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In a three dimensional bounded possibly multiply-connected domain, we give gradient

and higher order estimates of vector fields via div and curl in Lp theory. Then, we
prove the existence and uniqueness of vector potentials, associated with a divergence-

free function and satisfying some boundary conditions. We also present some results

concerning scalar potentials and weak vector potentials. Furthermore, we consider the
stationary Stokes equations with nonstandard boundary conditions of the form u ×n =

g × n and π = π0 on the boundary Γ. We prove the existence and uniqueness of weak,

strong and very weak solutions. Our proofs are based on obtaining Inf −Sup conditions
that play a fundamental role. We give a variant of the Stokes system with these boundary

conditions, in the case where the compatibility condition is not verified. Finally, we give
two Helmholtz decompositions that consist of two kinds of boundary conditions such as

u · n and u × n on Γ.
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1. Introduction

In many problems of fluids mechanics, the operators div and curl play an important

role in the mathematical study of these problems. In particular, we need some

1
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inequalities to estimate the gradient of vector fields via div and curl as for instance:

‖∇ v‖Lp(Ω) ≤ C(‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω)

)
, (1.1)

for all v ∈ W 1,p
0 (Ω), where Ω is a bounded open set of R3 with boundary Γ of

class C 1,1. However, in some physically problems, we need to consider vectors fields

with either vanishing tangential components or vanishing normal components on

the boundary. In this case, the inequality (1.1) is not true. Indeed, in the case

where the first Betti number I or the second Betti number J do not vanish, the

following kernels:

K p
N (Ω) = {v ∈ Lp(Ω), div v = 0, curl v = 0 in Ω and v × n = 0 on Γ},

K p
T (Ω) = {v ∈ Lp(Ω), div v = 0, curl v = 0 in Ω and v · n = 0 on Γ}

have dimensions I ≥ 1 and J ≥ 1 respectively.

In this paper, we are interested in some inequalities of type (1.1), in the case where

Ω has arbitrary Betti numbers and for vectors fields with vanishing tangential com-

ponents or vanishing normal components on the boundary.

We assume that Ω is a connected subset of R3, such that:

(i) We do not assume that its boundary Γ is connected and we denote by Γi,

0 ≤ i ≤ I, the connected components of Γ, Γ0 being the boundary of the only

unbounded connected component of R3\Ω̄. We also fix a smooth open set O with

a connected boundary (a ball, for instance), such that Ω̄ is contained in O, and

we denote by Ωi, 0 ≤ i ≤ I, the connected component of O\Ω̄ with boundary

Γi (Γ0 ∪ ∂O for i = 0).

(ii) We do not assume that Ω is simply-connected. Observe that each component Γi,

0 ≤ i ≤ I, is an orientable manifold of dimension two and hence is homeomorphic

to a torus with pi holes (see Ref. 17 for these properties). We set J =
I∑
i=0

pi and

we make the following assumption that permits to “cut ”adequately Ω in order to

reduce it to a simply-connected region.

In order to study the vector potentials, we have to describe with more precision

the geometry of the domain. We first need the following definition.

Definition 1.1. A bounded domain in R3 is called pseudo-C 1,1 if for any point x

on the boundary there exist an integer r(x ) equal to 1 or 2 and a strictly positive

real number ρ0 such that for all real numbers ρ with 0 < ρ < ρ0, the intersection of

Ω with the ball with centre x and radius ρ, has r(x ) connected components, each

one being C 1,1.

Hypothesis 1.1. There exist J connected open surfaces Σj , 1 ≤ j ≤ J , called “cuts

”, contained in Ω, such that:
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(i) each surface Σj is an open part of a smooth manifold Mj ,

(ii) the boundary of Σj is contained in ∂Ω for 1 ≤ j ≤ J ,

(iii) the intersection Σ̄i ∩ Σ̄j is empty for i 6= j,

(iv) the open set

Ω◦ = Ω \
J⋃
j=1

Σj

is pseudo-C 1,1 simply-connected.

For J = 1 with I = 3, see for example Fig. 1.

The hypothesis (iv) is important but not common. In general, boundary values

problems are solved in a Lipschitz domains. In section 3, we need to solve some

elliptic problem (see Lemma 3.4) in Ω◦ which is not Lipschitz continuous. Moreover,

the regularity C 1,1 is necessary to obtain solutions in W 1,p(Ω).

We need Sobolev spaces W s,p(Γi) on the connected component Γi, for 0 ≤ i ≤ I,

−2 < s < 2 and for 1 < p < ∞. We can also define Sobolev spaces on the cuts

W s,p(Σj) as restrictions to Σj of the distributions belonging to W s,p(Mj). We

will note by W s,p(Σj)
′ the dual space of W s,p(Σj).

Let us introduce some notations. For any vector field v on Γ, we shall denote

by vn the component of v in the direction of n , while we shall denote by v t the

projection of v on the tangent hyperplane to Γ. In other words vn = v ·n and v t =

v − vnn . Let us now consider any point P on Γ and choose an open neighbourhood

W of P in Γ small enough to allow the existence of two families of C2 curves

on W . The lengths s1, s2 along each family of curves, respectively, are a possible

system of coordinates in W . We denote by τ 1, τ 2 the unit tangent vectors to each

family of curves, respectively. With this notations, we have v t =
∑2
k=1 vkτ k, where

vk = v · τ k.

Fig. 1. .
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We denote by [·]j the jump of a function over Σj , i.e. the differences of the traces,

for 1 ≤ j ≤ J and by 〈·, ·〉X,X′ the duality product between a space X and X ′.

We shall use bold characters for the vectors or the vector spaces and the non-bold

characters for the scalars. The letter C denotes a constant that is not necessarily

the same at its various occurrences. Finally, for any function q in W 1,p(Ω◦), grad q

is the gradient of q in the sense of distributions in D′(Ω◦). It belongs to Lp(Ω◦) and

therefore can be extended to Lp(Ω). In order to distinguish this extension from the

gradient of q in D′(Ω), we denote it by g̃rad q.

We shall show for every 1 < p < ∞ the following first inequality concerning tan-

gential vector fields:

‖∇ v‖Lp(Ω) ≤ C(‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n , 1〉Σj
|), (1.2)

and the second concernes the normal vector fields :

‖∇ v‖Lp(Ω) ≤ C(‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|). (1.3)

By means of the representation formula for v ∈W 1,p(Ω) and by introducing inte-

gral operators, Von Wahl,28 obtained (1.2) and (1.3) without the flux through the

cuts Σj for 1 ≤ j ≤ J and the components Γi for 1 ≤ i ≤ I on the right hand

sides. So, he proved that such homogeneous estimates hold if and only if I = 0, i.e.

Ω is simply connected in the case of v × n = 0 and if and only if J = 0, i.e. Ω

has only one connected component of the boundary Γ in the case u · n = 0 on Γ,

respectively. In Ref. 9, the authors prove Cα-estimates of type (1.2) and (1.3) in a

bounded smooth open set. Our estimates are then a generalization of Von Wahl’s

estimates which are a special case of ours. Our proofs are based on the Calderón

Zygmund inequalities and the traces properties. Using the Peetre-Tartar Theorem,

we deduce the following first Poincaré’s inequality for every function u ∈W 1,p(Ω)

with u × n = 0 on Γ:

‖w‖Lp(Ω) ≤ C(‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +

I∑
i=1

|〈w · n , 1〉Γi
|)

and a second for every function u ∈W 1,p(Ω) with u · n = 0 on Γ:

‖w‖Lp(Ω) ≤ C(‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +

J∑
j=1

|〈w · n , 1〉Σj
|)

Besides, we can deduce the following inequality by using the results in Section 3:

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) +‖curl v‖Lp(Ω) +‖div v‖Lp(Ω) +‖v ·n‖

W
1− 1

p
,p

(Γ)

)
, (1.4)
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‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω)+‖curl v‖Lp(Ω)+‖div v‖Lp(Ω)+‖v×n‖

W
1− 1

p
,p

(Γ)

)
, (1.5)

Moreover, we shall show the corresponding estimates for v in higher order Sobolev

spaces W m,p(Ω) with m ∈ N∗ via div u and curl u when v × n or v · n does not

vanish on Γ. These inequalities will be useful in order to prove regularity results

of solution of Stokes problem and elliptic problems that we will solve. In addition,

we will also consider the case of fractionary Sobolev spaces W s,p(Ω) with a real

number s possibly not integer.

Next, we will give some generality results concerning vector, scalar potentials and

weak vector potentials in Lp theory with 1 < p < ∞, thus extending the results

established by Amrouche, Bernardi, Dauge and Girault,2 and by Amrouche, Ciarlet

and Ciarlet, Jr,3 in the hilbertian case (see also for exemple the results established

by D. Mitrea, M. Mitrea and J. Pipher,25). In particular, we will prove existence

of a first vector potential ψ associated with a divergence-free vector function u

satisfying:

u = curlψ and ψ · n = 0 on Γ.

Using the classical Helmholtz decomposition and this tangential vector potential,

we prove the following Inf-Sup condition:

inf
ϕ∈V p′

T (Ω)
ϕ6=0

sup
ξ∈V p

T (Ω)
ξ 6=0

∫
Ω

curl ξ · curlϕdx

‖ξ‖Xp
T (Ω)‖ϕ‖Xp′

T (Ω)

> β1, (1.6)

where β1 > 0 and the spaces X p
T (Ω), V p

T (Ω) are defined by

X p
T (Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω), curl v ∈ Lp(Ω) and v · n = 0 on Γ},

V p
T (Ω) = {v ∈ X p

T (Ω); div v = 0 in Ω and 〈v · n , 1〉Σj
= 0, 1 ≤ j ≤ J},

which plays a crucial role in the proof of the solvability of the following weak

Neumann problem: for v ∈ Lp(Ω), find u ∈W 1,p(Ω) such that{
−∆ u = curl v and div u = 0 in Ω,

u · n = 0, (curl u − v)× n = 0 on Γ.
(1.7)

The problem (1.7) for the vector fields is in fact the equivalent of the Neumann

problem for the scalar functions: for f ∈ Lp(Ω), find χ ∈W 1,p(Ω)

−∆χ = div f in Ω and (∇χ− f ) · n = 0 on Γ. (1.8)

As a consequence of the resolution of (1.7), we can prove the existence of a second

vector potential satisfying:

u = curlψ and ψ × n = 0 on Γ
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and then the following Inf-Sup condition:

inf
ϕ∈V p′

N (Ω)
ϕ 6=0

sup
ξ∈V p

N (Ω)
ξ 6=0

∫
Ω

curl ξ · curlϕdx

‖ξ‖Xp
N (Ω)‖ϕ‖Xp′

N (Ω)

> β2, (1.9)

where β2 > 0 and the spaces X p
N (Ω), V p

N (Ω) are defined by

X p
N (Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω), curl v ∈ Lp(Ω) and v × n = 0 on Γ},

V p
N (Ω) = {v ∈ X p

N (Ω); div v = 0 in Ω and 〈v · n , 1〉Γi
= 0, 1 ≤ i ≤ I}.

As a consequence of the Inf-Sup condition (1.9), we can solve the following problem:

for v ∈ Lp(Ω), find u ∈W 1,p(Ω) such that

{
−∆ u = curl v and div u = 0 in Ω,

u × n = 0 on Γ,
(1.10)

which is then well-posed (see Section 5 for more general right hand sides in the dual

space of H p′

0 (curl, Ω)). We can check this with another way. Indeed, the problem

(1.10) is equivalent to:{
−∆ u = curl v in Ω

div u = 0, and u × n = 0 on Γ,

but where we have replaced the condition div u = 0 in Ω by div u = 0 on Γ.

With the help of the results obtained on the vector potentials, we are able to describe

Helmholtz decomposition of Lp-vector fields on Ω in a more precise manner through

solutions of the boundary value problems (1.7) and (1.10). So, we will prove the

following Lp-Helmholtz decomposition:

v = z +∇χ+ curl u , (1.11)

where z ∈ K p
T (Ω) is unique, χ ∈ W 1,p(Ω) is unique up to an additive constant

and u ∈ W 1,p(Ω) is the unique solution up to an additive element of K p
N (Ω) of

the problem (1.10). A similar decomposition to (1.11) is recently shown by Kozono

and Yanagisawa,23 in the case of C∞-boundary Γ by using the theory of Agmon-

Douglis-Nirenberg. In the case p = 2, Buffa and Ciarlet. Jr in Ref. 11 and Ref. 12

obtained some Hodge decompositions on the boundary of Lipschitz polyhedra. See

also Ref. 18 and Ref. 30. On the other hand, we will see that every v ∈ Lp(Ω) can

be also decomposed as

v = z +∇χ+ curl u , (1.12)
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where χ ∈ W 1,p
0 (Ω), z ∈ K p

N (Ω) are unique and u ∈ W 1,p(Ω) is the unique

solution up to an additive element of K p
T (Ω) of the boundary value problem (1.7).

For u ∈ H s(Ω) with s > 0 and Ω of class C∞, Bendali, Dominguez and Gallic,6

obtained the decompositions (1.12) and (1.11).

As an application, we will consider the Stokes equations with non standard

boundary conditions:

{
−∆ u +∇π = f and div u = χ in Ω,

u × n = g × n and π = π0 on Γ,
(1.13)

where f , χ, g , and π0 are given functions. We denote by n the outward normal

vector to Γ and the variables u and π usually represent velocity and pressure in fluid

mechanics. In some physical situations, it is reasonable to prescribe the pressure on

some part of the boundary as for instance in the case of blood vessels, pipelines.

This boundary condition is naturally not sufficient to obtain a well-possed problem.

In addition, we need to prescribe a second condition relating here to the tangential

part of the velocity on the boundary. In the literature, many authors treat the case of

mixed boundary conditions both numerical and theoretical as for instance (Ref. 14,

Ref. 13, Ref. 7, Ref. 8, Ref. 20, Ref. 21, Ref. 24). Such problem come up in many

practical applications e.g. fluids mechanic, electromagnetic fluids applications and

decomposition of vector fields. However, for now, there are only theoretical papers

on the solvability of such problem in Hilbert spaces. We propose in our work to

develop a Lp theory to solve the problem (1.13). We prove existence and regularity

of solutions for any 1 < p < ∞. We also give a proof of the existence of a very

weak solution when data are not regular enough, based on density arguments and

functional framework adequate to define rigorously the trace of the vector functions

which are living in subspaces of Lp(Ω). Many authors consider a mixed method

to solve (1.13), using a vector potential ψ satisfying curlψ = u . Due to the non

standard boundary conditions:

u × n = g × n , π = π0 on Γ,

the pressure is decoupled from the system. More precisely, we find that π is a

solution of the problem:

∆π = div f + ∆χ in Ω and π = π0 on Γ.

Then, π can be found independently of u . Observe that if div f + ∆χ = 0 in Ω

and π0 = 0 on Γ, the pressure π is zero, unlike the Stokes problem with Dirichlet

boundary condition, where the pressure can not be constant.

With π known, we set F = f −∇π and we obtain a system of equations involving

only the velocity variable u , that is:
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{
−∆ u = F and div u = χ in Ω,

u × n = g × n on Γ.
(1.14)

Here, we should remark that two different approachs to solve (1.14) are fully es-

tablished. A first one by Schwarz,26, where his method is based on the theory of

pseudo-differential operator with the Lopatinski-Sapiro condition. The second one

by Kozono and Yanagisawa,23, where their method is based on the theory of Agmon-

Douglis-Nirenberg. Kozono and Yanagisawa,23 treat the case where Ω is a bounded

domain of R3 with a C∞-boundary Γ, F = curl v with v ∈ Lp(Ω), g = 0 and

χ = 0. Since the system (1.14) is not an elliptic boundary value problem in the

sense of Agmon-Douglis-Nirenberg,1 they rewrite (1.14) by replacing, in the case

where χ = 0 in Ω, the condition div u = 0 in Ω by div u = 0 on Γ. They verify that

this modified problem is an elliptic boundary value problem in the sense of Agmon-

Douglis-Nirenberg and they show that it fulfils the complementing condition in

the sense of Agmon-Douglis-Nirenberg. But they consider that it is not possible to

apply the theory of existence and regularity of solutions to the elliptic boundary

problem to solve it, because, with a given v ∈ Lp(Ω), they can only expect that

u ∈W 1,p(Ω), so the value div u on Γ cannot be well-defined. In fact, this is possi-

ble because due to Ref. 5, since div u ∈ Lp(Ω) and ∆ div u ∈ W −1,p(Ω), the trace

of div u on Γ has a sense in W −1/p,p(Γ). Our proof of solvability of (1.14) is not

based on the theory of Agmon-Douglis-Nirenberg but on a variational formulations

and Inf-Sup conditions (1.6) and (1.9).

