>Fi =0,1<i<I,

has a unique solution in W"P(Q) and we have:

|| 3 || wir(Q) < CH f”[Hé’,(curl ) (54)

Proof. Due to Theorem 5.1 and next to Theorem 3.2, the problem: find &€ € V& ()
such that

Y € VZ;\;(Q), / curlé - curlpdz = (f, ¥)q, (5.5)
Q
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has a unique solution & € W *(Q). Let us @ € X’;\; (Q) and we consider the solution
X in Wy (Q) of Ay = divg in€. Setting
I
¢=¢—gradxy —» ((@—grady)-n, l)r, gradg,",

i=1

we observe that ¢ belongs to V%(Q) and using (5.2) problem (5.5) becomes: find
& € V& (Q) such that

Ve € X7 (Q), /chrlg ccurlgdz = (f, P)o. (5.6)

We check that the problems (5.3) and (5.6) are equivalent and we deduce the com-
patibility condition (5.2) from (5.6). We may also apply Remark 4.2 i¢) in order to
prove the estimate (5.4). m|

Remark 5.1.

(i) Thanks to the characterization of the kernels K7(Q) and KX (), we can in
fact show directly the uniqueness of the solution & € W ?(Q) of problem (5.3).

(ii) We can replace in (5.3) the right hand side by the curl of an element v € L” ().
Indeed, due to Theorem 4.7, every element f € [Hé/(curl, Q) with divf =0
in Q and satisying the compatibility condition (5.2), can be written as the curl
of a function v € LP(9).

(iii) Observe that, by using (5.8) below, the problem (5.3) is equivalent to: find
€ € WHP(Q) such that

—A€ =curlv inQ,
3

Exn=0 and a—-nf2K§~n:O onl
n

<£n31>r‘,:0a1§2§]7

where the second boundary condition is a Fourier-Robin type boundary condi-
tion.

Now, we consider the case of inhomogeneous boundary condition.

Corollary 5.1. Let f and g with: fe [Hé’/ (curl, Q)], div f= 0 in Q and satisfying
the compatibility condition (5.2) and g X n € Wlfl/p’p(F). Then, the following
problem
—A¢é=f and divéE=0 inQ,
(EN) Exn=gxmn onl,
(§-m r, =0, 1<i< |,
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has a unique solution in W"P(Q) and we have:

1€ lwrr@ < C(IF g curr coye + 119 % Pllwsrmnry ) (5.7)

Proof. Let §, € W LP(Q) be the divergence free lift of g: & =g, onl', divg, =
0 in Q with the estimate

[€ollw e < Cllgellw -1/

Next, observe that F = f — curlcurl§, belongs to [Héjl (curl, Q)] and satisfies
the compatibility condition (5.2). O

Now, we define the space
Z7(Q) ={ve W'P(Q); dive e W'P(Q)},
which is a Banach space for the norm

lollz»@) = [vllwrr@) + [[divolwie @)

We verify that the space D(Q) is dense in Z ?(Q2). The following result is proved in
the cas p = 2 by Heron,?? for the functions of H*(1).

Lemma 5.2. Assume that Q is of class C*'. Every function v € ZP(Q) satisfies:

0
div v = divro, — 2Kv- n+ a—” ‘nin WUPP(D) (5.8)
n
where K denotes the mean curvature of T', vy = v — (v - m)n is the tangential

component of v and divr is the surface divergence. In particular, the following
mapping
8'1) . -1/
v oon from Z?(Q) into W ~*/PP(T)
n

18 continuous.

Proof. Let v € D(Q2). Then,

2 dv; 2 0Ty 2 on 2 0Ty dv
3 — J . S . n
dive =2 Go & 2t gy Tit U G Tt D e nt
j=1 "7 k=1 J j=1_" k=1
2. 0n
i.e. v satisfies the formula (5.8) with K = —1 Y>> — . 7.
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Now, let v be any function in Z (). Since D() is dense in ZP(Q), there exists a

sequence (vg)i of D(Q) which converges to v in ZP(Q2) and we have the relation:

divvk:diVF(vk)thKvknJr% -n onl. (5.9)
Hence, div vy, — div v in W P() implies that div vy — div v in Wlfi’p(l“). Next,
we have (vg); — vy in Wlf%’p(f‘), since v;, — v in Wl’p(Q). As a consequence,
divp(vg): — divpo, in Wﬁi’p(lﬂ). Moreover, since the domain  is of class C %!,
then K € W 1°°(Q). This implies that 2Kvy-n — 2Kv-n in W 17%’p(f‘), Finally,
by passing to the limit k& — +oo in (5.9), we deduce the convergence of the terme

0 0

9% pin W_%’p(l") to an element wich will also be denoted by €Y . n. This
on on

yields immediately (5.8). |

Similarly, we define the space
Y?(Q) ={ve W"P(Q); curlv e W'P(Q)},
which is a Banach space for the norm

lvlly @) = vllwir) + [lcurl v wipq).-

We verify that the space D(€2) is dense in Y P(§2) and as previously, we can prove
that the following formula holds for any v € Y?(Q):

2
curlv = ; g:; X T+ g—z X n in W/PP(T). (5.10)
In particular, the following mapping;:

v— S—Z x n fromY ?(Q) into W ~1/PP(T) (5.11)

is continuous .

We give the following corollary which extends Theorem 3.2 to the case where
the boundary condition v x n = 0 on I is replaced by inhomogeneous one. We
introduce the following space for s € R, s > 1:

YS”’(Q):{veLp(Q);divveWS’l’p(Q), curlve W 2(Q), v x ne WS*%J’(P)}.