This paper is organized as follows. In Section 2, we will introduce some notations

and we will state our main results. Section 3 is devoted to prove two kinds of Sobolev

inequalities such as (1.2) and (1.3). Then, in Section 4, we will give some results

concerning vector potentials depending on some boundary conditions on a given

function u . We will prove the existence and uniqueness of an associated vector

potential also satisfying some gauge and boundary conditions. In the same section,

we will treat the case of scalar potentials and weak vector potentials. In Section 5,

we will solve problem (1.13). We will show the existence, uniqueness and regularity

of the solution. We also study the existence of very weak solutions. Next, we will

introduce a variant of the problem (1.13) which can be treated similarly but without

assuming compatibility conditions. Finally, in Section 6, we will give the proof of

the two Helmholtz decompositions (1.11) and (1.12).

2. Results

Before stating our results, we introduce some functions spaces. Let Lp(Ω) denotes

the usual vector-valued Lp−space over Ω, 1 < p <∞. Let us define the spaces:

H p(curl,Ω) = {v ∈ Lp(Ω); curl v ∈ Lp(Ω)} ,



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

Stokes Equations with Pressure Boundary Conditions 9

with the norm

‖v‖H p(curl,Ω) =
(
‖v‖pLp(Ω) + ‖curl v‖pLp(Ω)

) 1
p

,

H p(div,Ω) = {v ∈ Lp(Ω); div v ∈ Lp(Ω)} ,

with the norm

‖v‖H p(div,Ω) =
(
‖v‖pLp(Ω) + ‖div v‖pLp(Ω)

) 1
p

and X p(Ω) = H p(curl,Ω)∩H p(div,Ω), equipped with the graph norm. As in the

case of Hilbert spaces, we can prove that D(Ω) is dense in H p(curl, Ω), H p(div, Ω)

and X p(Ω).

We also define the subspaces:

H p
0 (curl,Ω) = {v ∈ H p(curl,Ω); v × n = 0 on Γ} ,

H p
0 (div,Ω) = {v ∈ H p(div,Ω); v · n = 0 on Γ} ,

X p
N (Ω) = {v ∈ X p(Ω); v × n = 0 on Γ} , X p

T (Ω) = {v ∈ X p(Ω); v · n = 0 on Γ}

and X p
0 (Ω) = X p

N (Ω) ∩X p
T (Ω).

We have denoted by v ×n (respectively v ·n) the tangential (respectively normal)

boundary value of v defined in W − 1
p ,p(Γ) (respectively W − 1

p ,p(Γ)) as soon as v

belongs to H p(curl,Ω) (respectively H p(div,Ω)). More precisely, any function v

in H p(curl, Ω) (respectively H p(div,Ω)) has a tangential (respectively normal)

trace v ×n (respectively v ·n) in W − 1
p ,p(Γ) (respectively W − 1

p ,p(Γ)), defined by

∀ϕ ∈W 1,p(Ω), 〈v × n ,ϕ〉Γ =

∫
Ω

v · curlϕ dx −
∫

Ω

curl v ·ϕ dx , (2.1)

∀ϕ ∈W 1,p(Ω), 〈v · n , ϕ〉Γ =

∫
Ω

v · gradϕdx +

∫
Ω

(div v)ϕdx , (2.2)

where 〈·, ·〉Γ denotes the duality bracket between W − 1
p ,p(Γ) and W 1− 1

p ,p(Γ) in

(2.1) and between W − 1
p ,p(Γ) and W 1− 1

p ,p(Γ) in (2.2).

We can prove as for the case p = 2 in Ref. 27 and Ref. 19, that D(Ω) is dense in

H p
0 (curl,Ω) and in H p

0 (div,Ω) for any 1 ≤ p <∞.

Our main results now reads as follows: first, we have the following gradient

estimates of vector fields via div and curl and the quantities
I∑
i=1

|〈v · n , 1〉Γi
| or

J∑
j=1

|〈v · n , 1〉Σj
| following the boundary condition that we consider. (Se Section 3)

Theorem 2.1.
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(i) Any function v ∈W 1,p(Ω) with v× n = 0 on Γ satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n, 1〉Γi
|
)
.

(ii) Any function v ∈W 1,p(Ω) with v · n = 0 on Γ satisfies:

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n, 1〉Σj |
)
.

The following theorem gives two fundamental Inf-Sup conditions. (See Subsection

4.3 and Subsection 5.1 )

Theorem 2.2. The following Inf-Sup conditions hold :

(i) There exist a constant β1 > 0 such that

inf
ϕ∈Vp′

N (Ω)

sup
ξ∈Vp

N (Ω)

∫
Ω

curl ξ · curlϕ dx

‖ξ‖Xp
N (Ω)‖ϕ‖Xp′

N (Ω)

> β1,

(ii) There exist a constant β2 > 0 such that

inf
ϕ∈Vp′

T (Ω)

sup
ξ∈Vp

T (Ω)

∫
Ω

curl ξ · curlϕdx

‖ξ‖Xp
T (Ω)‖ϕ‖Xp′

T (Ω)

> β2.

The next result concerns the existence and uniqueness of the weak, strong and very

weak solution of the problem (SN ). (See Section 5)

Theorem 2.3. (Weak, Strong and Very weak solutions for (SN))

(i) Let f, g, π0 be such that

f ∈ (H p′

0 (curl, Ω))′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ)

satisfying the compatibility condition:

∀v ∈ K p′

N (Ω), 〈 f , v 〉
[H p′

0 (curl ,Ω)]′×H p′
0 (curl ,Ω)

−
∫

Γ

π0 v · n dσ = 0. (2.3)

Then, the Stokes problem (SN ) has a unique solution (u, π) ∈ W 1,p(Ω) ×
W 1,p(Ω) satisfying the estimate:

‖u ‖W 1,p(Ω) + ‖π ‖W 1,p(Ω) ≤ C
(
‖ f ‖

(H p′
0 (curl,Ω))′

+‖g× n‖W 1−1/p,p(Γ) +

+‖π0‖W 1−1/p,p(Γ)

)
.

(ii) Moreover, if f ∈ Lp(Ω), g ∈W 2−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ), then the solution

(u, π) belongs to W 2,p(Ω)×W 1,p(Ω) and satisfies the estimate:
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‖u ‖W 2,p(Ω)+‖π ‖W 1,p(Ω) ≤ C
(
‖ f ‖Lp(Ω)+‖g×n‖W 2−1/p,p(Γ)+‖π0‖W 1−1/p,p(Γ)

)
.

(iii) Let f, g, and π0 with

f ∈ [H p′

0 (curl, Ω)]′, g ∈W−1/p,p(Γ), π0 ∈W −1/p,p(Γ),

and satisfying the compatibility condition (2.3). Then, the Stokes problem (SN )

has exactly one solution u ∈ L p(Ω) and π ∈ Lp(Ω). Moreover, there exists a

constant C > 0 depending only on p and Ω such that:

‖u‖Lp(Ω) + ‖π‖Lp(Ω) ≤ C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+‖ g ‖W−1/p,p(Γ) + ‖π0‖W−1/p,p(Γ)

)
.

When the compatibilty condition (5.20) is not satisfied, we are reduced, as in Ref. 14,

to solve a variant of the Stokes problem (see Subsection 5.4)

3. Lp-Sobolev Inequalities for Vector Fields

The aim of this section is to prove continuous imbeddings of both spaces X p
T (Ω)

and X p
N (Ω) in W 1,p(Ω). In a first step, we introduce an integral operator that

allows to estimate ∇ v by curl v , div v and the flux of v past the boundary Γi for

1 ≤ i ≤ I provided that v × n = 0 on Γ. In a second step, we introduce another

integral operator to estimate ∇ v by curl v , div v and the flux of v past the cuts

Σj , 1 ≤ j ≤ J provided that v · n = 0 on Γ.

3.1. Estimates with tangential boundary conditions

We introduce the linear integral operator

T λ(x ) = − 1

2π

∫
Γ

λ(ξ)
∂

∂n
|x − ξ|−1 dσξ.

The next lemma gives some properties of this operator.

Lemma 3.1. We have the following properties:

(i) The operator T is compact from Lp(Γ) into Lp(Γ).

(ii) The space Im(Id+T ) is a closed subspace of Lp(Γ) and Ker(Id+T ) is of finite

dimension. It is spanned by the traces of the functions grad qNi ·n |Γ, 1 ≤ i ≤ I,

where each qNi is the unique solution in W 2,p(Ω) of the problem
−∆qNi = 0 in Ω,

qNi |Γ0 = 0 and qi|Γk
= constant, 1 ≤ k ≤ I,〈

∂n q
N
i , 1

〉
Γk

= δi k, 1 ≤ k ≤ I, and
〈
∂n q

N
i , 1

〉
Γ0

= −1,

(3.1)
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(see Subsection 4.3).

(iii) For any v ∈W 1,p(Ω) we have:

‖v · n‖Lp(Γ) ≤ C
(
‖(Id+ T )(v · n)‖Lp(Γ) +

I∑
i=1

|〈v · n, 1〉Γi
|
)
. (3.2)

Proof.

(i) According to Von Wahl,28, we have T ∈ L(Lp(Γ),W 1,p(Γ)). Since the embed-

ding of the space W 1,p(Γ) in Lp(Γ) is compact, we obtain that T is compact

from Lp(Γ) into Lp(Γ).

(ii) By virtue of the first point and the Fredholm alternative, we have that the

space Ker(Id+T ) is of finite dimension and Im(Id+T ) is a closed subspace of

Lp(Γ). Since the functions grad qNi , 1 ≤ i ≤ I are linearly independent, it is

readily checked that grad qNi · n |Γ are also linearly independent for 1 ≤ i ≤ I

(for the properties of qNi , see Section 4).

Now, let v ∈ D(Ω). Then the quantity v · n satisfies on Γ the following repre-

sentation (see Ref. 28):

(Id+ T )(v · n) = − 1

2π

(
grad

∫
Ω

1

|x − y |
divy v(y) dy

)
· n

− 1

2π

(
curl

∫
Ω

1

|x − y |
curly v(y) dy

)
· n

+
1

2π

(
curl

∫
Γ

1

|x − ξ|
(v × n)(ξ) dσξ

)
· n . (3.3)

As D(Ω) is dense in W 1,p(Ω), this relation is still valid for v ∈W 1,p(Ω). Since

grad qNi belongs to W 1,p(Ω) and grad qNi ×n = 0 on Γ, due to (3.3), for each

1 ≤ i ≤ I the function grad qNi ·n belongs to Ker(Id+T ). Since the dimension

of Ker(Id + T ) is equal to I (see Ref. 28), the set {grad qNi · n |Γ, 1 ≤ i ≤ I}
is a basis of Ker(Id+ T ).

(iii) The operator Id+T is linear, continuous and surjective from Lp(Γ) onto Im(Id+

T ). Since Ker(Id + T ) is of finite dimension, through the theorem of open

application we deduce the existence of a constant C > 0 such that (3.2) holds.

The result of the next theorem is a generalization of the one in Ref. 28 to the

case I ≥ 1. So, we expect that for an estimate of ∇u in addition to div v and

curl u the quantity
I∑
i=1

〈v · n , 1〉Γi
if v × n vanish on Γ.
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Theorem 3.1. Let v ∈W 1,p(Ω) be such that v× n = 0 on Γ. Then the following

estimate holds

‖∇ v‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n, 1〉Γi
|
)
, (3.4)

where the constant C depends only on p and Ω.

Proof. We use the same arguments as in Ref. 28 and we proceed in two steps.

First, we prove that for any function v of W 1,p(Ω) with v × n = 0 on Γ we have:

‖v · n‖
W

1− 1
p
,p

(Γ)
≤ C

(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (3.5)

Let v ∈W 1,p(Ω) with v ×n = 0 on Γ. By using the trace inequality and next the

Caldéron-Zygmund inequality in the integral representation (3.3) we obtain

‖(Id+ T )(v · n)‖Lp(Γ) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω)

)
.

Thus, it follows directly by using (3.2) that

‖v · n‖Lp(Γ) ≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi |
)
. (3.6)

Moreover, from the equality (3.3), since T ∈ L
(
Lp(Γ), W 1,p(Γ)

)
and using the trace

inequality, we obtain

‖v · n‖
W

1− 1
p
,p

(Γ)
≤ C

(
‖v · n‖Lp(Γ) +

∥∥∥grad

∫
Ω

1

|x − y |
divy v(y) dy

∥∥∥
W 1,p(Ω)

+
∥∥∥ curl

∫
Ω

1

|x − y |
curly v(y) dy

∥∥∥
W 1,p(Ω)

)
.

We use again the Calderón-Zygmund inequalities and (3.6) to obtain (3.5), which

completes the proof of the first step.

Secondly, as v belongs to W 1− 1
p ,p(Γ), due to the trace theorem, there exists a

u ∈W 1,p(Ω) such that

v = u on Γ and ‖u‖W 1,p(Ω) ≤ C‖v‖
W

1− 1
p
,p

(Γ)
.

Since v × n = 0 on Γ, we have v |Γ = (v · n)n . Then, by using (3.5) we have

‖u‖W 1,p(Ω) ≤ C‖v · n‖
W

1− 1
p
,p

(Γ)

≤ C
(
‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

I∑
i=1

|〈v · n , 1〉Γi
|
)
. (3.7)
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We know that, for any function w of W 1,p
0 (Ω), we have the following integral

representation

w = −grad
1

4π

∫
Ω

1

|x − y |
divy w(y) dy + curl

1

4π

∫
Ω

1

|x − y |
curly w(y) dy .

Using the Calderón-Zygmund inequalities, we have

‖∇w‖Lp(Ω) ≤ C
(
‖div w‖Lp(Ω) + ‖curl w‖Lp(Ω)

)
. (3.8)

Applying (3.8) to v − u ∈W 1,p
0 (Ω), we obtain

‖∇ (v−u)‖Lp(Ω) ≤ C
(
‖div v‖Lp(Ω)+‖div u‖Lp(Ω)+‖curl v‖Lp(Ω)+‖curl u‖Lp(Ω)

)
.

Finally, the assertion (3.4) follows directly by using (3.7).

Remark 3.1. We recall that if p = 2, any function v of H 1(Ω) ∩X 2
N (Ω) satisfies

(see Lemma 2.11 of Ref. 2 )

‖∇ v‖2L2(Ω) = ‖curl v‖2L2(Ω) + ‖div v‖2L2(Ω) −
∫

Γ

(TrB)(v · n)2 dτ ,

where B is the curvature tensor of the boundary and TrB denote the trace of B.

In the case p 6= 2, we have the inequality (3.4) which allows us to estimate ∇ v by

curl v, div v and
I∑
i=1

|〈v · n , 1〉Γi
|. Note that

|
∫

Γ

(TrB)(v · n)2 dτ | ≤ C
∫

Γ

|v |2 ≤ 1

2
‖∇ v‖2L2(Ω) + C‖v‖2L2(Ω).

We can then deduce the following inequality:

‖∇ v‖L2(Ω) ≤ C
(
‖v‖L2(Ω) + ‖div v‖L2(Ω) + ‖curl v‖L2(Ω)

)
. (3.9)

Corollary 3.1. Let v ∈W 1,p(Ω) be such that v× n = 0 on Γ. Then, we have the

following estimate:

‖∇ v‖Lp(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω)

)
. (3.10)

Proof. Let i ∈ [ 1, I ] fixed. For any µ ∈W 1−1/p′,p′(Γi), we can find ϕ ∈W 1,p′(Ω)

such that

ϕ = µ on Γi and ϕ = 0 on Γk for any k 6= i

and satisfies the estimate

‖ϕ‖W 1,p′ (Ω) ≤ C‖µ‖W 1−1/p′,p′ (Γi)
.
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Moreover, if v ∈ H p(div, Ω), then

〈v · n , µ〉Γi =

∫
Ω

v · ∇ϕdx +

∫
Ω

ϕdiv v dx

and taking µ = 1, we obtain

|〈v · n , 1〉Γi
| ≤ C

(
‖v‖Lp(Ω) + ‖div v‖Lp(Ω)

)
.

We then deduce from (3.4) the estimate (3.10).

Now, we give the following density result. This result is proven in Ref. 2 for

p = 2 and we give here a generalization in a different way for any 1 < p <∞.

Lemma 3.2. The space W 1,p(Ω) ∩X p
N (Ω) is dense in the space X p

N (Ω).

Proof. Let ` belongs to (X p
N (Ω))′, the dual space of X p

N (Ω). We know that there

exist f ∈ Lp
′
(Ω), g ∈ Lp

′
(Ω) and h ∈ Lp′(Ω) such that

〈`, v〉 =

∫
Ω

f · v dx +

∫
Ω

hdiv v dx +

∫
Ω

g · curl v dx , ∀v ∈ X p
N (Ω). (3.11)

We suppose that

〈`, v〉 = 0 ∀v ∈W 1,p(Ω) ∩X p
N (Ω). (3.12)

So, we have in the sense of distributions in Ω

f −∇h+ curl g = 0. (3.13)

Therefore, due to (3.12) and (3.11), we have for any χ ∈W 2,p(Ω) ∩W 1,p
0 (Ω)∫

Ω

f · ∇χdx +

∫
Ω

h∆χdx = 0. (3.14)

Note that div f = ∆h ∈ W 1,p′(Ω). Because h ∈ Lp
′
(Ω), we know that h|Γ ∈

W −1/p′,p′(Γ) and we have (see 5) for any χ ∈W 2,p(Ω) ∩W 1,p
0 (Ω)∫

Ω

h∆χdx − 〈div f , χ〉W −1,p′ (Ω)×W 1,p
0 (Ω) = 〈h, ∂ χ

∂n
〉Γ.

As ∫
Ω

f · ∇χdx = −〈div f , χ〉W −1,p′ (Ω)×W 1,p
0 (Ω),

it follows from (3.14) that

〈h, ∂ χ
∂n
〉Γ = 0, ∀χ ∈W 2,p(Ω) ∩W 1,p

0 (Ω). (3.15)

Now, let µ be any element of W 1− 1
p ,p(Γ). Then, there exists an element χ of

W 2,p(Ω) ∩W 1,p
0 (Ω) such that ∂ χ

∂n = µ on Γ. Hence, (3.15) implies that

〈h, µ 〉
W
− 1

p′ ,p
′
(Γ)×W 1− 1

p
,p

(Γ)
= 0,
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and h = 0 in W
− 1

p′ ,p
′
(Γ). Because ∆h belongs to W −1,p′(Ω) and h ∈ Lp′(Ω), then

h ∈ W 1,p′

0 (Ω). As a consequence, due to (3.13), curl g belongs to Lp
′
(Ω). Finally,

let v in X p
N (Ω). From (3.13) and since h ∈W 1,p

0 (Ω), we can write∫
Ω

f · v dx +

∫
Ω

hdiv v dx +

∫
Ω

curl g · v dx = 0, ∀v ∈ X p
N (Ω). (3.16)

As g ∈ H p′(curl, Ω), we have also

∀v ∈ H p
0(curl,Ω),

∫
Ω

curl g · v dx =

∫
Ω

g · curl v dx .

Then it follows from the last equality and (3.16) that ` vanishes on X p
N (Ω), thus

proving the required density.

As a consequence, we have the following result.

Theorem 3.2. The space X p
N (Ω) is continuously imbedded in W 1,p(Ω) and there

exists a constant C, such that for any v in Xp
N (Ω):

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) +‖div v‖Lp(Ω) +‖curl v‖Lp(Ω) +

I∑
i=1

|〈v ·n, 1〉Γi
|
)
. (3.17)

Proof. Let v be any function in X p
N (Ω). Due to Lemma 3.2, there exists a sequence

(vk)k of W 1,p(Ω)∩X p
N (Ω) which converges to v in X p(Ω). Applying the estimate

(3.4) to vk for each k, we see that the sequence (vk)k is bounded in W 1,p(Ω).

Hence it admits a subsequence which converges weakly in W 1,p(Ω) and the limit

is nothing else but v . The inequality (3.17) follows directly from (3.4) and it gives

the continuity of the imbedding.

Remark 3.2. It is proved in Ref. 16, when the set Ω is a convex polyhedra that

there is a real number pΩ > 2 such that for all p, 2 < p < pΩ, any function v in

X p
N (Ω) belongs to W 1,p(Ω) and satisfies the estimate (3.17) where pΩ depends on

the geometry of the domain Ω. Theorem 3.2 is an extension of this result to any p,

1 < p <∞ when Ω is of class C 1,1.

We give now a non-compactness result of the space X p(Ω) into Lp(Ω), where

the proof is exactly the same in Ref. 2 for the case p = 2.

Proposition 3.1. The imbedding of X p(Ω) into L p(Ω) is not compact.

We state the following result which proves that the vanishing of the tangential

component on the boundary implies the compactness. A proof in the case p = 2
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can be found in Ref. 29. Our proof for p 6= 2 is based on the continuous imbedding

of X p
N (Ω) in W 1,p(Ω) and the compactness of W 1,p(Ω) in Lp(Ω).

Lemma 3.3. The imbedding of the space X p
N (Ω) into L p(Ω) is compact.

Corollary 3.2. On the space Xp
N (Ω), the seminorm

w 7→ ‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +

I∑
i=1

|〈w · n, 1〉Γi
|, (3.18)

is equivalent to the norm ‖ · ‖Xp(Ω). In particular, we have the following Poincaré’s
inequality for every function u ∈W 1,p(Ω) with u× n = 0 on Γ:

‖w‖W 1,p(Ω) ≤ C(‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +

I∑
i=1

|〈w · n, 1〉Γi
|)

and the norm (3.18) is equivalent to the full norm ‖ · ‖W 1,p(Ω) on Xp
N (Ω)

Proof. The proof consistes in applying “Peetre-Tartar Lemma”(cf. Ref. 19, Chap-

ter I, Theorem 2.1), with the following correspondance: E1 = X p
N (Ω), E2 =

Lp(Ω)× Lp(Ω), E3 = Lp(Ω), Au = (div u , curl u), B = Id, the identity operator.

Due to the compactness result of Lemma 3.3, the canonical imbedding Id of E1 into

E3 is compact. Besides, let G = K p
N (Ω) and M : X p

N (Ω) 7→ K p
N (Ω) be the follow-

ing mapping: u 7→Mu =
I∑
i=1

〈u ·n , 1〉Γi
∇ qNi . We set ‖Mu‖G =

I∑
i=1

|〈u ·n , 1〉Γi
|. It

is clear that M ∈ L(X p
N (Ω), K p

N (Ω)). Next, it is clear that if u ∈ KerA = K p
N (Ω),

then Mu = 0⇔ u = 0 and this finishes the proof.

3.2. Estimates with normal boundary conditions

In order to prove the corresponding theorem for the space X p
T (Ω), we introduce the

following linear integral operator

Rλ(x ) =
1

2π

∫
Γ

curl (
λ(ξ)

|x − ξ|
)× n dσξ.

We give some properties of this operator.

Lemma 3.4. We have the following properties:

(i) The operator R is compact from Lp(Γ) into Lp(Γ).
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(ii) The space Im(Id + R) is a closed subspace of Lp(Γ) and Ker(Id + R) is of

finite dimension. It is spaned by the the traces of the functions g̃rad qTj ×n |Γ,

1 ≤ j ≤ J , where each qTj is the unique solution in W 2,p(Ω◦) of the problem

−∆qTj = 0 in Ω◦,

∂n q
T
j = 0 on Γ,[

qTj
]
k

= constant and [ ∂n q
T
j ]k = 0, 1 ≤ k ≤ J,〈

∂n q
T
j , 1

〉
Σk

= δj k, 1 ≤ k ≤ J,

(3.19)

(see Subsection 4.2 ).

(iii) For any v ∈W 1,p(Ω) we have:

‖v× n‖Lp(Γ) ≤ C
(
‖(Id+R)(v× n)‖Lp(Γ) +

J∑
j=1

|〈v · n, 1〉Σj |
)
. (3.20)

Proof.

(i) According to Ref. 28, we have R ∈ L(Lp(Γ),W 1,p(Γ)). The compact imbed-

ding of the space W 1,p(Γ) in Lp(Γ) implies that R is compact from Lp(Γ) into

Lp(Γ).

(ii) By virtue of the first point and the Fredholm alternative, we have that the space

Ker(Id+R) is of finite dimension and Im(Id+R) is a closed subspace of Lp(Γ).

We will see later in Section 4 that the functions g̃rad qTj belong to W 1,p(Ω).

Since the functions g̃rad qTj , 1 ≤ j ≤ J are linearly independent, it is readily

checked that g̃rad qTj × n |Γ are also linearly independent for 1 ≤ j ≤ J .

For v ∈ D(Ω), the quantity v × n satisfies on Γ the following representation

(see Ref. 28):

(Id+R)(v × n) =
1

2π

(
grad

∫
Ω

1

|x − y |
divy v(y) dy

)
× n

+
1

2π

(
grad

∫
Γ

1

|x − ξ|
(v · n)(ξ) dσξ

)
× n

− 1

2π

(
curl

∫
Ω

1

|x − y |
curly v(y) dy

)
× n . (3.21)

As D(Ω) is dense in W 1,p(Ω), this relation is still valid for v ∈W 1,p(Ω). Since

g̃rad qTj belongs to W 1,p(Ω), due to (3.21), for each 1 ≤ j ≤ J the function

g̃rad qTj × n belongs to Ker(Id+R). Since the dimension of Ker(Id+R) is J

(see Ref. 28), the set {g̃rad qTj × n |Γ, 1 ≤ j ≤ J} is a basis of Ker(Id+R).
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(iii) The operator Id+R is linear, continuous and surjective from Lp(Γ) onto Im(Id+

R). Since Ker(Id + R) is of finite dimension, through the theorem of open

application we deduce the existence of a constant C > 0 such that (3.20) holds.

The result of the next theorem is a generalization of the one in Ref. 28 to the

case J ≥ 1. So, we expect that for an estimate of ∇ v in addition to div v and

curl v the quantity
J∑
j=1

〈v · n , 1〉Σj
if v · n vanish on Γ. We skip the proof because

it is similar to than of Theorem 3.1.

Theorem 3.3. Let v ∈ W 1,p(Ω) be such that v · n = 0 on Γ. Then the following

estimate holds

‖∇ v‖Lp(Ω) ≤ C(‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω) +

J∑
j=1

|〈v · n, 1〉Σj
|), (3.22)

where the constant C depends only on p and Ω.

We give now the correspending density result for the space X p
T (Ω) where the

proof is exactly the same in Ref. 2 for the case p = 2.

Lemma 3.5. The space W 1,p(Ω) ∩X p
T (Ω) is dense in the space X p

T (Ω).

As a consequence, the following theorem can be proved as in Theorem 3.2 by using

Lemma 3.5 and Theorem 3.3.

Theorem 3.4. The space X p
T (Ω) is continuously imbedded in W 1,p(Ω) and for any

function v in X p
T (Ω), we have the following estimate:

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) +‖div v‖Lp(Ω) +‖curl v‖Lp(Ω) +

J∑
j=1

|〈v ·n, 1〉Σj
|
)
. (3.23)

Remark 3.3. We recall that if p = 2, any function v of H 1(Ω)∩X 2
T (Ω) satisfies

(see Ref. 2, Lemma 2.11)

‖∇ v‖2L2(Ω) = ‖curl v‖2L2(Ω) + ‖div v‖2L2(Ω) −
∫

Γ

B(v × n , v × n) dτ .

But for p 6= 2, we have the inequality (3.22) which allows us to estimate ∇ v by

curl v , div v and
J∑
j=1

|〈v · n , 1〉Σj
|. As in Remark 3.1, we can prove the inequality

(3.9).

Corollary 3.3. Let v ∈ W 1,p(Ω) be such that v · n = 0 on Γ. Then, we have the

following estimate:

‖∇ v‖Lp(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖curl v‖Lp(Ω)

)
. (3.24)
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Proof. The proof is similar to that of Corollary 3.1. For this, we use the result of

Lemma 4.2 given in Section 4.

We give now the following compactness result. The proof can also be found in Ref. 29

for the case p = 2 and our proof for p 6= 2 is based on the continuous imbedding of

X p
N (Ω) in W 1,p(Ω) and the compactness of W 1,p(Ω) in Lp(Ω).

Lemma 3.6. The imbedding of X p
T (Ω) into L p(Ω) is compact.

We skip the proof of the next corollary about equivalent norms, because it uses

exactly the same tools as in the proof of Corollary 3.2.

Corollary 3.4. On the space Xp
T (Ω), the seminorm

w 7→ ‖curl w‖Lp(Ω) + ‖div w‖Lp(Ω) +

J∑
j=1

|〈w · n, 1〉Σj |, (3.25)

is equivalent to the norm ‖ · ‖Xp(Ω). In particular, we have the following Poincaré’s

inequality for every function u ∈W 1,p(Ω) with u · n = 0 on Γ:

‖v‖W 1,p(Ω) ≤ C
(
‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) +

J∑
j=1

〈v · n, 1〉Σj

)
. (3.26)

Now, in the following we show that the results of Theorem 3.4 can be extended to

the case where the boundary conditions v ·n = 0 on Γ is replaced by inhomogeneous

one. More precisely, we introduce the following space for s ∈ R, s ≥ 1:

X s,p(Ω)={v ∈Lp(Ω); div v ∈W s−1,p(Ω), curl v ∈W s−1,p(Ω), v ·n ∈W s− 1
p ,p(Γ)}.

Theorem 3.5. The space X 1,p(Ω) is continuously imbedded in W 1,p(Ω) and we

have the following estimate for any v in X 1,p(Ω):

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω) +‖curl v‖Lp(Ω) +‖div v‖Lp(Ω) +‖v ·n‖

W
1− 1

p
,p

(Γ)

)
. (3.27)

Proof. Let v be any function of X 1,p(Ω). Due to the regularity of Ω, the following

Neumann problem

∆χ = div v in Ω and ∂nχ = v · n on Γ,

has a unique solution χ in W 2,p(Ω) with the estimate

‖χ‖W 2,p(Ω) ≤ C
(
‖div v‖Lp(Ω) + ‖v · n‖

W
1− 1

p
,p

(Γ)

)
. (3.28)
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Hence, the function w = v − gradχ is a divergence-free function of X p
T (Ω). Ap-

plying Theorem 3.4, we have that w belongs to W 1,p(Ω) and then that v is in

W 1,p(Ω). So applying the inequality (3.10) of the point ii) of Remark 3.3 to w we

obtain

‖w‖W 1,p(Ω) ≤ C
(
‖w‖Lp(Ω) + ‖curl w‖Lp(Ω)

)
.

Then, the inequality (3.27) follows directly from (3.28).

The following result is a generalization of Theorem 3.5.

Corollary 3.5. Let m ∈ N∗ and Ω of class Cm,1. Then Xm,p(Ω) is continuously

imbedded in Wm,p(Ω) and for any v in Wm,p(Ω), we have the following estimate

‖v‖W m,p(Ω) ≤ C
(
‖v‖Lp(Ω)+‖curl v‖W m−1,p(Ω)+‖div v‖W m−1,p(Ω)+‖v·n‖

W
m− 1

p
,p

(Γ)

)
.

(3.29)

Proof. We consider the same proof than the one made in the case p = 2 by

Foias and Temam,18. For m = 1, the result is given by Theorem 3.5. To simplify

the discussion, we shall write the proof for m = 2 and the proof is similar when

m ≥ 3. Let v ∈ Lp(Ω) such that div v ∈ W 1,p(Ω), curl v ∈ W 1,p(Ω) and v ·
n ∈ W 2−1/p,p(Γ). We already know that v ∈ W 1,p(Ω). We set, for i = 1, 2, 3,

u i =
∂ v

∂ xi
and we prove that u i ∈W 1,p(Ω). We know that u i ∈ Lp(Ω), div u i ∈

Lp(Ω) and curl u i ∈ Lp(Ω). Since Ω is of class C 2,1, the normal vector n can be

extended to a vector field, still denoted by n , such that n ∈ C 1,1(Ω). We have then:

u i · n =
∂

∂ xi
(v · n)− v · ∂ n

∂ xi
in Ω. (3.30)

By the hypothesis on the normal trace of v , we can consider v · n as the trace of

a function in W 2,p(Ω) and then
∂

∂ xi
(v · n)|Γ ∈ W 1−1/p,p(Γ). Moreover, the fact

that v ∈W 1−1/p,p(Γ) and
∂ n

∂ xi
∈W 1,∞(Ω) implies that v · ∂ n

∂ xi
∈ W 1−1/p,p(Γ).