Corollary 5.2. The space Y'P(Q) is continuously imbedded in W"F(Q) and we
have the following estimate: for any v in Y P(Q),

). (5.12)

[ollwr @) < C(IIUIILP<9)+\\CUFI vllze @y Hldiv vl o Hlvxn s,
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Proof. Let v be any function of Y '*(Q). We set z = v — curl§¢ where £ €
W b?(Q) is the solution of the problem (4.16). Hence, z belongs to the space
X £ (Q). By Theorem 3.2 and (3.10), z even belongs to W *(Q) with the estimate:

[2llw ey < C(l2llzr ) + [1div 2| Lr ) + [lcurl z[| r(q)).- (5.13)

Then, it suffices to prove that curlé € W P(Q) in order to obtain v € W ().
We set w = curl €. Then w satisfies

{A'w:curlcurlv and divw =0 in

wxn=vxnonl and (w-mn,1l)r, =0.

Since curlv € LP(Q) and v x n. € W '~/PP(I'). due to Corollary 5.1, the function
w belongs to W P(Q) and satisfies the estimate

lwllw00) < (lleurlv|z@) + v % nlly -1/ (5.14)

and the inequality (5.12) can be deduced by using inequalities (5.13) and (5.14). D

More generally, we have:

Corollary 5.3.

(i) Let m € N* and Q is of class C™'. Then the space Y™P(Q) is continuously
imbedded in W"™P(Q) and we have the following estimate: for any function v
in W™P(Q),

|v]| wm.» ) < C(H”HLF(Q) + |leurl vf| ym—1.0 0y + [|div vy m-1.0(q) +

Hoxnll s )

(ii) Let s =m+o, m € N* and 0 < o < 1, Assume that 2 is of class C™ 1. Then,
the space Y*P(Q) is continuously imbedded in W*P(Q) and for any function
v in Y"P(Q) we have the following estimate:

Iollwes @) < € ([0l leurl vl we-so gy Hidiv ol iyt loxnl oy ).

Proof.

(i) In order to simplify the discussion, we shall write the proof for m = 2. For
m = 1, the result is given by Corollary 5.2 and then the proof is similar when
m > 3. We already know that v € W 17(Q) and v satisfying the estimate (5.15)

with m = 1. Using formula (5.8), we obtain directly that a—:; n € Wi-t/rr(D)

and we have the estimate:
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ov
150l s1moy < C (0] + leurl vl gre) +

+ [divollw o) + v x n||W2_%,p(P). (5.15)

Next, we have

2oy 0 Ou
on’t  "Omn  On’
Since v, € W=1/P2(I') and v, € W '"V/PP(T'), we deduce by the regularity

0
assumption on Q that (a—:b)t € W1 Y/PP(I) and we have the estimate:
v
1(55,) llwa=vme ey < Clllonllw =y + [0 X nllwe=r/nr)), (5.16)

< C(H'U”LP(Q) + [Jeurl v || gr () + ||div v|lw 1) + [|v X nHWQ,%’p(F)).

0
As a consequence, a—v belongs to W 171/””’(F). Moreover, since v € W (),
n

we have that A v = curlcurlv — Vdivw € LP(Q). Using the regularity resuls
for the Neumann problem, we deduce that v belongs to W ?7(Q) and we have
the estimate:

. ov
]l w2y < C(llcurl vy g + [|divollw e @) + 55,1 ) (5.17)

w 1’%"’(F)
The desired estimate in the point 7) can be obtained from (5.15) and (5.16) and
(5.17).

(ii) This point can be proved by using a simple interpolation argument. O

As a consequence, we have the following regularity result.

Corollary 5.4. Assume that Q is of class C*'. Let f€ LP(Q) satisfying the com-
patibility condition (5.2), then the solution & given by Proposition 5.1 belongs to
W?2P(Q) and satisfies the estimate:

1€ lw2r@) < Cll fllzr@)- (5.18)

Proof. We set z = curl&. Then, the function z satisfies:
ze LP(Q), curlz=f € LP(Q), divz=0 inQ and z-n=0 onT.
Due to Theorem 3.4, z belongs to W '*(Q). As a consequence £ satisfies:
EcIP(Q), curlé € WHP(Q), divé =0 inQ and € xn =0 onT.

We deduce from Corollary 5.3 that the solution & belongs to W %7(Q) and satisfies
the estimate (5.18). O
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Using an interpolation argument, we deduce the following theorem.

Theorem 5.1. Let s be a real number such that 0 < s < 1. Let f = curlp with
p € W*P(Q). Then, problem (5.3)
has a unique solution & € W'T*P(Q) satisfying the estimate

1€lwitsr o) < Cllel wer)-

The next theorem provides the information on the solvability, in weak sense, of
the Stokes problem (S ).

Theorem 5.2. (Weak solutions for (Sy)) Let f, g, mo with
fe [HY (curl, Q)), ge W'"VPP(T), 7y e Wi-l/ee(T), (5.19)

satisfying the compatibility condition:
V'UEKJI\),/(Q), (f, 'v>Q—/7ro'v-nds:O, (5.20)
r

where (-,-)g = (-, .>[H§/(le Q) xH (curl 0)° Then, the Stokes problem (Sn) has a

unique solution (u, m) € WP (Q) x W P(Q) satisfying the estimate
lsllwrsi@) I llwr @) SO gy et e + 19 mlwrassmogry +
+ [Imollw i-1/mn(ry) . (5:21)

Proof. First, we consider the problem
An=divf inQ, w=m onl.