So, by (3.30) u i · n ∈ W 1−1/p,p(Γ). According to Theorem 3.5, u i ∈W 1,p(Ω) for

i = 1, 2, 3. As a consequence v belongs to W 2,p(Ω) with the estimate (3.29).

Using an interpolation argument, we can prove the following result.

Corollary 3.6. Let s = m+ σ, m ∈ N∗ and 0 < σ ≤ 1, Assume that Ω is of class

Cm+1,1. Then, the space X s,p(Ω) is continuously imbedded in W s,p(Ω) and for any

function v in W s,p(Ω), we have the following estimate

‖v‖W s,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖W s−1,p(Ω) + ‖div v‖W s−1,p(Ω) +

+ ‖v · n‖
W

s− 1
p
,p

(Γ)

)
. (3.31)
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A similar estimate can be found in Ref. 10, where s > 3/p+ 1. In Ref. 15, we find

a close result with u , div u and curl u in L2(Ω) and with u × n or u · n in L2(Γ).

4. Vector Potentials and Inf-Sup Conditions

In this section, we want to prove some results concerning the vector potentials.

In Subsection 4.1, we first give a basic result about the vector potentials without

boundary conditions useful for the sequel of this section (see Lemma 4.1). Next, Sub-

sections 4.2 and 4.3 are respectively devoted to the proof of existence and uniqueness

of tangential vector potentials and normal vector potentials. For the construction

of these vector potentials, an important tool is the characterization of some kernels.

In Subsection 4.4, we will get interested in an other type of vector potentials with

vanishing trace on the boundary. Next, we present some results concerning scalar

potentials and weak vector potentials.

4.1. Vector potentials without boundary conditions

This subsection is devoted to the proof of the following basic lemma. A detailed

proof of the case p = 2 can be found in Lemma 3.5 of Ref. 2 or in Chapter I, Theorem

3.4. of Ref. 19, For 1 < p < ∞, we give a different proof using the fundamental

solution of the laplacian.

Lemma 4.1. A vector field u in H p(div, Ω) satisfies

div u = 0 in Ω and 〈u · n, 1〉Γi
= 0, 0 ≤ i ≤ I, (4.1)

if and only if there exists a vector potential ψ0 in W 1, p(Ω) such that

u = curlψ0. (4.2)

Moreover, we can choose ψ0 such that divψ0 = 0 and we have the estimate

‖ψ0‖W 1,p(Ω) ≤ C ‖u‖Lp(Ω), (4.3)

where C > 0 depends only on p and Ω.

Proof.

(i) The necessity of conditions (4.1) can be established exactly with the same

arguments than in Ref. 2.

(ii) Conversely, let u be any function satisfying (4.1). The idea is to extend u to the

whole space so that the extended function ũ belongs to Lp(R3), is divergence-

free and has a compact support. Then, it will be easy to construct its stream

function by means of the fundamental solution of the Laplacian. Let then χ0
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in W 1,p(Ω) be the unique solution up to an additive constant of the following

Neumann problem

−∆χ0 = 0 in Ω0 and ∂nχ0 = u · n on Γ0, ∂nχ0 = 0 on ∂O,

(see the introduction for the notations), and let χi ∈ W 1,p(Ω) with 1 ≤ i ≤ I,

be the unique solution up to an additive constant of the problem:

−∆χi = 0 in Ωi and ∂nχi = u · n on Γi,

with the estimate:

‖χi‖W 1,p(Ωi) ≤ C‖u‖Lp(Ω),

and where n denotes the unit outward normal to Ω and O. Now we can extend

u as follows

ũ =


u in Ω,

gradχi in Ωi, 0 ≤ i ≤ I,
0 in R3\Ō.

Clearly, ũ belongs to H p(div, R3) and is divergence-free in R3. The function

ψ0 = curl(E ∗ ũ ), with E the fundamental solution of the laplacian, satisfies

curlψ0 = ũ and divψ0 = 0 inR3.

Applying the Calderón Zygmund inequality, we obtain

‖∇ψ0‖Lp(R3) ≤ C‖∆ (E ∗ ũ)‖Lp(R3) ≤ C‖ũ‖Lp(R3) ≤ C‖u‖Lp(Ω).

Due to Proposition 2.10 of Ref. 4, ψ0|Ω belongs to W 1,p(Ω). As a consequence,

ψ0 satisfies the condition (4.2) and the estimate (4.3).

4.2. Tangential vector potentials

In this subsection we focus our attention on the construction of vector potentials in

X p
T (Ω). We require the following preliminaries which are the equivalent to those in

2 for an arbitrary p with 1 < p <∞.

Lemma 4.2. If ψ belongs to H p
0 (div, Ω), the restriction of ψ ·n to any Σj belongs

to the dual space W
1− 1

p′ ,p
′
(Σj)

′, and the following Green’s formula holds:

∀χ ∈W 1,p′(Ω◦),

J∑
j=1

〈ψ · n, [χ ]j〉Σj
=

∫
Ω◦
ψ · gradχdx +

∫
Ω◦

χdivψ dx, (4.4)

where we recall that [χ]j is the jump of χ through Σj.

We introduce the space

Θp =
{
r ∈W 1,p(Ω◦); [ r ]j = constant, 1 ≤ j ≤ J

}
.
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The next lemma is an extension of Lemma 3.11 in Ref. 2 to the case 1 < p < ∞,

where the proof is similar and gives a characterization of the space Θp.

Lemma 4.3. Let r belong to W 1,p(Ω◦). Then r belongs to Θp if and only if

curl(g̃rad r) = 0 in Ω.

As shown in Proposition 3.14 of Ref. 2, the space K 2
T (Ω) is spanned by the

functions g̃rad qTj , 1 ≤ j ≤ J , where each qTj belongs to H1(Ω◦), is unique up to

an additive constant and satisfies the problem (3.19).

Corollary 4.1. The functions g̃rad qTj , 1 ≤ j ≤ J belong to W 1,q(Ω) for any

1 < q <∞ and the space Kp
T (Ω) is spanned by these functions.

Proof. First, let us check that g̃rad qTj belongs to K p
T (Ω) for each 1 ≤ j ≤ J .

According to Ref. 2, the functions g̃rad qTj belong to K 2
T (Ω). Then, it suffices to

show that g̃rad qTj belong to Lp(Ω) when p > 2. Observe that, thanks to Theorem

3.4, we have that g̃rad qTj belong to H 1(Ω). Therefore, by using the Sobolev’s

imbedding, the functions g̃rad qTj belong to L6(Ω) and then to X 6
T (Ω). It follows

from Theorem 3.4 and the Sobolev’s imbedding, that g̃rad qTj belongs to L∞(Ω).

As a consequence, for any 1 < q < ∞, we have g̃rad qTj ∈ Lq(Ω). We deduce the

first part of our statement by using again Theorem 3.4. We already know that the

functions g̃rad qTj are linearly independent. Let us show now that those functions

span K p
T (Ω) for any 1 < p <∞. Let w ∈ K p

T (Ω). The function

v = w −
J∑
j=1

〈w · n , 1〉Σj g̃rad qTj .

belongs to K p
T (Ω) and satisfies 〈v · n , 1〉Σk

= 0, for 1 ≤ k ≤ J . Using (3.22), we

deduce that ∇ v is equal to zero. Then v = a ∈ R3 and a = 0 because a · n = 0

on Γ. Hence v is zero and this finish the proof.

As in Ref. 2, we have the following result concerning tangential vector potential.

We skip the proof because it is very similar to the case p = 2.

Theorem 4.1. A function u in H p(div, Ω) satisfies (4.1) if and only if there exists

a vector potential ψ in W 1,p(Ω) such that

u = curlψ and divψ = 0 in Ω,

ψ · n = 0 on Γ, 〈ψ · n, 1〉Σj
= 0, 1 ≤ j ≤ J.

(4.5)
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This function ψ is unique and we have the estimate:

‖ψ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω). (4.6)

Remark 4.1.

(i) As proved in Ref. 2, the statement of Theorem 4.1 is independent of the par-

ticular choice of the admissible set of cuts {Σj ; 1 ≤ j ≤ J}.

(ii) If Ω is only Lipschitz, then ψ ∈ X p
T (Ω) which is included in W 1,p(Ω) only for

some values of p.

The following result is an extension of Theorem 3.5 by using a normal trace in

fractional Sobolev space.

Proposition 4.1. Let 0 < s < 1. Let

v ∈ Lp(Ω), div v ∈ Lp(Ω), curl v ∈ Lp(Ω) and v · n ∈W s− 1
p ,p(Γ). (4.7)

Then v ∈W s,p(Ω) and satisfies the estimate

‖v‖W s,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖v ·n‖

W
s− 1

p
,p

(Γ)

)
. (4.8)

Proof. Let v satisfy (4.7) and χ ∈W s+1,p(Ω) a solution of the problem:

∆χ = div v and
∂ χ

∂ n
= v · n on Γ.

We set f = curl (v −∇χ). Then, f satisfies:

f ∈ Lp(Ω), div f = 0 in Ω and 〈f · n , 1〉Γi = 0 for any 1 ≤ i ≤ I.

According to Theorem 4.1, there exists a unique ψ ∈W 1,p(Ω) satisfying

f = curlψ and divψ = 0 in Ω,

ψ · n = 0 on Γ, 〈ψ · n , 1〉Σj
= 0, for any 1 ≤ j ≤ J.

Next, we set

z = v −∇χ−ψ −
J∑
j=1

〈(v −∇χ−ψ) · n , 1〉Σj
g̃rad qTj .

Then, z belongs to Lp(Ω) and satisfies

curl z = 0, div z = 0, z · n = 0 on Γ, and 〈z · n , 1〉Σj = 0.

Using the characterization of the kernel K p
T (Ω), we deduce that z = 0. This implies

that v ∈W s,p(Ω). The estimate (4.8) is then immediate.
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4.3. Normal vector potentials and first elliptic problem

This subsection is devoted to the normal vector potentials. As previously, an impor-

tant tool is the characterization of the kernel K p
N (Ω). It is shown in Proposition 3.18

of Ref. 2, that the space K 2
N (Ω) is spanned by the functions grad qNi , 1 ≤ i ≤ I,

where each qNi ∈ H 1(Ω) is the unique solution of the problem (3.1). Adapting the

argument used in the proof of Corollary 4.1, we have the following result

Corollary 4.2. The functions grad qNi belongs to W 1,q(Ω) for any 1 < q < ∞
and the space K p

N (Ω) is spanned by those functions for 1 ≤ i ≤ I.

Theorem 4.2. Let X and M be two reflexive Banach spaces and X ′ and M ′ their

dual spaces. Let a be the continuous bilinear form defined on X × M , let A ∈
L(X; M ′) and A′ ∈ L(M ; X ′) be the operators defined by

∀v ∈ X, ∀w ∈M, a(v, w) = < Av,w > = < v,A′w >

and V = KerA. The following statements are equivalent:

(i) There exist β > 0 such that

inf
w∈M
w 6=0

sup
v∈X
v 6=0

a(v, w)

‖v‖X ‖w‖M
≥ β. (4.9)

(ii) The operator A : X/V 7→ M ′ is an isomophism and 1/β is the continuity

constant of A−1.

(iii) The operator A′ : M 7→ X ′⊥V is an isomophism and 1/β is the continuity

constant of (A′)−1.

Proof. First, we note that ii) ⇔ iii) because (X/V )′ = X ′⊥V where this last

space contains the elements f ∈ X ′ satisfying 〈f, v〉 = 0 for any v ∈ V . It suffices

then to prove that i)⇔ iii). We begin with the implication i)⇒ iii). Due to (4.9),

we deduce that there exists a constant β > 0 such that:

∀w ∈M, ‖w‖M ≤
1

β
sup
v∈X
v 6=0

|a(v, w)|
‖v‖X

.

So,

‖w‖M ≤
1

β
‖A′w‖X′ , (4.10)

and A′ is injective. Moreover, ImA′ is a closed subspace of X ′ where A′ : M → X ′.

Moreover, ImA′ = (KerA)⊥ = X ′ ⊥ V . It remains to prove that iii) ⇒ i). For

this, it suffices to prove that if iii) holds, then (4.10) also holds and (4.9) follows

immediately.



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

Stokes Equations with Pressure Boundary Conditions 27

Remark 4.2. As consequence, if the Inf-Sup condition (4.9) is satisfied, then we

have the following properties:

(i) If V = {0}, then for any f ∈ X ′, there exists a unique w ∈M such that

∀v ∈ X, a(v, w) = < f, v > and ‖w‖M ≤
1

β
‖f‖X′ . (4.11)

(ii) If V 6= {0}, then for any f ∈ X ′, satisfying the compatibility condition:

∀v ∈ V, < f, v > = 0, there exists a unique w ∈M such that (4.11).

(iii) For any g ∈M ′, ∃v ∈ X, unique up an additive element of V , such that:

∀w ∈M, a(v, w) = < g,w > and ‖v‖X/V ≤
1

β
‖g‖M ′ .

Lemma 4.4. The following Inf-Sup Condition holds: there exists a constant β > 0,

such that

inf
ϕ∈Vp′

T (Ω)
ϕ6=0

sup
ξ∈Vp

T (Ω)
ξ 6=0

∫
Ω

curl ξ · curlϕ dx

‖ξ‖Xp
T (Ω)‖ϕ‖Xp′

T (Ω)

≥ β. (4.12)

Proof. We need the following Helmholtz decomposition: every vector function g ∈
Lp(Ω) can be decomposed into a sum g = ∇χ+ z , where z belongs to H p(div, Ω)

with div z = 0, χ belongs to W 1,p
0 (Ω) and satisfies the estimate

‖∇χ‖Lp(Ω) ≤ C‖g‖Lp(Ω). (4.13)

Let ϕ any function of V p′

T (Ω). Due to Corollary 3.4 we can write

‖ϕ‖
Xp′

T (Ω)
≤ C‖curlϕ‖Lp′ (Ω) = C sup

g∈Lp(Ω)
g 6=0

∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖Lp(Ω)
. (4.14)

We set

z̃ = z −
I∑
i=1

〈z · n , 1〉Γi ∇ qNi ,

so, z̃ ∈ Lp(Ω), div z̃ = 0 and 〈z̃ · n , 1〉Γi
= 0 for each 0 ≤ i ≤ I. By Theorem 4.1,

there exists a vector potential ψ ∈ V p
T (Ω) such that z̃ = curlψ in Ω. This implies

that ∫
Ω

curlϕ · g dx =

∫
Ω

curlϕ · z dx =

∫
Ω

curlϕ · z̃ dx .

Moreover, we have

‖z̃‖Lp(Ω) ≤ ‖z‖Lp(Ω) +

I∑
i=1

|〈z · n , 1〉Γi
|‖∇ qNi ‖Lp(Ω) ≤ ‖z‖Lp(Ω) + C ‖z · n‖

W
− 1

p
,p

(Γ)
.
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Since z belongs to H p(div, Ω) and div z = 0, by using the continuity of the normal

trace operator on H p(div, Ω), (4.13) and (4.15) we obtain

‖z̃‖Lp(Ω) ≤ C‖z‖Lp(Ω) ≤ C‖g‖Lp(Ω). (4.15)

Finally, using Corollary 3.4 we can write∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖Lp(Ω)
≤ C

∣∣ ∫
Ω

curlϕ · z̃ dx
∣∣

‖z̃‖Lp(Ω)
≤ C

∣∣ ∫
Ω

curlϕ · curlψ dx
∣∣

‖ψ‖Xp
T (Ω)

,

and the Inf-Sup Condition (4.12) follows immediately from (4.14).

In the next, we illustrate the importance goal of the Inf-Sup Condition by using

it to resolve the following first elliptic system.

Proposition 4.2. Assume that v belongs to Lp(Ω). Then, the following problem
−∆ ξ = curl v, div ξ = 0 in Ω,

ξ · n = 0, (curl ξ − v)× n = 0 on Γ,

〈ξ · n, 1〉Σj
= 0, 1 ≤ j ≤ J,

(4.16)

has a unique solution in W 1,p(Ω) and we have:

‖ξ‖W 1,p(Ω) ≤ C‖v‖Lp(Ω). (4.17)

Moreover, if v ∈W 1,p(Ω) and Ω is of class C 2,1, then the solution ξ is in W 2,p(Ω)

and satisfies the estimate:

‖ξ‖W 2,p(Ω) ≤ C‖v‖W 1,p(Ω). (4.18)

Proof.

(i) Existence and uniqueness. Thanks to Lemma 4.4, the following problem:

find ξ ∈ V p
T (Ω) such that

∀ϕ ∈ V p′

T (Ω),

∫
Ω

curl ξ · curlϕ dx =

∫
Ω

v · curlϕ dx . (4.19)

satisfies the Inf-Sup condition (4.12). So, it has a unique solution ξ ∈ V p
T (Ω)

since the right-hand side defines an element of (V p′

T (Ω))′ . By Theorem 3.4,

this solution ξ belongs to W 1,p(Ω). Next, we want to extend (4.19) to any test

function ϕ̃ in X p′

T (Ω). We consider the solution χ in W 1,p′(Ω) up to an additive

constant of the Neumann problem:

∆χ = div ϕ̃ in Ω and
∂ χ

∂n
= 0 on Γ. (4.20)
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Then, we set

ϕ = ϕ̃− gradχ−
J∑
j=1

〈(ϕ̃− gradχ) · n , 1〉Σj
g̃rad qTj . (4.21)

Observe that ϕ belongs to V p′

T (Ω). Hence (4.19) becomes: find ξ ∈ V p
T (Ω)

such that

∀ϕ̃ ∈ X p′

T (Ω),

∫
Ω

curl ξ · curl ϕ̃ dx =

∫
Ω

v · curl ϕ̃ dx . (4.22)

It is easy to proof that every solution of (4.16) also solves (4.22). Conversely,

let ξ the solution of the problem (4.22). Then,

−∆ ξ = curl curl ξ = curl v in Ω.

Moreover, since ξ belongs to the space V p
T (Ω) we have div ξ = 0 in Ω, ξ ·n = 0

on Γ and 〈ξ · n , 1〉Σj
= 0 for any 1 ≤ j ≤ J . Then, it remains to check the

boundary condition curl ξ × n = v × n on Γ of (4.16). The function z =

curl ξ − v belongs to H p(curl, Ω) with curl z = 0. Consequently, for any

ϕ̃ ∈ X p′

T (Ω) we have:∫
Ω

z · curl ϕ̃dx − 〈z × n , ϕ̃〉
W
− 1

p
,p

(Γ)×W
1
p
,p′

(Γ)
=

∫
Ω

curl z · ϕ̃ d x = 0.

Using (4.22), we deduce that

∀ϕ̃ ∈ X p′

T (Ω), 〈z × n , ϕ̃〉Γ = 0.

Let now µ be any element of the space W
1− 1

p′ ,p
′
(Γ). So, there exists an element

ϕ̃ of W 1,p′(Ω) such that ϕ̃ = µt on Γ, where µt is the tangential component

of µ on Γ. It is clear that ϕ̃ belongs to X p′

T (Ω) and

〈z × n ,µ〉Γ = 〈z × n ,µt〉Γ = 〈z × n , ϕ̃〉Γ = 0.

This implies that z×n = 0 on Γ which is the last boundary condition in (4.16).

To prove the estimate (4.17), we apply Remark 4.2 iii) .

(ii) Regularity. Now, we suppose that v ∈ W 1,p(Ω) and Ω is of class C 2,1. Let

ξ ∈ W 1,p(Ω) given by the first step and z = curl ξ − v . Observe that z

belongs to X p
N (Ω) ↪→W 1,p(Ω). This implies that curl ξ ∈W 1,p(Ω). Applying

Corollary 3.5, we deduce that ξ belongs to W 2,p(Ω) and satisfies the estimate

(4.18).

Remark 4.3.



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

30 C. Amrouche and N. Seloula

(i) Note that we can directly prove the uniqueness of the solution of the problem

(4.16) by using the characterization of the kernels K p
T (Ω) and K p

N (Ω).

(ii) When v belongs only to Lp(Ω), then (curl ξ−v)×n ∈W − 1
p ,p(Γ) but neither

curl ξ × n nor v × n is defined. However, if v belongs to H p(curl, Ω), then

v × n and curl ξ × n have a sense in W − 1
p ,p(Γ).

With the previous proposition, the following theorem is the main result of this

subsection

Theorem 4.3. A function u in H p(div, Ω) satisfies:

div u = 0 in Ω, u · n = 0 on Γ and 〈u · n, 1〉Σj
= 0, 1 ≤ j ≤ J, (4.23)

if and only if there exists a vector potential ψ in W 1,p(Ω) such that

u = curlψ and divψ = 0 in Ω,

ψ × n = 0 on Γ,

〈ψ · n, 1〉Γi
= 0, for any 1 ≤ i ≤ I.

(4.24)

This function ψ is unique and we have the estimate:

‖ψ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω). (4.25)

Proof. The necessity of conditions (4.23) can be established exactly as in 2. The

uniqueness follows from the characterization of the kernel Kp
N (Ω). Now, let us es-

tablish the existence of ψ. According to Lemma 4.1, there exists ψ0 ∈ W 1,p(Ω)

with divψ0 = 0 and such that u = curlψ0. Due to Lemma 4.4, the following

problem: find ξ ∈ V p
T (Ω) such that

∀ϕ ∈ V p′

T (Ω),

∫
Ω

curl ξ ·curlϕdx =

∫
Ω

ψ0 ·curlϕ dx−
∫

Ω

curlψ0 ·ϕdx , (4.26)

has a unique solution ξ ∈ V p
T (Ω). We know that due to Theorem 3.4, this solu-

tion ξ belongs to W 1,p(Ω). Next, by using the same arguments as in the proof of

Proposition 4.2, the problem (4.26) is in fact equivalent to


−∆ ξ = 0, div ξ = 0 in Ω,

ξ · n = 0, curl ξ × n = ψ0 × n on Γ,

〈ξ · n , 1〉Σj = 0, 1 ≤ j ≤ J.

Using Theorem 3.2, the function z = ψ0 − curl ξ belongs to W 1,p(Ω). Then, the

required vector potential is given by
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ψ = z −
I∑
i=1

〈z · n , 1〉Γi
grad qNi .

Remark 4.4. If Ω is only Lipschitz, then ψ ∈ X p
N (Ω) and the previous result

holds only for some values of p.

4.4. Other potentials

In this subsection, we extend some results concerning vectors potentials and scalar

potentials to the non hilbertian case without giving details (see Ref. 2 and Ref. 3

for the case p = 2). The first result is less standard, however it turns out to be

useful in special cases.

Theorem 4.4. A function u in H p(div, Ω) satisfies:

div u = 0 in Ω, u · n = 0 on Γ and 〈u · n, 1〉Σj
= 0, 1 ≤ j ≤ J, (4.27)

if and only if there exists a vector potential ψ in W 1,p(Ω) such that

u = curlψ and div (∆ψ) = 0 in Ω,

ψ = 0 on Γ, 〈∂n(divψ), 1〉Γi
= 0, for any 0 ≤ i ≤ I.

(4.28)

This function ψ is unique and we have the estimate:

‖ψ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω).

Remark 4.5. When u in W m,p
0 (Ω), for m ≥ 1, satisfying (4.27), we can prove the

existence of a vector potential ψ in W m+1,p
0 (Ω) satisfying div ∆m+1ψ = 0 in Ω.

Now, we give the following result concerning scalar potential.

Theorem 4.5. Let f ∈ W−m,p(Ω) for some integer m > 0. then the following

properties are equivalent:

(i) 〈f , ϕ〉
W−m,p(Ω)×W

m,p′
0 (Ω)

= 0 for all ϕ ∈ {ϕ ∈Wm,p′

0 (Ω); divϕ = 0 in Ω},

(ii) 〈f , ϕ〉
W−m,p(Ω)×W

m,p′
0 (Ω)

= 0 for all ϕ ∈ {ϕ ∈ D(Ω); divϕ = 0 in Ω},

(iii) There exists a distribution χ ∈W −m+1,p(Ω), unique up to an additive constant,

such that f = gradχ in Ω.

If in addition Ω is simply-connected, the above properties are equivalent to:

(iv) curl f = 0 in Ω.
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We note that if Ω is not simply-connected, properties (iii) and (iv) are not equiva-

lent. More precisely, for f ∈ Lp(Ω) or f in the dual space of H p′

0 (div ,Ω), we have

the following result:

Theorem 4.6. For any f in the dual space of H p′

0 (div ,Ω) with curl f = 0 in Ω

and that satisfies

〈f , v〉
[H p′

0 (div ,Ω)]′×H p′
0 (div ,Ω)

= 0 for all v ∈ K p′

T (Ω), (4.29)

there exists a scalar potential χ in Lp(Ω), unique up to an additive constant, such

that f = gradχ and the following estimate holds:

‖χ‖Lp(Ω)/R ≤ C‖ f ‖
[H p′

0 (div ,Ω)]′
.

Moreover, if f ∈ Lp(Ω), the scalar potential χ belongs to W 1,p(Ω) and satisfies the

following estimate:

‖χ‖W 1,p(Ω)/R ≤ C‖ f ‖Lp(Ω) (4.30)

Remark 4.6. If Ω is simply-connected, the condition (4.29) is empty because

K p′

T (Ω) = {0}. Then, for a distribution f in the dual space [H p′

0 (div,Ω)]′ sat-

isfying curl f = 0 in Ω, there exists a unique function χ ∈ Lp(Ω), up to an additive

constant, such that f = gradχ.

Now, we are interested into weak vector potentials corresponding to less regular

data. We know that for a given function f in W−1,p(Ω), there exist a unique

u ∈W 1,p
0 (Ω) and χ ∈ Lp(Ω) such that

f = −∆u +∇χ and div u = 0 in Ω, (4.31)

and satisfying the estimate:

‖u‖W 1,p(Ω) + ‖χ‖Lp(Ω)/R ≤ C‖f ‖W−1,p(Ω).

Besides, the continuous imbeddings

[H p
0 (curl, Ω)]′ ↪→W −1/p,p(Ω) and [H p

0 (div, Ω)]′ ↪→W −1/p,p(Ω)

hold. By setting z = curl u , we obtain the decomposition

f = curl z +∇χ

with div z = 0 in Ω, z ·n = 0 on Γ. Now, since z ∈ Lp(Ω) and χ ∈ Lp(Ω), we have

that curl z ∈ [H p
0 (curl, Ω)]′ and ∇χ ∈ [H p

0 (div, Ω)]′. As a consequence

W −1,p(Ω) = [H p
0 (curl, Ω)]′ + [H p

0 (div, Ω)]′,

but the sum is obviously not direct.

In fact, if f ∈ [H p′

0 (div, Ω)]′, using the characterization of this last space, the

solution u of the problem (4.31) is more regular:
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Proposition 4.3. For any f in the dual space H p′

0 (div, Ω)′, there exist a unique

u ∈W 2,p(Ω)∩W 1,p
0 (Ω) and χ ∈ Lp(Ω) solution to (4.31) that satisfy the estimate

‖u‖W 2,p(Ω) + ‖χ‖Lp(Ω)/R ≤ C‖ f ‖
[H p′

0 (div,Ω)]′
.

We next consider the following result.

Theorem 4.7. For any f in the dual space of H p′

0 (curl ,Ω) with div f = 0 in Ω

and satisfies

〈f , v〉
[H p′

0 (curl ,Ω)]′×H p′
0 (curl ,Ω)

= 0 for all v ∈ K p′

N (Ω), (4.32)

there exists a vector potential ξ in Lp(Ω), unique up to an additive element of

Kp
T (Ω), such that

f = curl ξ, with div ξ = 0 in Ω and ξ · n = 0 on Γ,

and such that the following estimate holds:

‖ξ‖Lp(Ω)/Kp
T (Ω) ≤ C‖ f ‖

[H p′
0 (curl ,Ω)]′

.

Remark 4.7. If we assume that Ω has a connected boundary Γ, then condi-

tion (4.32) is empty because K p′

N (Ω) = {0}. Then, a distribution f belongs to

[H p′

0 (curl,Ω)]′ such that div f = 0 if and only if there exists a function ξ ∈ Lp(Ω),

such that f = curl ξ, where div ξ = 0 in Ω and ξ · n = 0 on Γ. Moreover, ξ is

unique up to an additive element of K p
T (Ω).

5. The Stokes Equations with Normal Boundary Conditions

In this section we will study the following Stokes problem:

(SN )


−∆ u +∇π = f and div u = 0 in Ω,

u × n = g × n and π = π0 on Γ,

〈u · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

5.1. Weak solutions

The aim of this subsection is to give a variational formulation of problem (SN )

and to prove a theorem of existence and uniqueness of weak solutions. Due to the

boundary conditions that we consider, the pressure is decoupled from the system.

It is the reason why we are naturally reduced to solving elliptic problems which

are the Stokes equations without the pressure term. We begin by proving a useful

preliminary result involving Inf-Sup condition.
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Lemma 5.1. The following Inf-Sup condition holds: there exists a constant β > 0,

such that

inf
ϕ∈Vp′

N (Ω)
ϕ 6=0

sup
ξ∈Vp

N (Ω)
ξ 6=0

∫
Ω

curl ξ · curlϕdx

‖ξ‖Xp
N (Ω)‖ϕ‖Xp′

N (Ω)

≥ β. (5.1)

Proof. The proof is very similar to that of Lemma 4.4. Let ϕ be any function of

V p′

N (Ω). Due to Corollary 3.2, we can write: for any ϕ ∈ V p′

N (Ω)

‖ϕ‖
Xp′

N (Ω)
≤ C‖curlϕ‖Lp′ (Ω) = C sup

g∈Lp(Ω)
g 6=0

∣∣ ∫
Ω

curlϕ · g dx
∣∣

‖g‖Lp(Ω)
.

We use now the Helmholtz decomposition g = ∇χ+ z , where χ ∈W 1,p(Ω) and z

belongs to H p(div, Ω) with div z = 0 in Ω and z · n = 0 on Γ. Moreover, we have

the estimate

‖∇χ‖Lp(Ω) ≤ C‖g‖Lp(Ω).

We set

z̃ = z −
J∑
j=1

〈z · n , 1〉Σj g̃rad qTj ,

and we use Theorem 4.3.

Proposition 5.1. Let f ∈ (H p′

0 (curl, Ω))′ with div f = 0 in Ω and satisfying the

compatibility condition:

∀v ∈ K p′

N (Ω), 〈 f , v 〉
[H p′

0 (curl ,Ω)]′×H p′
0 (curl ,Ω)

= 0. (5.2)

Then, the following problem
−∆ ξ = f and div ξ = 0 in Ω,

ξ × n = 0 on Γ,

〈ξ · n, 1〉Γi = 0, 1 ≤ i ≤ I,

(5.3)

has a unique solution in W 1,p(Ω) and we have:

‖ ξ ‖W 1,p(Ω) ≤ C‖ f ‖
[H p′

0 (curl ,Ω)]′
. (5.4)

Proof. Due to Theorem 5.1 and next to Theorem 3.2, the problem: find ξ ∈ V p
N (Ω)

such that

∀ϕ ∈ V p′

N (Ω),

∫
Ω

curl ξ · curlϕ dx = 〈f , ϕ〉Ω, (5.5)
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has a unique solution ξ ∈W 1,p(Ω). Let us ϕ̃ ∈ X p′

N (Ω) and we consider the solution

χ in W 1,p′

0 (Ω) of ∆χ = div ϕ̃ in Ω. Setting

ϕ = ϕ̃− gradχ−
I∑
i=1

〈(ϕ̃− gradχ) · n , 1〉Γi
grad qNi ,

we observe that ϕ belongs to V p′

N (Ω) and using (5.2) problem (5.5) becomes: find

ξ ∈ V p
N (Ω) such that

∀ϕ̃ ∈ X p′

N (Ω),

∫
Ω

curl ξ · curl ϕ̃ dx = 〈f , ϕ̃〉Ω. (5.6)

We check that the problems (5.3) and (5.6) are equivalent and we deduce the com-

patibility condition (5.2) from (5.6). We may also apply Remark 4.2 iii) in order to

prove the estimate (5.4).