Because div f € W ~1P(Q), this problem has a unique solution m € W 17(Q) satis-
fying the estimate

Il o0) < COF g urt, iy + 170l 117 r)): (5.22)

Next, because V7 € LP(2), observe that F = f — V7 is an element of the dual
space [HJ / (curl, )]’ and satisfies the compatibility condition (5.2). So problem
(Sn) becomes: —Au = F in Q, dive = 0in Q, u xn = gxnonl and
(u-mn, 1)p, = 0 for any 1 <4 < I which is equivalent to: Find v € X} () such
that:

u—§, € V(Q)

Vv € VIZ\’,/(Q), /curlu~curlvda::<F,'v>Q7
Q

where &, is the function given in the proof of Corollary 5.1. The compatibility
condition (5.20) comes from the last variational formulation by taking v € K}, (Q2).
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Moreover, since F satisfies the assumptions of Corollary 5.1, this problem has a
unique solution uw € W () satisfying the estimate

lellw o) < CUF g e,y + 19 % 2llw 1-200(r))- (5.23)

Finally, the pair (u, 7) € W P(Q) x W ?(£) is the unique solution of the problem
(Sn) and the estimate (5.21) follows easily from (5.22) and (5.23). m|

Remark 5.2. If we take mp € W ~'/PP(T'), we obtain that 7 € LP(2) a unique
solution of the problem:

—Anr=divf inQ and mw=my onl.

But we are not able to solve problem (Sy) because, in this case, f = curl (curl )+
Vr ¢ [HY (curl, Q).

More generally, we can study the following Stokes problem when the divergence
operator does not vanish and it is a given function:

—Au+Vr=f and divu =x inQ,
uxn=gxn and 7=mg onT, (5.24)
(u-n, Hr, =0, 1<i<I.

Corollary 5.5. Let f, x, g, mo with
fe[HY (curl, Q)), x e W'P(Q), gxne W VPP(T), x, e WH/pr(T)
and satisfying the compatibility condition:

Yo e KJZ\’,/(Q), (f, ’U>Q*\/F(7T0*X)’U"nd.5:0. (5.25)

Then, the Stokes problem (5.24) has exactly one solution uw € W'P(Q) and © €
W LP(Q). Moreover, there exists a constant C' > 0 depending only on p and Q such
that:

| ullwir) + I7llwir@) < C ( | f ||[Hfg’(cur179)], + lIxllw 1) +

H gllw 1170y + 7ol -vmnqry ) - (5:26)

Remark 5.3. For the same reason as in Remark 5.2, we can not suppose that
X € LP(£2) only.
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5.2. Strong solutions and regularity for the Stokes system (Sn)

In this subsection, we propose to study the question of the regularity of the solutions
of problem (S y), when the data are more regular. We need the following preliminary
result.

Lemma 5.3. The mapping v — curlv - n is continuous from WP(Q) into
W =1/P2(T") and we have the relation:

81),5

83 x 7;)-n onT, in the sense of W —Y/pp (1), (5.27)

cur1v~n=(

If moreover, vxn € W271/p’p(F), then curlv-n € W '=Y/PP(T') with the estimate:

[eurlv- nlly -1/ @y < Cllo X 0l w21/ ).

Proof. Let v € W '?(Q). By the density of D(Q) in W '7(Q), there exists a
sequence vy € D(Q) which converges to v in W ?(Q). Using (5.10), we deduce
that

-n onl.

2
curl'vk-n— E

Since vy, converges to v in W 171/”’7”(F), we deduce that the term

[N~}

v

( 8’Uk % 7_]) n converges to ZaSJ X Tj)-n in W—l/p,p(f‘).

33

Moreover, curl v belongs to H ?(div, 2) and by the continuity of the normal trace
operator, we have the convergence of curl vy - n to curl v - n in W ~1/P2(T), which
proves the following formula:

2
curlv-n = (Z g— ) -n onl. (5.28)
Consequently,
curlv~n:< thxrj) n+<j_18$]n)nxﬁ>. n +
2 on
+ (Z(v . n)a—sj X ’Tj) - n. (5.29)
j=1

Observe that the two last terms vanish. Moreover, since v x n. € W 2~/PP(I)  the
tangential derivation on I' of v; belongs to W 1_1/p’p(I‘). Thanks to the regularity
of T, the first term in (5.29) belongs to W '~%/PP(T"). This prove Lemma 5.3. O
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Theorem 5.3. (Strong solutions for (Sx)) Assume that Q is of class C*'. Let
f, g and wy with:

feIP(Q), gxne W2 VPP 7y e WIV/PP(T) (5.30)

satisfying the compatibility condition (5.20). Then, the solution (u, ) € WP (Q) x
W LP(Q) of the Stokes problem (Sy) given by Theorem 5.2 belongs to WP () x
W LP(Q) and satisfying the estimate:

I u”WZvT’(Q) + ||7T||W11P(Q) < C<||f ||LP(Q) + g x nHW2*1/PvP(F) + HWOHWlfl/w(r))

Proof. Let (u, 7) € W'P(Q) x W'?(Q) be the solution given by Theorem 5.2.
It suffices to prove that u € W 27(Q). The function z = curl u satisfies:

z € LP(Q), divz =0, curlz e LP(Q).

Moreover, since g X n € W2_1/p’p(I‘) and due to Lemma 5.3, z - n belongs to
W 1=1/P2(T'). We deduce from Theorem 3.5 that z € W P(Q). As a consequence,
it follows from Corollary 3.5 that u belongs to W *7(Q). |

We can also consider strong solutions in the case when the divergence operator
does not vanish and we have only to consider regular boundary data for the velocity.
So, the proof of the following result is quite similar to that of Theorem 5.3 above.

Corollary 5.6. Let f, g, x, mo with:
feLP(Q), gxne W*VPP(T) ye W'P(Q), me WIVPP(T)  (5.31)

satisfying the compatibility condition (5.25). Then, the solution (u, T) € WP(Q) x
W LP(Q) of the Stokes problem (5.24) given by Corollary 5.5 belongs to WP (£2) x
W LP(Q) with the corresponding estimate.

5.3. Very weak solutions for the Stokes system (Sn)

In this subsection, we are going to study the existence of very weak solutions for
the Stokes problem (S ). Before, we give some preliminary results.