Remark 5.1.

(i) Thanks to the characterization of the kernels K p
T (Ω) and K p

N (Ω), we can in

fact show directly the uniqueness of the solution ξ ∈W 1,p(Ω) of problem (5.3).

(ii) We can replace in (5.3) the right hand side by the curl of an element v ∈ Lp(Ω).

Indeed, due to Theorem 4.7, every element f ∈ [H p′

0 (curl, Ω])′ with div f = 0

in Ω and satisying the compatibility condition (5.2), can be written as the curl

of a function v ∈ Lp(Ω).

(iii) Observe that, by using (5.8) below, the problem (5.3) is equivalent to: find

ξ ∈W 1,p(Ω) such that
−∆ ξ = curl v in Ω,

ξ × n = 0 and
∂ ξ

∂ n
· n − 2Kξ · n = 0 on Γ,

〈ξ · n , 1〉Γi = 0, 1 ≤ i ≤ I,

where the second boundary condition is a Fourier-Robin type boundary condi-

tion.

Now, we consider the case of inhomogeneous boundary condition.

Corollary 5.1. Let f and g with: f ∈ [H p′

0 (curl, Ω)]′, div f = 0 in Ω and satisfying

the compatibility condition (5.2) and g × n ∈ W 1−1/p,p(Γ). Then, the following

problem

(EN )


−∆ ξ = f and div ξ = 0 in Ω,

ξ × n = g× n on Γ,

〈ξ · n, 1〉Γi = 0, 1 ≤ i ≤ I,
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has a unique solution in W 1,p(Ω) and we have:

‖ ξ ‖W 1,p(Ω) ≤ C
(
‖ f ‖

[H p′
0 (curl ,Ω)]′

+ ‖g× n‖W 1−1/p,p(Γ)

)
. (5.7)

Proof. Let ξ0 ∈W 1,p(Ω) be the divergence free lift of g : ξ0 = g t on Γ, div ξ0 =

0 in Ω with the estimate

‖ξ0‖W 1,p(Ω) ≤ C‖g t‖W 1−1/p,p(Γ).

Next, observe that F = f − curl curl ξ0 belongs to [H p′

0 (curl, Ω)]′ and satisfies

the compatibility condition (5.2).

Now, we define the space

Z p(Ω) =
{
v ∈W 1,p(Ω); div v ∈W 1,p(Ω)

}
,

which is a Banach space for the norm

‖v‖Z p(Ω) = ‖v‖W 1,p(Ω) + ‖div v‖W 1,p(Ω).

We verify that the space D(Ω) is dense in Z p(Ω). The following result is proved in

the cas p = 2 by Heron,22 for the functions of H 2(Ω).

Lemma 5.2. Assume that Ω is of class C 2,1. Every function v ∈ Z p(Ω) satisfies:

div v = divΓvt − 2Kv · n +
∂ v

∂ n
· n in W −1/p,p(Γ) (5.8)

where K denotes the mean curvature of Γ, vt = v − (v · n)n is the tangential

component of v and divΓ is the surface divergence. In particular, the following

mapping

v 7→ ∂ v

∂ n
· n from Z p(Ω) into W −1/p,p(Γ)

is continuous.

Proof. Let v ∈ D(Ω). Then,

div v =

2∑
j=1

∂ vj
∂ sj

+

2∑
j,k=1

vk
∂ τ k
∂ sj

· τ j + vn

2∑
j=1

∂ n

∂ sj
· τ j +

2∑
k=1

vk
∂ τ k
∂ n

· n +
∂ vn
∂ n

,

i.e. v satisfies the formula (5.8) with K = − 1
2

2∑
j=1

∂ n

∂ sj
· τ j .
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Now, let v be any function in Z p(Ω). Since D(Ω) is dense in Z p(Ω), there exists a

sequence (vk)k of D(Ω) which converges to v in Z p(Ω) and we have the relation:

div vk = divΓ(vk)t − 2Kvk · n +
∂ vk
∂ n

· n on Γ. (5.9)

Hence, div vk → div v in W 1,p(Ω) implies that div vk → div v in W 1− 1
p ,p(Γ). Next,

we have (vk)t → v t in W 1− 1
p ,p(Γ), since vk → v in W 1,p(Ω). As a consequence,

divΓ(vk)t → divΓv t in W − 1
p ,p(Γ). Moreover, since the domain Ω is of class C 2,1,

then K ∈W 1,∞(Ω). This implies that 2Kvk ·n → 2Kv ·n in W 1− 1
p ,p(Γ), Finally,

by passing to the limit k → +∞ in (5.9), we deduce the convergence of the terme
∂ vk
∂ n

· n in W − 1
p ,p(Γ) to an element wich will also be denoted by

∂ v

∂ n
· n . This

yields immediately (5.8).

Similarly, we define the space

Y p(Ω) =
{
v ∈W 1,p(Ω); curl v ∈W 1,p(Ω)

}
,

which is a Banach space for the norm

‖v‖Y p(Ω) = ‖v‖W 1,p(Ω) + ‖curl v‖W 1,p(Ω).

We verify that the space D(Ω) is dense in Y p(Ω) and as previously, we can prove

that the following formula holds for any v ∈ Y p(Ω):

curl v =

2∑
j=1

∂ v

∂ sj
× τ j +

∂ v

∂ n
× n in W−1/p,p(Γ). (5.10)

In particular, the following mapping:

v 7−→ ∂ v

∂ n
× n fromY p(Ω) into W −1/p,p(Γ) (5.11)

is continuous .

We give the following corollary which extends Theorem 3.2 to the case where

the boundary condition v × n = 0 on Γ is replaced by inhomogeneous one. We

introduce the following space for s ∈ R, s ≥ 1:

Y s,p(Ω)=
{

v ∈Lp(Ω); div v ∈W s−1,p(Ω), curl v ∈W s−1,p(Ω), v × n ∈W s− 1
p ,p(Γ)

}
.

Corollary 5.2. The space Y 1,p(Ω) is continuously imbedded in W 1,p(Ω) and we

have the following estimate: for any v in Y 1,p(Ω),

‖v‖W 1,p(Ω) ≤ C
(
‖v‖Lp(Ω)+‖curl v‖Lp(Ω)+‖div v‖Lp(Ω)+‖v×n‖

W
1− 1

p
,p

(Γ)

)
. (5.12)
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Proof. Let v be any function of Y 1,p(Ω). We set z = v − curl ξ where ξ ∈
W 1,p(Ω) is the solution of the problem (4.16). Hence, z belongs to the space

X p
N (Ω). By Theorem 3.2 and (3.10), z even belongs to W 1,p(Ω) with the estimate:

‖z‖W 1,p(Ω) ≤ C
(
‖z‖Lp(Ω) + ‖div z‖Lp(Ω) + ‖curl z‖Lp(Ω)

)
. (5.13)

Then, it suffices to prove that curl ξ ∈W 1,p(Ω) in order to obtain v ∈W 1,p(Ω).

We set w = curl ξ. Then w satisfies{
∆ w = curl curl v and div w = 0 in Ω

w × n = v × n on Γ and 〈w · n , 1〉Γi
= 0.

Since curl v ∈ Lp(Ω) and v ×n ∈W 1−1/p,p(Γ), due to Corollary 5.1, the function

w belongs to W 1,p(Ω) and satisfies the estimate

‖w‖W 1,p(Ω) ≤
(
‖curl v‖Lp(Ω) + ‖v × n‖W 1−1/p,p(Γ)

)
(5.14)

and the inequality (5.12) can be deduced by using inequalities (5.13) and (5.14).

More generally, we have:

Corollary 5.3.

(i) Let m ∈ N∗ and Ω is of class Cm,1. Then the space Ym,p(Ω) is continuously

imbedded in Wm,p(Ω) and we have the following estimate: for any function v

in Wm,p(Ω),

‖v‖W m,p(Ω) ≤ C
(
‖v‖Lp(Ω) + ‖curl v‖W m−1,p(Ω) + ‖div v‖W m−1,p(Ω) +

+‖v× n‖
W

m− 1
p
,p

(Γ)

)
.

(ii) Let s = m+σ, m ∈ N∗ and 0 < σ ≤ 1, Assume that Ω is of class Cm+1,1. Then,

the space Y s,p(Ω) is continuously imbedded in W s,p(Ω) and for any function

v in Ym,p(Ω) we have the following estimate:

‖v‖Ws,p(Ω) ≤ C
(
‖v‖Lp(Ω)+‖curl v‖W s−1,p(Ω)+‖div v‖W s−1,p(Ω)+‖v×n‖

W
s− 1

p
,p

(Γ)

)
.

Proof.

(i) In order to simplify the discussion, we shall write the proof for m = 2. For

m = 1, the result is given by Corollary 5.2 and then the proof is similar when

m ≥ 3. We already know that v ∈W 1,p(Ω) and v satisfying the estimate (5.15)

with m = 1. Using formula (5.8), we obtain directly that
∂ v

∂ n
·n ∈W 1−1/p,p(Γ)

and we have the estimate:
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‖ ∂ v

∂ n
· n‖W 1−1/p,p(Γ) ≤ C

(
‖v‖Lp(Ω) + ‖curl v‖L p(Ω) +

+ ‖div v‖W 1,p(Ω) + ‖v × n‖
W

2− 1
p
,p

(Γ)

)
. (5.15)

Next, we have ( ∂ v

∂ n

)
t

= vn
∂ n

∂ n
+
∂ v t
∂ n

.

Since vn ∈ W 1−1/p,p(Γ) and v t ∈ W 1−1/p,p(Γ), we deduce by the regularity

assumption on Ω that
( ∂ v

∂ n

)
t
∈W 1−1/p,p(Γ) and we have the estimate:

‖
( ∂ v

∂ n

)
t
‖W 1−1/p,p(Γ) ≤ C

(
‖vn‖W 1−1/p,p(Γ) + ‖v × n‖W 2−1/p,p(Γ)

)
,(5.16)

≤ C
(
‖v‖Lp(Ω) + ‖curl v‖L p(Ω) + ‖div v‖W 1,p(Ω) + ‖v × n‖

W
2− 1

p
,p

(Γ)

)
.

As a consequence,
∂ v

∂ n
belongs to W 1−1/p,p(Γ). Moreover, since v ∈W 1,p(Ω),

we have that ∆ v = curl curl v −∇ div v ∈ Lp(Ω). Using the regularity resuls

for the Neumann problem, we deduce that v belongs to W 2,p(Ω) and we have

the estimate:

‖v‖W 2,p(Ω) ≤ C
(
‖curl v‖W 1,p(Ω) + ‖div v‖W 1,p(Ω) + ‖ ∂ v

∂ n
‖

W
1− 1

p
,p

(Γ)

)
(5.17)

The desired estimate in the point i) can be obtained from (5.15) and (5.16) and

(5.17).

(ii) This point can be proved by using a simple interpolation argument.

As a consequence, we have the following regularity result.

Corollary 5.4. Assume that Ω is of class C 2,1. Let f ∈ Lp(Ω) satisfying the com-

patibility condition (5.2), then the solution ξ given by Proposition 5.1 belongs to

W 2,p(Ω) and satisfies the estimate:

‖ ξ ‖W 2,p(Ω) ≤ C‖ f ‖Lp(Ω). (5.18)

Proof. We set z = curl ξ. Then, the function z satisfies:

z ∈ Lp(Ω), curl z = f ∈ Lp(Ω), div z = 0 in Ω and z · n = 0 on Γ.

Due to Theorem 3.4, z belongs to W 1,p(Ω). As a consequence ξ satisfies:

ξ ∈ Lp(Ω), curl ξ ∈W 1,p(Ω), div ξ = 0 in Ω and ξ × n = 0 on Γ.

We deduce from Corollary 5.3 that the solution ξ belongs to W 2,p(Ω) and satisfies

the estimate (5.18).



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

40 C. Amrouche and N. Seloula

Using an interpolation argument, we deduce the following theorem.

Theorem 5.1. Let s be a real number such that 0 ≤ s ≤ 1. Let f = curlϕ with

ϕ ∈W s,p(Ω). Then, problem (5.3)

has a unique solution ξ ∈W 1+s,p(Ω) satisfying the estimate

‖ξ‖W 1+s,p(Ω) ≤ C‖ϕ‖W s,p(Ω).

The next theorem provides the information on the solvability, in weak sense, of

the Stokes problem (SN ).

Theorem 5.2. (Weak solutions for (SN)) Let f, g, π0 with

f ∈ [H p′

0 (curl, Ω)]′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ), (5.19)

satisfying the compatibility condition:

∀v ∈ K p′

N (Ω), 〈 f , v 〉Ω −
∫

Γ

π0 v · n ds = 0, (5.20)

where 〈·, ·〉Ω = 〈·, ·〉
[H p′

0 (curl ,Ω)]′×H p′
0 (curl ,Ω)

. Then, the Stokes problem (SN ) has a

unique solution (u, π) ∈W 1,p(Ω)× W 1,p(Ω) satisfying the estimate

‖u ‖W 1,p(Ω) + ‖π ‖W 1,p(Ω)≤C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+ ‖g× n‖W 1−1/p,p(Γ) +

+ ‖π0‖W 1−1/p,p(Γ)

)
. (5.21)

Proof. First, we consider the problem

∆π = div f in Ω, π = π0 on Γ.

Because div f ∈ W −1,p(Ω), this problem has a unique solution π ∈ W 1,p(Ω) satis-

fying the estimate

‖π‖W 1,p(Ω) ≤ C
(
‖f ‖

[H p′
0 (curl,Ω)]′

+ ‖π0‖W 1−1/p,p(Γ)

)
. (5.22)

Next, because ∇π ∈ Lp(Ω), observe that F = f − ∇π is an element of the dual

space [H p′

0 (curl, Ω)]′ and satisfies the compatibility condition (5.2). So problem

(SN ) becomes: −∆ u = F in Ω, div u = 0 in Ω, u × n = g × n on Γ and

〈u · n , 1〉Γi
= 0 for any 1 ≤ i ≤ I which is equivalent to: Find u ∈ X p

N (Ω) such

that:

u − ξ0 ∈ V p
N (Ω)

∀v ∈ V p′

N (Ω),

∫
Ω

curl u · curl v dx = 〈F , v 〉Ω,

where ξ0 is the function given in the proof of Corollary 5.1. The compatibility

condition (5.20) comes from the last variational formulation by taking v ∈ K p′

N (Ω).
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Moreover, since F satisfies the assumptions of Corollary 5.1, this problem has a

unique solution u ∈W 1,p(Ω) satisfying the estimate

‖u ‖W 1,p(Ω) ≤ C
(
‖F ‖

[H p′
0 (curl,Ω)]′

+ ‖g × n‖W 1−1/p,p(Γ)

)
. (5.23)

Finally, the pair (u , π) ∈W 1,p(Ω)×W 1,p(Ω) is the unique solution of the problem

(SN ) and the estimate (5.21) follows easily from (5.22) and (5.23).

Remark 5.2. If we take π0 ∈ W −1/p,p(Γ), we obtain that π ∈ Lp(Ω) a unique

solution of the problem:

−∆π = div f in Ω and π = π0 on Γ.

But we are not able to solve problem (SN ) because, in this case, f = curl (curl u)+

∇π /∈ [H p′

0 (curl, Ω)]′.

More generally, we can study the following Stokes problem when the divergence

operator does not vanish and it is a given function:


−∆ u +∇π = f and div u = χ in Ω,

u × n = g × n and π = π0 on Γ,

〈u · n , 1〉Γi
= 0, 1 ≤ i ≤ I.