We introduce the space:
NP(Q)={ve W,?(Q); curlv € H(curl, Q)},
equipped with the norm
lvline@) = lvllwie) + [lcurl vl mecur, o)

It is easy to verify that D(f2) is dense in N P(Q).
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We introduce also the following spaces

L2(Q) = {v € I’(Q); dive =0} and GP(Q)={V0; 0 € W, *(Q)}.

It is clear that LP(2) is a closed subspace of L”(2). Poincaré’s inequality implies
that it is the same for GP(2). The following lemma gives a characterization for the
dual space of LZ(9).

Lemma 5.4. We have the following properties:

(i) LP(Q) = LY () @ GP(Q).
(ii) (L2(Q)) = LE ().

Proof.

(i)

(i)

It is clear that L2(2) N GP(2) = {0}. Let v be any element of LP(£2) and
X € Wol’p(Q) satisfying: A xy = div v in Q. Setting v = v — V x, we deduce the
point i).

We observe that L2 (Q) = LP(Q)/GP () and (LE(Q)) = GP(Q)*. As Lgl(Q)
is a closed subspace of L” (). Hence, if we prove that L? (Q)+ = G*(Q) this
will imply

GP (@) = (L ()" = L) = (),
which is the required result because G*(Q)+ = (L2(Q2))’. First, let u € G?(Q).
Then, we have for any v € L (Q2)

/u~vdm:/ Vr-vde =0,
Q Q

because 7 belongs to W, ?(Q). Hence u € L’;’(Q)J— and GP(Q2) C LP (Q)*.
Conversely, let u € LP(Q) such that for any v € L? (Q2):

/ u-vde =0. (5.32)
Q

By choosing v in the space V = {v € D(Q), dive = 0inQ} and using De
Rham’s Lemma, we deduce that u = V 7, where 7 € W ?(Q). As 7 is unique
up to an additive constant, we can choose this constant in such a way that
Jrmds = 0. From (5.32), we obtain

VYve Il (Q), (rm v -n)r=0, (5.33)

where (-, - )p denotes the duality bracket W 1=1/22(I') x W ~1/2"#(T). Let now
poe WP (T) and § € WP (Q) a solution of the following Neumann
problem

. 06 1
A6 =0 in Q, %:u—mw, Dr onT. (5.34)
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Next, we set v = V. We deduce from (5.33) and (5.34) that:
(. 1= (i, Dl = 0
T B — 77 \Ms r)r =Y.
T
Then
VM c Wfl/p/)p/(l—‘)’ <7T, ,LL>F = 0,

which implies that 7 = 0 on T'. Consequently, u belongs to G?(Q). Therefore,
LP () € GP(Q) which finishes the proof. |

Now, we introduce the space:
MP(Q) = {(v, 7) € LL(Q) x LP(Q); —Av+ Ve [HY (curl, Q)]'},

which is a Banach space for the norm:

I(o; W)llarr ) = [vllpe@) + I7lle@) + 1 = A0+ V7l g oo 0y

Lemma 5.5. The space D, (Q) x D(Q) is dense in MP(Q).

Proof. Let £ in [M?(Q)]’ such that:

V(v, m) € Ds(Q) xD(Q), (¥, (v, w))=0. (5.35)

There exist f € L{,’/(Q)7 Ae LP(Q) and g € Hé”l(curl, ), such that for any
(v,m) € M*(Q2),

(@, (v, w))z/ﬂf-vd:c—&-/g)\ﬂdw

+(-Av+Vm, g) (5.36)

[Hé’/ (curl, )]’ x Hé’/ (curl, )

where we have used that [LE(Q)] = L‘;’/(Q) (as in Lemma 5.4 ). In particular, if
(v, ) € D, () x D(R), we have

/f~vdw+/)\7rdw+<—Ag, v)g — (divg, m)q =0,
Q Q

where (-, -)q is the duality bracket between D’(Q2) and D(Q?). Particularly, if 7 = 0,
we obtain for any v € D,():

/f-'ud$—&—(—Ag7 v)q =0.
Q
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Since f — A g belongs to W ~#?(Q), using De Rham’s Lemma (see Ref. 4), there
exists # € W ~1P(Q), unique up to an additive constant, such that

f—Ag=V0H inQ.

If we choose now v = 0, we obtain for any 7 € D(Q):

Arde — (divg, 7)o =0,
Q

which implies that A = div g in . Observe that we can extend by zero the functions
f, A and g in such a way that
fel’(R%, Xe LP(R®) and g€ H” (curl, R?).

Moreover, for any x € D(R?) such that Ay = 0 in 2, we have by (5.36) with
v =V x|a:

/f~dea::0.
Q

Let i € W P(I'). By the density of D(T') in W #

1
pr € D(T) such that yy converges to p in W »*P(T'). Let now ¢y, be the solution of
the problem

"P(T), there exists a sequence

—Apr=0inQ and ¢ =p, onT.
We know that ¢, belongs to C*(Q). Let 1, € D(R?) an extension of ¢y, to R3.

Then ¢y belongs to D(£2) and we have,

0= [ f-Ver=(f- ,
/Qf Ver=1{f-m, uk)wfﬁp (O)xW 77

So, (f - n, M>W7 =0 for anyueWFl”p(F).

B i 1
PP (Mmyxw PP (D)

Consequently, f -n = 0 on I and div f = 0 in R3. Now, we take ¢ € D(R?) with
dive = 0 and g € D(R3). We obtain by (5.35) and (5.36):

[ Fredos [ Rado [ (~ap+va)-gdz -0, (5:37)

In particular, if ¢ = 0, then by De Rham’s Lemma:

f-AGg=V0, inR? (5.38)
with 6y € D'(R?). Since divf = 0 in R3, then —Adivg = A6, in R3. But f €
L¥ (R3) and supp f is compact, then f € W 2P (R3) where W 2P (R3) is the
dual space of the weighted sobolev space

WP (RY) = {v € D'(RY), 2 e IP[RY), V¥ e I’(RY), Do  IP(RY)},

wo w1
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with wo = (1+ |z|)? if p & {3/2,3}, wo = (1 + |z|)?In(2 + |z|) if p € {3/2,3},
wi=(14|z|)if p#3, w; =1+ |z|) In(2+ |z|) if p=3.