(5.24)

Corollary 5.5. Let f, χ, g, π0 with

f ∈ [H p′

0 (curl, Ω)]′, χ ∈W 1,p(Ω), g× n ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ)

and satisfying the compatibility condition:

∀v ∈ K p′

N (Ω), 〈 f , v 〉Ω −
∫

Γ

(π0 − χ) v · n ds = 0. (5.25)

Then, the Stokes problem (5.24) has exactly one solution u ∈ W 1,p(Ω) and π ∈
W 1,p(Ω). Moreover, there exists a constant C > 0 depending only on p and Ω such

that:

‖u ‖W 1,p(Ω) + ‖π‖W 1,p(Ω) ≤ C
(
‖ f ‖

[Hp′
0 (curl,Ω)]′

+ ‖χ‖W 1,p(Ω) +

+‖ g ‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/p,p(Γ)

)
. (5.26)

Remark 5.3. For the same reason as in Remark 5.2, we can not suppose that

χ ∈ Lp(Ω) only.
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5.2. Strong solutions and regularity for the Stokes system (SN)

In this subsection, we propose to study the question of the regularity of the solutions

of problem (SN ), when the data are more regular. We need the following preliminary

result.

Lemma 5.3. The mapping v 7−→ curl v · n is continuous from W 1,p(Ω) into

W −1/p,p(Γ) and we have the relation:

curl v · n =
( 2∑
j=1

∂ vt
∂ sj
× τ j

)
· n on Γ, in the sense of W −1/p,p(Γ). (5.27)

If moreover, v×n ∈W 2−1/p,p(Γ), then curl v ·n ∈W 1−1/p,p(Γ) with the estimate:

‖curl v · n‖W 1−1/p,p(Γ) ≤ C‖v× n‖W 2−1/p,p(Γ).

Proof. Let v ∈ W 1,p(Ω). By the density of D(Ω) in W 1,p(Ω), there exists a

sequence vk ∈ D(Ω) which converges to v in W 1,p(Ω). Using (5.10), we deduce

that

curl vk · n =
( 2∑
j=1

∂ vk
∂ sj

× τ j
)
· n on Γ.

Since vk converges to v in W 1−1/p,p(Γ), we deduce that the term

( 2∑
j=1

∂ vk
∂ sj

× τ j
)
· n converges to

( 2∑
j=1

∂ v

∂ sj
× τ j

)
· n in W −1/p,p(Γ).

Moreover, curl v belongs to H p(div, Ω) and by the continuity of the normal trace

operator, we have the convergence of curl vk ·n to curl v ·n in W −1/p,p(Γ), which

proves the following formula:

curl v · n =
( 2∑
j=1

∂ v

∂ sj
× τ j

)
· n on Γ. (5.28)

Consequently,

curl v · n =
( 2∑
j=1

∂ v t
∂ sj

× τ j
)
· n +

( 2∑
j=1

∂ (v · n)

∂ sj
n × τ j

)
· n +

+
( 2∑
j=1

(v · n)
∂ n

∂ sj
× τ j

)
· n . (5.29)

Observe that the two last terms vanish. Moreover, since v ×n ∈W 2−1/p,p(Γ), the

tangential derivation on Γ of v t belongs to W 1−1/p,p(Γ). Thanks to the regularity

of Γ, the first term in (5.29) belongs to W 1−1/p,p(Γ). This prove Lemma 5.3.
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Theorem 5.3. (Strong solutions for (SN)) Assume that Ω is of class C 2,1. Let

f, g and π0 with:

f ∈ Lp(Ω), g× n ∈W 2−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ) (5.30)

satisfying the compatibility condition (5.20). Then, the solution (u, π) ∈W 1,p(Ω)×
W 1,p(Ω) of the Stokes problem (SN ) given by Theorem 5.2 belongs to W 2,p(Ω) ×
W 1,p(Ω) and satisfying the estimate:

‖u ‖W 2,p(Ω) + ‖π‖W 1,p(Ω) ≤ C
(
‖ f ‖Lp(Ω) + ‖g× n‖W 2−1/p,p(Γ) + ‖π0‖W 1−1/p,p(Γ)

)
.

Proof. Let (u , π) ∈ W 1,p(Ω) ×W 1,p(Ω) be the solution given by Theorem 5.2.

It suffices to prove that u ∈W 2,p(Ω). The function z = curl u satisfies:

z ∈ Lp(Ω), div z = 0, curl z ∈ Lp(Ω).

Moreover, since g × n ∈ W 2−1/p,p(Γ) and due to Lemma 5.3, z · n belongs to

W 1−1/p,p(Γ). We deduce from Theorem 3.5 that z ∈W 1,p(Ω). As a consequence,

it follows from Corollary 3.5 that u belongs to W 2,p(Ω).

We can also consider strong solutions in the case when the divergence operator

does not vanish and we have only to consider regular boundary data for the velocity.

So, the proof of the following result is quite similar to that of Theorem 5.3 above.

Corollary 5.6. Let f, g, χ, π0 with:

f ∈ Lp(Ω), g× n ∈W 2−1/p,p(Γ), χ ∈W 1,p(Ω), π0 ∈W 1−1/p,p(Γ) (5.31)

satisfying the compatibility condition (5.25). Then, the solution (u, π) ∈W 1,p(Ω)×
W 1,p(Ω) of the Stokes problem (5.24) given by Corollary 5.5 belongs to W 2,p(Ω)×
W 1,p(Ω) with the corresponding estimate.

5.3. Very weak solutions for the Stokes system (SN)

In this subsection, we are going to study the existence of very weak solutions for

the Stokes problem (SN ). Before, we give some preliminary results.

We introduce the space:

N p(Ω) = {v ∈W 1,p
0 (Ω); curl v ∈ H p

0 (curl, Ω)},

equipped with the norm

‖v‖N p(Ω) = ‖v‖W 1,p(Ω) + ‖curl v‖H p(curl,Ω).

It is easy to verify that D(Ω) is dense in N p(Ω).
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We introduce also the following spaces

Lpσ(Ω) = {v ∈ Lp(Ω); div v = 0} and G p(Ω) = {∇θ; θ ∈W 1,p
0 (Ω)}.

It is clear that Lpσ(Ω) is a closed subspace of Lp(Ω). Poincaré’s inequality implies

that it is the same for Gp(Ω). The following lemma gives a characterization for the

dual space of L p
σ (Ω).

Lemma 5.4. We have the following properties:

(i) Lp(Ω) = Lpσ(Ω)⊕G p(Ω).

(ii) (Lpσ(Ω))′ = Lp
′

σ (Ω).

Proof.

(i) It is clear that Lpσ(Ω) ∩ Gp(Ω) = {0}. Let v be any element of Lp(Ω) and

χ ∈W 1,p
0 (Ω) satisfying: ∆χ = div v in Ω. Setting u = v −∇χ, we deduce the

point i).

(ii) We observe that Lpσ(Ω) = Lp(Ω)/G p(Ω) and (Lpσ(Ω))′ = G p(Ω)⊥. As Lp
′

σ (Ω)

is a closed subspace of Lp
′
(Ω). Hence, if we prove that Lp

′

σ (Ω)⊥ = G p(Ω) this

will imply

G p(Ω)⊥ = (Lp
′

σ (Ω)⊥)⊥ = Lp
′

σ (Ω) = Lp
′

σ (Ω),

which is the required result because G p(Ω)⊥ = (Lpσ(Ω))′. First, let u ∈ G p(Ω).

Then, we have for any v ∈ Lp
′

σ (Ω)∫
Ω

u · v dx =

∫
Ω

∇π · v dx = 0,

because π belongs to W 1,p
0 (Ω). Hence u ∈ Lp

′

σ (Ω)⊥ and G p(Ω) ⊂ Lp
′

σ (Ω)⊥.

Conversely, let u ∈ Lp(Ω) such that for any v ∈ Lp
′

σ (Ω):∫
Ω

u · v dx = 0. (5.32)

By choosing v in the space V = {v ∈ D(Ω), div v = 0 in Ω} and using De

Rham’s Lemma, we deduce that u = ∇π, where π ∈ W 1,p(Ω). As π is unique

up to an additive constant, we can choose this constant in such a way that∫
Γ
π ds = 0. From (5.32), we obtain

∀ v ∈ Lp
′

σ (Ω), 〈π, v · n〉Γ = 0, (5.33)

where 〈 ·, · 〉Γ denotes the duality bracket W 1−1/p,p(Γ)×W −1/p′,p′(Γ). Let now

µ ∈ W −1/p′,p′(Γ) and θ ∈ W 1,p′(Ω) a solution of the following Neumann

problem

∆ θ = 0 in Ω,
∂ θ

∂ n
= µ− 1

|Γ|
〈µ, 1〉Γ on Γ. (5.34)
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Next, we set v = ∇ θ. We deduce from (5.33) and (5.34) that:

〈π, µ− 1

|Γ|
〈µ, 1〉Γ〉Γ = 0.

Then

∀µ ∈W −1/p′,p′(Γ), 〈π, µ〉Γ = 0,

which implies that π = 0 on Γ. Consequently, u belongs to G p(Ω). Therefore,

Lp
′

σ (Ω)⊥ ⊂ G p(Ω) which finishes the proof.

Now, we introduce the space:

M p(Ω) =
{

(v , π) ∈ Lpσ(Ω)× Lp(Ω); −∆ v +∇π ∈ [H p′

0 (curl, Ω)]′
}
,

which is a Banach space for the norm:

‖(v , π)‖M p(Ω) = ‖v‖Lp(Ω) + ‖π‖Lp(Ω) + ‖ −∆ v +∇π‖
[H p′

0 (curl,Ω)]′
.

Lemma 5.5. The space Dσ(Ω)×D(Ω) is dense in M p(Ω).

Proof. Let ` in [M p(Ω)]′ such that:

∀ (v , π) ∈ Dσ(Ω)×D(Ω), 〈`, (v , π)〉 = 0. (5.35)

There exist f ∈ Lp
′

σ (Ω), λ ∈ Lp
′
(Ω) and g ∈ H p′

0 (curl, Ω), such that for any

(v , π) ∈M p(Ω),

〈`, (v , π)〉 =

∫
Ω

f · v dx +

∫
Ω

λπ dx

+ 〈−∆ v +∇π, g〉
[H p′

0 (curl,Ω)]′×H p′
0 (curl,Ω)

(5.36)

where we have used that [Lpσ(Ω)]′ = Lp
′

σ (Ω) (as in Lemma 5.4 ). In particular, if

(v , π) ∈ Dσ(Ω)×D(Ω), we have∫
Ω

f · v dx +

∫
Ω

λπ dx + 〈−∆ g , v〉Ω − 〈div g , π〉Ω = 0,

where 〈·, ·〉Ω is the duality bracket between D′(Ω) and D(Ω). Particularly, if π = 0,

we obtain for any v ∈ Dσ(Ω):∫
Ω

f · v dx + 〈−∆ g , v〉Ω = 0.



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

46 C. Amrouche and N. Seloula

Since f −∆ g belongs to W −2,p(Ω), using De Rham’s Lemma (see Ref. 4), there

exists θ ∈W −1,p(Ω), unique up to an additive constant, such that

f −∆ g = ∇ θ in Ω.

If we choose now v = 0, we obtain for any π ∈ D(Ω):

∫
Ω

λπ dx − 〈div g , π〉Ω = 0,

which implies that λ = div g in Ω. Observe that we can extend by zero the functions

f , λ and g in such a way that

f̃ ∈ Lp
′
(R3), λ̃ ∈ Lp(R3) and g̃ ∈ H p′(curl, R3).

Moreover, for any χ ∈ D(R3) such that ∆χ = 0 in Ω, we have by (5.36) with

v = ∇χ|Ω: ∫
Ω

f · ∇χdx = 0.

Let µ ∈ W
1
p′ , p(Γ). By the density of D(Γ) in W

1
p′ , p(Γ), there exists a sequence

µk ∈ D(Γ) such that µk converges to µ in W
1
p′ , p(Γ). Let now ϕk be the solution of

the problem

−∆ϕk = 0 in Ω and ϕk = µk on Γ.

We know that ϕk belongs to C∞(Ω). Let ψk ∈ D(R3) an extension of ϕk to R3.

Then ϕk belongs to D(Ω) and we have,

0 =

∫
Ω

f · ∇ϕk = 〈f · n , µk〉
W
− 1

p′ ,p
′
(Γ)×W

1
p′ ,p(Γ)

.

So, 〈f · n , µ〉
W
− 1

p′ ,p
′
(Γ)×W

1
p′ ,p(Γ)

= 0 for any µ ∈W
1
p′ , p(Γ).

Consequently, f · n = 0 on Γ and div f̃ = 0 in R3. Now, we take ϕ ∈ D(R3) with

divϕ = 0 and q ∈ D(R3). We obtain by (5.35) and (5.36):∫
R3

f̃ ·ϕ dx +

∫
R3

λ̃ q dx +

∫
R3

(−∆ϕ+∇ q) · g̃ dx = 0. (5.37)

In particular, if q = 0, then by De Rham’s Lemma:

f̃ −∆ g̃ = ∇ θ0 in R3, (5.38)

with θ0 ∈ D′(R3). Since div f̃ = 0 in R3, then −∆ div g̃ = ∆ θ0 in R3. But f̃ ∈
Lp
′
(R3) and supp f̃ is compact, then f̃ ∈ W −2,p′

0 (R3) where W −2,p′

0 (R3) is the

dual space of the weighted sobolev space

W 2,p
0 (R3) = {v ∈D′(R3),

v

ω0
∈ Lp(R3),

∇ v

ω1
∈ Lp(R3), D2v ∈ Lp(R3)},
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with ω0 = (1 + |x |)2 if p /∈ {3/2, 3}, ω0 = (1 + |x |)2 ln(2 + |x |) if p ∈ {3/2, 3},

ω1 = (1 + |x |) if p 6= 3, ω1 = (1 + |x |) ln(2 + |x |) if p = 3.

Consequently ∇ θ0 ∈ W −2,p′

0 (R3). We deduce that θ0 ∈ W −1,p′

0 (R3) and then

θ0 = −div g̃ in R3. By taking in (5.38) the restriction to Ω, we obtain f −∆ g =

∇ θ0|Ω. As Ω is connected, there exists a unique constant a such that θ = θ0 + a

in Ω. Hence, relation (5.38) becomes ∆ g̃ − ∇ div g̃ = f̃ in R3. That means that

curl g̃ ∈ H p′(curl, R3) and then curl g ∈ H p′

0 (curl, Ω).

Moreover, taking ϕ = 0, we obtain from (5.37) that λ̃ = div g̃ in R3. We deduce that

div g̃ belongs to Lp
′
(R3) and to Lp

′
(Ω) by restriction on Ω. Then, g ∈ H p′

0 (div, Ω).

As g ∈ H p′

0 (curl, Ω), then g ∈ W 1,p′

0 (Ω). Moreover, as curl g ∈ H p′

0 (curl, Ω),

then g belongs to N p′(Ω) and there exists a sequence (gk)k ∈ D(Ω) such that

gk converges to g in N p′(Ω) when k → ∞. Finally, we consider (v , π) ∈M p(Ω).

Observe that

〈`, (v , π)〉 = −
∫

Ω

curl curl g · v dx +

∫
Ω

π div g dx + 〈−∆ v +∇π, g〉Ω

= lim
k→∞

(
−
∫

Ω

curl gk · curl v dx +

∫
Ω

π div gk dx +

+

∫
Ω

curl gk · curl v dx −
∫

Ω

π div gk dx
)

= 0,

where 〈 ·, · 〉Ω denotes the duality bracket [H p′

0 (curl, Ω)]′ ×H p′

0 (curl, Ω). There-

fore, Dσ(Ω)×D(Ω) is dense in M p(Ω).

In order to give meaning to the trace of a very weak solution of the Stokes

problem (SN ), we need to introduce the space:

T p
N (Ω) =

{
ϕ ∈W 2,p(Ω); ϕ× n = 0 and divϕ = 0 on Γ

}
.

Theorem 5.4. The linear mapping γ : (u, π) 7→ (u×n, π|Γ) defined on Dσ(Ω)×
D(Ω) can be extended by continuity to a linear and continuous mapping, still denoted

by γ, from M p(Ω) into W−1/p,p(Γ)×W −1/p,p(Γ), and we have the Green formula:

for any (u, π) ∈M p(Ω) and ϕ ∈ T p′

N (Ω),

〈−∆ u +∇π, ϕ〉Ω = −
∫

Ω

u ·∆ϕ + 〈u× n, curlϕ〉Γ −
∫

Ω

π divϕ

+ 〈π, ϕ · n〉Γ (5.39)

where 〈 ·, · 〉Ω denotes the duality bracket [H p′

0 (curl, Ω)]′×H p′

0 (curl, Ω) and 〈 ·, · 〉Γ
denotes the duality bracket W −1/p,p(Γ)×W 1/p,p′(Γ) or W−1/p,p(Γ)×W 1/p,p′(Γ).