Consequently Vg € Wo_z’pl (R3). We deduce that 6, € Wo_l’p/ (R3) and then
0y = —divg in R3. By taking in (5.38) the restriction to €, we obtain f — Ag =
Vbo|a. As Q is connected, there exists a unique constant a such that 6 = 0y + a
in Q. Hence, relation (5.38) becomes Ag — Vdivg = f in R3. That means that
curlg € Hp/(curl, R?) and then curlg € HY (curl, Q).

Moreover, taking ¢ = 0, we obtain from (5.37) that A = div g in R3. We deduce that
div g belongs to L*' (R3) and to L (Q) by restriction on . Then, g € Hé)/(div7 Q).
As g € Hé”l(curl, Q), then g € Wol’p/ (Q). Moreover, as curlg € Hé’/ (curl, Q),
then g belongs to N (©) and there exists a sequence (g;)r € D(€2) such that
g, converges to g in NPI(Q) when k — oo. Finally, we consider (v, m) € M ?(2).
Observe that

, (v, 7)) :—/curlcurlg~vdw—|—/Wdivgdw+<—Av+V7r, g)a
Q Q

= lim (—/curlgk-curlvdm—i—/wdivgkd$+
Q

k—o0 Q
+/curlgk-curlvdm—/Wdivgkdw) =0,
Q Q

where (-, - ) denotes the duality bracket [Hé”,(curl, )]’ x Hé’l (curl, Q). There-
fore, D, (Q) x D(Q) is dense in M P(Q). m|

In order to give meaning to the trace of a very weak solution of the Stokes
problem (S ), we need to introduce the space:

T(Q)={pec W?P(Q); ¢ xn =0 and dive =0 onl'}.

Theorem 5.4. The linear mapping v : (u, ©) — (ux n, w|r) defined on D, () x
D(Q) can be extended by continuity to a linear and continuous mapping, still denoted
by v, from MP(Q) into W~YPP(T) x W ~1/P2(T), and we have the Green formula:
for any (u, ) € MP(Q) and ¢ € TJ’\’,,(Q),

(—Au+Vm, <,0>Q:—/u-A<p—|—<u><n, curlgo)p—/ﬂdivcp
Q Q

+(m, @ (5.39)

where (-, - Yo denotes the duality bracket [Hé’/ (curl, Q)] x Hé’/(curl, Q) and (-, -)r
denotes the duality bracket W —2/P# () x W V2P (T') or W=YPP(T) x WY/PP (D),

Proof. Let (u,7) € D,(Q) x D(Q), then formula (5.39) is valid for any ¢ €
Y5 (Q). Let p € wi/pr (T'). Then, there exists a function ¢ € W2’p/(Q) such



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

48 C. Amrouche and N. Seloula

that:
0
¢ =0 and —Sozuxn onI'
on
and verifying:
H(’OHWQ-J’/(Q) < CHH‘HWUZ%?’(F)' (5.40)
Moreover, since ¢ = 0 on I', using (5.10) we obtain curlep = —pu, on I'. Using

(5.8), the function ¢ belongs to T]I\’,/(Q) Consequently,

(u X n, [.L>[“ = ‘(u x mn, curl p)r

<[-Au+ Vﬂ-”[Hg’,(curl, Q)]f”SD”HP’(curl,Q) +
+ llullzr @ 1A @l g () + 17l e @) div el Lo o

< O, )t i el 2o
Thus, using (5.40), we obtain for any (u, 7) € D,(Q) x D(Q):

lw X nllyw—1/m0@y < Cll(w, T)|[arr0)-
Concerning the trace of 7, the same reasoning leads only to show that this trace

belongs to W ~1=1/P2(T"). But, we have A7 € W ~1P(Q) and m € LP(Q2). Then due
to Ref. 5, the trace of 7 on I' belongs to W ~/P?(T"). Moreover, we have:

Il —s/mp(ry < CImloe) + 1A T 1000 )-

But —Au + V7 € [Hg’,(curl, Q)] there exist ¢, € LP(Q) and h € LP(Q) such
that —Au + Vr = 9 + curl h with

[%ollzr @) + 1Rllzr ) < Cll = Aw+ V7l g o (e, 0y

Then, by taking the divergence we obtain

||A7r||W71,p(Q) = HdiVipo”Wﬂm(Q) < OH"PoHLP(Q) <C|-Au +V7T||[H[§”(cur1,g)]l'

As a consequence, we have
||7T||W*1/pvp(1‘) < C(HWHLP(Q) + H —Au+ Vﬂ-H[Hd‘"(curl,Q)]’)
< C|[(u, )| mr(0)-

Therefore, we obtain that the linear mapping v : (u, 7) — (ur X n, 7|r) defined on

the space D, (Q2) xD() is continuous for the norm of M ? (). Since D, () xD(Q) is
dense in M P(£2), then we can extend this mapping from M P(2) into W ~Y/PP(T") x
W =1/PP(T) and the Green formula (5.39) holds for any (w, 7) € M P(2) and for
any ¢ € T]Z\),/ (). O
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Theorem 5.5. (Very weak solutions for (Sy)) Assume that Q is of class C?1.
Let f, g and my with:
fe [HY (curl, Q)), gx ne W YPP(T), my e W—1/Pr(T),

and satisfying the compatibility condition (5.20) where we replace the integral by a
bracket duality. Then, the Stokes problem (S ) has exactly one solution u € LP(2)
and m € LP(). Moreover, there exists a constant C > 0 depending only on p and
Q such that:

ullze@) + I7llLee) < C(llfll[Hg»/(curl,Q)], + 1l gllw-1pr@y +

+ HWO”W*l/z’,p(r‘))- (5.41)

Proof.

(i) First step: Thanks to the Green formula (5.39), it is easy to verify that (u,7) €
LP(Q) x LP() is solution of problem (S ), without the last flux condition, is
equivalent to the variational formulation: Find (u, 7) € LP(2) x LP() such
that for any ¢ € Tﬁ,/ (Q) and g € Wol’p/(Q)7

/u-Agodm—l—/ rdivede = — (f, p)a+ (g X n,curlp)r +
Q Q

+ (mo, @ - M), (5.42)

/u-qu:c:O.
Q

Indeed, let (u, m) € LP(Q2) x LP(£2) be a solution to (5.42). It is clear that:
—Au+Vr=f and divu=0 in Q.

Using Green formula (5.39), we obtain for any ¢ € Tﬁ’\; (Q):

—/Qu -Apdx + (u x n,curl p)r — /Qﬂ'divcpdm + (7o, ¢ -n)r={(f, ¥)a.

Then, we deduce that for any ¢ € TI’\’,/(Q),
(u x n, curlp)r + (m, ¢ - n)r = (g X n, curlp)r + (my, @ - n)r.
Let p € W/ne' (T"). Then, there exists a function ¢ € w2 () such that:

@ =0 and g—i:ut on I,

and this implies that curl¢ x n = —pu, and dive = 0 on I', that means that
p € TX (). We deduce that for all p € w/Pr (1),
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(uxmn, wr = (g xn, ur.

Consequently u x n = g x n on I'. Let us prove now that 7 = my on I'. For any
A € WHL/p2 (1), there exists a function ¢ € W *P () such that: ¢ = An

and g—i -n = —KX on I', where K is the curvature of I'. Observe that ¢

belongs to TJZZ,/(Q) and then for any A € W 1+1/p:p’ (T") we have:
<7I'7 )\>W —1-1/p.p(T)x W 1+1/p,p/(1") = <7rOa >\>W —1-1/p.p(T)x W 1+1/p,p'(1")a
and then, m = mg on I'.
The converse is a simple consequence of the Green formula (5.39) and the fact

that for any ¢ € T]%/(Q):

/ u - Vdivpdz = (u-n, dive)qg = 0.
Q

Second step : Let’s now solve problem (5.42). We know due to Corollary 5.6
that for any (F, x) € L’ () L K2(Q) x WP (Q), there exists a unique ¢ €
W27 (Q) and ¢ € Wol’p/ (Q) satisfying :

—Ap+Vg=F and divp=yx inQ,
@exn=0 and ¢g=0 onl,
(¢p-mn, r, =0 forany 1 <i <17,
with the estimate
Il w2 @)+ lalhyr @) < CUF Ny + Iy )
From this bound, we have
|, @)~ (g x n, curlg)r — {mo, o -
<€ (If w0y + g X nllw -s7maey + ol —srmoey ) X (5:43)

% (I1F g o + Il )

In other words, we can say that the linear mapping;:

(F7 X) — <f7 (P>Q - <g X mn, CUI'ICP>1" - <7T07 - n>r

defines an element of the dual space of (Lp'(Q) LKR(Q) x Wol’p,(Q), that
means that there exists a unique (u, 7) € (LP(Q)/K X (Q)) x W ~1P(Q) satis-
fying

[uFdo- [ mxde=f ¢la - (g% n. curlr - (m. - n)r.
Q Q
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A such solution (u, ) satisfies the problem (S y) without the last condition
but we have only to set

1
ﬂzu—Z(u-n, Dr, V.
i=1

It is clear that (w, w) € LP(Q) x W ~1P(Q) is also solution of (S ) and satisfies
its last condition. Moreover, 7 € W ~1P(Q) satisfies:

Ar=divf inQ? and w=my onl.

Since divf € W =12(Q) and mgp € W ~V/P2(T"), we deduce from Ref. 5 that 7
belongs to LP(}). Finally, the estimate (5.41) can be deduced from (5.43). 0O

Concerning now the existence of very weak solutions for the problem (Ey) ,we
need to introduce the following space:

MP(Q) ={v e LL(Q); Av e [HY (curl, Q)]'},
which is a Banach space for the norm:
[vllamr) = lvllze@) + [I1A vH[Hg/(curLQ)],-

Using the same arguments given in the Lemma 5.5, we can prove that the space
D,(Q) is dense in MP(Q2). To give a sense to the trace of functions which belong
to MP(Q), we have the following lemma, where the proof is very similar to that of
Theorem 5.4.

Lemma 5.6. The linear mapping v : u +—— u x n|r defined on D,(Q) can be
extended to a linear continuous mapping

v MP(Q) — WD),
Moreover, we have the Green formula: for any u € MP(Q) and ¢ € TJZ\’,/ (Q),

<A u, 90>Q = /S; u- A @dw - <U X m, curl ‘-P> W—1/p.p(T")x W1/P.P' (T)>
where the duality on € is the following

<.’ >Q - <.’ .>[Hg’/(cur1, Q)]’xHopl(curl, Q)°
As a consequence, as for Theorem 5.5, we have the following result concerning
the very weak solutions for the elliptic problem (E y).

Corollary 5.7. Assume that  is of class C*'. Let f € [Hé’/ (curl, Q)] with div f=
0 in Q satisfying the compatibility condition (5.2) and let g € Wfé’p(lj). Then the
problem (E n) has a unique solution & € LP(Q)), with the estimate

1€l1z0@) < CU Ny ey + 19l 3
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5.4. A wvariant of the system (Sn)

As it is shown in the previous sections, in order to solve problem (S y), the data
must satisfy the compatibility condition (5.20). Now, what happen if this condition
is not satisfied? As will appear, the answer strongly depends on the following variant
of the Stokes problem (Sy) : Find functions w, 7 and constants ¢; for i = 1,...,1,
such that:

—Au+Vr=f and divu =0 in 2,

y UXN=gXn onl",
(Sn) .
m=m9 only and 7w =my+ ¢ only, 1<i<]T
(w-n, p, =0, 1<i<I,

situation that we can be found in Ref. 14. Let us compare with our approach.

Theorem 5.6. Let f, g and g such that:

feHY (curl, Q), ge W'/PP(I), m e wTVrR(D),

Then, the problem (Sk) has a unique solution uw € W P(Q), 7 € WLP(Q) and
constants ci,...,cy satisfying the estimate:

el sy + el o) < OOl e urt, oy + 191 wa-17mney + 70l 1700y

and where cy,...,c; are given by (5.44). In particular, if f € LP(Q) and g €
W2Y/PP(T) then ue W2P(Q).

Proof.

(i) We suppose that f € [Hé’/(curl, Q), g € WIYPP(D) and my €
W 1=1/P2(T'). Observe that the following problem

—Au+Vr=f and divu =0 inQ,
UXN=gXn onl,
™ = T OHF(),

T=mo+ (f, Vg¥)o — (m0, Vg -n)r only, 1<i<I,

(u-n, 1)y, =0,

has a unique solution (u, 7) € W P(Q) x W ?(Q) since the compatibility
condition (5.20) is verified. The brackets on 2 denote the duality between
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[Hé)/ (curl, Q)] and Hg/ (curl, Q) and the brackets on I" denote the duality be-
tween W 1=1/PP(T') and W —Y¢"P'(T'). For i = 1,...,I, we set ¢ = (c1,...,cr)
where

ci = (f, Vg )a—(m, Vg -n)r. (5.44)
Finally, (u, 7, ¢) € W P(Q) x W 2(Q) x R! is the solution of (S'y).

(ii) Let u € W 'P(Q) the solution of problem (S’y) obtained by the previous point.
We suppose now that f € LP(2), g € szl/p’p(l“) and we set z = curl u.
Since u x n € W 2"Y/PP(I'), by Lemma 5.3, we have z - n € W 1=1/72(I). By
Theorem 3.5, the function z belongs to W P(£2). Then, u satisfies

uec IF(Q), divu=0, curlu €¢ W'P(Q) and u x n e W2 VPP (D),
We deduce from Corollary 3.5 that u € W 27(Q). O

Remark 5.4. Observe that if we suppose that the compatibility condition (5.20)
is verified, we have that ¢; = 0 for all i« = 1,...,I. Then, we have reduced to solve
the problem (S’y) without the constant ¢; and (S’y) is anything other then (Sy).

The assumption on f in Theorem 5.6 or Theorem 5.2 can be weakened by
considering the space defined for all 1 < r, p < oco:

H;?(curl, Q) ={p € L"(Q); curlyp € LP(Q), ¢ x n=0onTl},
which is a Banach space for the norm
||90||Hg’p(curl, Q) = lellzr () + [eurl @ rr (o).

We can prove that the space D(Q) is dense in HOT,’p,(curl, Q) and its dual space
can be characterized as:

[H P (curl, Q)) = {F +curl, Fe L'(Q), ¢ € IF(Q)}. (5.45)

Theorem 5.7. Let f, g and my such that:

fe | (curl, Q). ge W'VPI(I), my e WITVrR(D),

with r < p and % < % + % Then, the problem (Sy) has a unique solution u €
WP (Q), 7 € WE(Q) and constants i, . .., cr satisfying the estimate:

lellwr oy + Il r@) < CUS o e, g 191 w-2mney + 70l 1-1/mnry),

and c1,...,cr are given by (5.44), where we replace the duality bracket on 2 by
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{(na=( >[H5"=P’(cur1, Q) xHY ' (curl, Q)"

Proof. Due to the characterization (5.45), we can write f as f = F + curl4,
where F € L"(Q) and ¥ € LP(Q). By Theorem 5.6, the following problem:

—Aw+Vg=curly and divw =0 in,
WXN=gXmn onl,

qg=m9 onl'y and ¢q=my+d; onl, 1<i<I,
(w-n, L)p, =0, 1<i<I,

has a unique solution (w, ¢, d) € W "P(Q) x WP(Q) x R, with d = (dy, ..., dr)
where

di:_<7r0;qu!v'n>F; 1§’L§Iv

(note that for any 1 < i < I, (curlep, V¢¥)q = 0). Again, by Theorem 5.6, the
following problem

—Az+4+VO=F and divz=0 in{,
zxn=0 onl,
#=0only and 60 =¢ onl;, 1<i<I,
(z-m, p, =0, 1<i<I,
has a unique solution (z, 6, e) € W *"(Q) x W L(Q) x R!, where ¢; = (f, V ¢ )q.

Observe that, since + < 1%—1— T W27 (Q) — W P(Q). Then, (u, 7, ¢) = (w +
z, ¢+ 0, d+ e) is the unique solution of the problem (Sy,). D

6. Helmholtz Decompositions

In this section, we assume that € is of class C''! and we give decompositions of
vector fields w in LP(£2). Our results may be regarded as an extension of the well-
known De Rham-Hodge-Kodaira decomposition of C*°-forms on compact Rieman-
nian manifolds into LP-vector fields on Q. We can find similar decompositions in
Ref. 23, where the authors consider more regular domain with C*°-boundary I'. We
can see also Ref. 27 for the case p = 2.

We introduce the space:

W;’p(Q) ={ve Wl’p(Q); dive =0 in Q}

Theorem 6.1.
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Let w € LP(Q). Then, there exist x € W'P(Q), w € WIP(Q) N XZ(Q),
z € KR(Q) such that w can be represented as:

u=2z+ V x+ curlw, (6.1)

where z is unique, x is unique up to an additive constant and w is unique up
to an additive element of KX.(Q). Moreover, we have the estimate:

12l ze () + [IXIlw o)/ + (Wl wrr @)z @) < Cllullze @) (6.2)

Let w € LP(Q). Then, there exist x € W, P(Q), w € WHP(Q) N X2(Q), z €
KX () such that w can be represented as:

u=z+ V x+ curlw, (6.3)

where z and x are unique and w is unique up to an additive element of K7.(Q).
Moreover, we have the estimate:

12l ze ) + [IXIlw o) + [l wie@)/kr@) < Cllullzr @) (6.4)

Proof.

(i)

Let w € LP(Q). The scalar potential x € W 1P(Q) is taken as a weak solution
of the following problem:

div(Vx—u)=0inQ, (Vx—u)-n=0onT, (6.5)

or equivalently of

Vuer’p/(Q), /Vx~V/1da::/u'V,ud:c. (6.6)
Q Q

Such a scalar function x as (6.6) is unique up to an additive constant and
satisfies the estimate:

Ixllw e ) /r < Cllullre o). (6.7)

Next, the vector potential w € W o ?(Q)N X% (Q) can be derived from Proposi-
tion 5.1 and the point 77) of Remark 5.1. For u € LP(Q), we take w € W "7(Q)
such that:

—Aw=curlu, divw=0inQ and wxn=0 onT.

The vector potential w is unique up to an additive element of KX (2) and
satisfies the estimate:

lwllwrr@)xz@ < Cllullr@). (6.8)
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Finally, let us define z = u — V x — curl w. Then z € K 72(2) and satisfies the
estimate

llzllze ) < llulle) + IV Xl zr (o) + lcurlw|| o (o) < Cllul|pr),  (6.9)

which yields the representation (6.1) of u. The estimate (6.2) is a consequence
of (6.7), (6.8) and (6.9).

Let u € LP(Q). Compared with (6.5), the scalar potential y € W,"*(€) is taken
as the weak solution of the Dirichlet problem:

Axy=divuy inQ, x=0onTl.
Such a scalar function y is unique and satisfies the estimate:
IxIlw 1r ) < Cllul|pr)-

The vector potential w € W 27(Q) N X 2(2) can be derived from Proposition
4.2. For u € LF(Q) we take w € W "P(Q) such that:

Aw=curly and divw =0 in Q,
w-n=0 (curlw—u)xn=0 onl.

The vector potential w is unique up to an additive element of KZ2(Q2) and
satisfies the estimate:

wllw @)y xr@) < Cllullre@)-

Let us define z = u — V x — curl w. Then, similarly to the proof of the above
i) we obtain the representation (6.3) of w and the estimate (6.4). O

Remark 6.1.

(i)

(if)

(iii)

Note that in the representation (6.1), if  is simply connected then z = 0,
situation that can be the same in (6.3) if we suppose that the boundary T is
connected or in other words without holes.

In the decomposition (6.1), z being a divergence-free vector field with a zero
normal trace on the boundary. We know from Theorem 4.1 that z = curly
with ¢ € WP(Q), divep =0in Qand ¢ -n =0 on I

In the decomposition (6.3), z being an element of K ¥ (£2). We know then that
z is a gradient of a function of W 1:7(Q).

An immediate consequence of the above theorem is the following result.

Corollary 6.1.
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By the unique decompositions (6.1) and (6.3), we have two kinds of direct sums:

L’(Q) = K% (Q) @ Hy ® Hy ® HY (div, Q), (6.10)

LP(Q) = KL(Q) & Hy ® Hy & H,, (6.11)
where

Hy ={ve H{(div,Q); (v-n, 1)y, =0, Vj=1,...,J},
Hy ={Vx; xeW,""(Q)}, H»={Vg; ¢e W"P(Q), Ag=0},
a0

H; ={V0; 6 W"(Q), A9=0, <%

), =0, Vi=1,...,1}.

Proof.

(i) The direct sum (6.10) is a consequence of the representation formula (6.3)
with the uniqueness. Indeed, suppose that w is decomposed as in (6.3) and let
6 € W 1P(Q) solution of the following problem

00
div(V8 —curlw) =0 inQ, a—:curl'w-n onT,

n
which is unique up to an additive constant. The function y = curlw — V6
belongs to HJ(div, ). Moreover, since (curlw - n, 1)r, = 0, we have

(a—7 1)r, =0 for any ¢ =0, ..., 1. Then, we can write u as
n

u=2z+Vx+Vo+y, (6.12)

where § € H3 and y € H['(div, Q). This completes the proof of (6.10).

(ii) Now, we give the proof of (6.11). Let w € LP(2). There exists a unique x €

W LP(Q) such that Ay = divu in Q and x = 0 sur I'. Since (u — V) -n €
0

W —1/P2(T"), then the following problem A ¢ = 0 in  and a—z =(u—-Vx)'n
on I' has a unique solution ¢ € W1P(Q). Note that ((u — V) - n, I)r =
Jodiv(u —Vx)dz = 0. We set, uy = Vx, up = Vgand z = v — u; — us.
Observe that u = z + uy + us € H{(div, Q) ® H; ® H,. Now, it remains to
prove that H ' (div, Q) = K%.(Q) ® H . For this, it suffices to observe that any
function v € H{ (div, Q) can be written as

J

v=w+ Z(v - n, 1>2jg/;é?iqu,
Jj=1

where w = v — Z;]:l('v -n, 1>ng/1_'\2_l:1qu € Hg. This completes the proof. O
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