Proof. Let (u , π) ∈ Dσ(Ω) × D(Ω), then formula (5.39) is valid for any ϕ ∈
Y p′

N (Ω). Let µ ∈ W 1/p,p′(Γ). Then, there exists a function ϕ ∈ W 2,p′(Ω) such
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that:

ϕ = 0 and
∂ϕ

∂ n
= µ× n on Γ

and verifying:

‖ϕ‖W 2,p′ (Ω) ≤ C‖µ‖W 1/p,p′ (Γ). (5.40)

Moreover, since ϕ = 0 on Γ, using (5.10) we obtain curlϕ = −µt on Γ. Using

(5.8), the function ϕ belongs to T p′

N (Ω). Consequently,∣∣∣〈u × n , µ〉Γ
∣∣∣ =

∣∣∣〈u × n , curlϕ〉Γ
∣∣∣

≤ ‖ −∆ u +∇π‖
[H p′

0 (curl,Ω)]′
‖ϕ‖H p′ (curl,Ω) +

+ ‖u‖Lp(Ω)‖∆ϕ‖Lp′ (Ω) + ‖π‖L p(Ω)‖divϕ‖L p′ (Ω)

≤ C‖(u , π)‖M p(Ω)‖ϕ‖W 2,p′ (Ω).

Thus, using (5.40), we obtain for any (u , π) ∈ Dσ(Ω)×D(Ω):

‖u × n‖W−1/p,p(Γ) ≤ C‖(u , π)‖M p(Ω).

Concerning the trace of π, the same reasoning leads only to show that this trace

belongs to W −1−1/p,p(Γ). But, we have ∆π ∈W −1,p(Ω) and π ∈ Lp(Ω). Then due

to Ref. 5, the trace of π on Γ belongs to W −1/p,p(Γ). Moreover, we have:

‖π‖W −1/p,p(Γ) ≤ C
(
‖π‖Lp(Ω) + ‖∆π‖W −1,p(Ω)

)
.

But −∆ u + ∇π ∈ [H p′

0 (curl, Ω)]′, there exist ψ0 ∈ Lp(Ω) and h ∈ Lp(Ω) such

that −∆ u +∇π = ψ0 + curl h with

‖ψ0‖Lp(Ω) + ‖h‖Lp(Ω) ≤ C‖ −∆ u +∇π‖
[H p′

0 (curl,Ω)]′
.

Then, by taking the divergence we obtain

‖∆π‖W −1,p(Ω) = ‖divψ0‖W −1,p(Ω) ≤ C‖ψ0‖Lp(Ω) ≤ C‖ −∆ u +∇π‖
[H p′

0 (curl,Ω)]′
.

As a consequence, we have

‖π‖W −1/p,p(Γ) ≤ C
(
‖π‖Lp(Ω) + ‖ −∆ u +∇π‖

[H p′
0 (curl,Ω)]′

)
≤ C‖(u , π)‖M p(Ω).

Therefore, we obtain that the linear mapping γ : (u , π) 7→ (uΓ×n , π|Γ) defined on

the space Dσ(Ω)×D(Ω) is continuous for the norm of M p(Ω). Since Dσ(Ω)×D(Ω) is

dense in M p(Ω), then we can extend this mapping from M p(Ω) into W−1/p,p(Γ)×
W −1/p,p(Γ) and the Green formula (5.39) holds for any (u , π) ∈ M p(Ω) and for

any ϕ ∈ T p′

N (Ω).
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Theorem 5.5. (Very weak solutions for (SN)) Assume that Ω is of class C 2,1.

Let f, g and π0 with:

f ∈ [H p′

0 (curl, Ω)]′, g× n ∈W−1/p,p(Γ), π0 ∈W −1/p,p(Γ),

and satisfying the compatibility condition (5.20) where we replace the integral by a

bracket duality. Then, the Stokes problem (SN ) has exactly one solution u ∈ L p(Ω)

and π ∈ Lp(Ω). Moreover, there exists a constant C > 0 depending only on p and

Ω such that:

‖u ‖Lp(Ω) + ‖π‖Lp(Ω) ≤ C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+ ‖ g ‖W−1/p,p(Γ) +

+ ‖π0‖W −1/p,p(Γ)

)
. (5.41)

Proof.

(i) First step: Thanks to the Green formula (5.39), it is easy to verify that (u , π) ∈
Lp(Ω)× Lp(Ω) is solution of problem (SN ), without the last flux condition, is

equivalent to the variational formulation: Find (u , π) ∈ Lp(Ω) × Lp(Ω) such

that for any ϕ ∈ T p′

N (Ω) and q ∈W 1,p′

0 (Ω),

∫
Ω

u ·∆ϕ dx +

∫
Ω

π divϕdx = − 〈 f , ϕ 〉Ω + 〈 g × n , curlϕ 〉Γ +

+ 〈π0, ϕ · n〉Γ, (5.42)∫
Ω

u · ∇ q dx = 0.

Indeed, let (u , π) ∈ Lp(Ω)× Lp(Ω) be a solution to (5.42). It is clear that:

−∆ u +∇π = f and div u = 0 in Ω.

Using Green formula (5.39), we obtain for any ϕ ∈ T p′

N (Ω):

−
∫

Ω

u ·∆ϕ dx + 〈u × n , curlϕ〉Γ −
∫

Ω

πdivϕ dx + 〈π0, ϕ · n〉Γ =〈f , ϕ〉Ω.

Then, we deduce that for any ϕ ∈ T p′

N (Ω),

〈u × n , curlϕ〉Γ + 〈π, ϕ · n〉Γ = 〈g × n , curlϕ〉Γ + 〈π0, ϕ · n〉Γ.

Let µ ∈W 1/p,p′(Γ). Then, there exists a function ϕ ∈W 2,p′(Ω) such that:

ϕ = 0 and
∂ϕ

∂ n
= µt on Γ,

and this implies that curlϕ × n = −µt and divϕ = 0 on Γ, that means that

ϕ ∈ T p′

N (Ω). We deduce that for all µ ∈W 1/p,p′(Γ),
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〈u × n , µ〉Γ = 〈g × n , µ〉Γ.

Consequently u ×n = g ×n on Γ. Let us prove now that π = π0 on Γ. For any

λ ∈ W 1+1/p,p′(Γ), there exists a function ϕ ∈ W 2,p′(Ω) such that: ϕ = λn

and
∂ϕ

∂ n
· n = −Kλ on Γ, where K is the curvature of Γ. Observe that ϕ

belongs to T p′

N (Ω) and then for any λ ∈W 1+1/p,p′(Γ) we have:

〈π, λ〉W −1−1/p,p(Γ)×W 1+1/p,p′ (Γ) = 〈π0, λ〉W −1−1/p,p(Γ)×W 1+1/p,p′ (Γ),

and then, π = π0 on Γ.

The converse is a simple consequence of the Green formula (5.39) and the fact

that for any ϕ ∈ T p′

N (Ω):∫
Ω

u · ∇ divϕdx = 〈u · n , divϕ〉Ω = 0.

(ii) Second step : Let’s now solve problem (5.42). We know due to Corollary 5.6

that for any (F , χ) ∈ Lp
′
(Ω)⊥K p

N (Ω)×W 1,p′

0 (Ω), there exists a unique ϕ ∈
W 2,p′(Ω) and q ∈W 1,p′

0 (Ω) satisfying :


−∆ϕ+∇ q = F and divϕ = χ in Ω,

ϕ× n = 0 and q = 0 on Γ,

〈ϕ · n , 1〉Γi
= 0 for any 1 ≤ i ≤ I,

with the estimate

‖ϕ‖W 2,p′ (Ω) + ‖q‖W 1,p′ (Ω) ≤ C
(
‖F‖Lp′ (Ω) + ‖χ‖

W 1,p′
0 (Ω)

)
.

From this bound, we have∣∣∣ 〈f , ϕ〉Ω − 〈g × n , curlϕ〉Γ − 〈π0, ϕ · n〉Γ
∣∣∣

≤ C
(
‖f ‖Lp(Ω) + ‖g × n‖W −1/p,p(Γ) + ‖π0‖W −1/p,p(Γ)

)
× (5.43)

×
(
‖F‖Lp′ (Ω) + ‖χ‖

W 1,p′
0 (Ω)

)
.

In other words, we can say that the linear mapping:

(F , χ) 7→ 〈f , ϕ〉Ω − 〈g × n , curlϕ〉Γ − 〈π0, ϕ · n〉Γ

defines an element of the dual space of
(
Lp
′
(Ω)⊥K p

N (Ω)
)
× W 1,p′

0 (Ω), that

means that there exists a unique (u , π) ∈
(
Lp(Ω)/K p

N (Ω)
)
×W −1,p(Ω) satis-

fying∫
Ω

u · F dx −
∫

Ω

πχdx = 〈f , ϕ〉Ω − 〈g × n , curlϕ〉Γ − 〈π0, ϕ · n〉Γ.
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A such solution (u , π) satisfies the problem (SN ) without the last condition

but we have only to set

ũ = u −
I∑
i=1

〈u · n , 1〉Γi ∇ qNi .

It is clear that (ũ , π) ∈ Lp(Ω)×W −1,p(Ω) is also solution of (SN ) and satisfies

its last condition. Moreover, π ∈W −1,p(Ω) satisfies:

∆π = div f in Ω and π = π0 on Γ.

Since div f ∈ W −1,p(Ω) and π0 ∈ W −1/p,p(Γ), we deduce from Ref. 5 that π

belongs to Lp(Ω). Finally, the estimate (5.41) can be deduced from (5.43).

Concerning now the existence of very weak solutions for the problem (EN ) ,we

need to introduce the following space:

M p(Ω) = {v ∈ Lpσ(Ω); ∆ v ∈ [H p′

0 (curl, Ω)]′},

which is a Banach space for the norm:

‖v‖M p(Ω) = ‖v‖Lp(Ω) + ‖∆ v‖
[H p′

0 (curl,Ω)]′
.

Using the same arguments given in the Lemma 5.5, we can prove that the space

Dσ(Ω) is dense in M p(Ω). To give a sense to the trace of functions which belong

to M p(Ω), we have the following lemma, where the proof is very similar to that of

Theorem 5.4.

Lemma 5.6. The linear mapping γ : u 7−→ u × n|Γ defined on Dσ(Ω) can be

extended to a linear continuous mapping

γ : M p(Ω) 7−→W−1/p,p(Γ).

Moreover, we have the Green formula: for any u ∈M p(Ω) and ϕ ∈ T p′

N (Ω),

〈∆ u, ϕ〉Ω =

∫
Ω

u ·∆ϕdx− 〈u× n, curlϕ〉W−1/p,p(Γ)×W 1/p,p′ (Γ),

where the duality on Ω is the following

〈·, ·〉Ω = 〈·, ·〉
[H p′

0 (curl,Ω)]′×H p′
0 (curl,Ω)

.

As a consequence, as for Theorem 5.5, we have the following result concerning

the very weak solutions for the elliptic problem (EN ).

Corollary 5.7. Assume that Ω is of class C 2,1. Let f ∈ [H p′

0 (curl, Ω)]′ with div f =

0 in Ω satisfying the compatibility condition (5.2) and let g ∈W− 1
p ,p(Γ). Then the

problem (EN ) has a unique solution ξ ∈ Lp(Ω), with the estimate

‖ ξ ‖Lp(Ω) ≤ C
(
‖ f ‖

[H p′
0 (curl,Ω)]′

+ ‖g× n‖
W
− 1

p
,p

(Γ)

)
.
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5.4. A variant of the system (SN)

As it is shown in the previous sections, in order to solve problem (SN ), the data

must satisfy the compatibility condition (5.20). Now, what happen if this condition

is not satisfied? As will appear, the answer strongly depends on the following variant

of the Stokes problem (SN ) : Find functions u , π and constants ci for i = 1, . . . , I,

such that:

(S ′N )


−∆ u +∇π = f and div u = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0 and π = π0 + ci on Γi, 1 ≤ i ≤ I
〈u · n , 1〉Γi

= 0, 1 ≤ i ≤ I,

situation that we can be found in Ref. 14. Let us compare with our approach.

Theorem 5.6. Let f, g and π0 such that:

f ∈ [H p′

0 (curl, Ω)]′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ).

Then, the problem (S ′N ) has a unique solution u ∈ W 1,p(Ω), π ∈ W 1,p(Ω) and

constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖W 1,p(Ω) ≤ C
(
‖f‖

[H p′
0 (curl,Ω)]′

+ ‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/p,p(Γ)

)
,

and where c1, . . . , cI are given by (5.44). In particular, if f ∈ Lp(Ω) and g ∈
W 2−1/p,p(Γ), then u ∈W 2,p(Ω).

Proof.

(i) We suppose that f ∈ [H p′

0 (curl, Ω)]′, g ∈ W 1−1/p,p(Γ) and π0 ∈
W 1−1/p,p(Γ). Observe that the following problem



−∆ u +∇π = f and div u = 0 in Ω,

u × n = g × n on Γ,

π = π0 on Γ0,

π = π0 + 〈f , ∇ qNi 〉Ω − 〈π0, ∇ qNi · n〉Γ on Γi, 1 ≤ i ≤ I,
〈u · n , 1〉Γi

= 0,

has a unique solution (u , π) ∈ W 1,p(Ω) × W 1,p(Ω) since the compatibility

condition (5.20) is verified. The brackets on Ω denote the duality between
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[H p′

0 (curl, Ω)]′ and H p′

0 (curl, Ω) and the brackets on Γ denote the duality be-

tween W 1−1/p,p(Γ) and W −1/p′,p′(Γ). For i = 1, . . . , I, we set c = (c1, . . . , cI)

where

ci = 〈f , ∇ qNi 〉Ω − 〈π0, ∇ qNi · n〉Γ. (5.44)

Finally, (u , π, c) ∈W 1,p(Ω)×W 1,p(Ω)× RI is the solution of (S ′N ).

(ii) Let u ∈W 1,p(Ω) the solution of problem (S ′N ) obtained by the previous point.

We suppose now that f ∈ Lp(Ω), g ∈ W 2−1/p,p(Γ) and we set z = curl u .

Since u × n ∈W 2−1/p,p(Γ), by Lemma 5.3, we have z · n ∈W 1−1/p,p(Γ). By

Theorem 3.5, the function z belongs to W 1,p(Ω). Then, u satisfies

u ∈ Lp(Ω), div u = 0, curl u ∈W 1,p(Ω) and u × n ∈W 2−1/p,p(Γ).

We deduce from Corollary 3.5 that u ∈W 2,p(Ω).

Remark 5.4. Observe that if we suppose that the compatibility condition (5.20)

is verified, we have that ci = 0 for all i = 1, . . . , I. Then, we have reduced to solve

the problem (S ′N ) without the constant ci and (S ′N ) is anything other then (SN ).

The assumption on f in Theorem 5.6 or Theorem 5.2 can be weakened by

considering the space defined for all 1 < r, p <∞:

H r, p
0 (curl, Ω) = {ϕ ∈ Lr(Ω); curlϕ ∈ Lp(Ω), ϕ× n = 0 on Γ},

which is a Banach space for the norm

‖ϕ‖H r, p
0 (curl,Ω) = ‖ϕ‖Lr(Ω) + ‖curlϕ‖Lp(Ω).

We can prove that the space D(Ω) is dense in H r′, p′

0 (curl, Ω) and its dual space

can be characterized as:

[H r′, p′

0 (curl, Ω)]′ = {F + curlψ, F ∈ Lr(Ω), ψ ∈ Lp(Ω)}. (5.45)

Theorem 5.7. Let f, g and π0 such that:

f ∈ [H r′,p′

0 (curl, Ω)]′, g ∈W 1−1/p,p(Γ), π0 ∈W 1−1/p,p(Γ),

with r ≤ p and 1
r ≤

1
p + 1

3 . Then, the problem (S ′N ) has a unique solution u ∈
W 1,p(Ω), π ∈W 1,r(Ω) and constants c1, . . . , cI satisfying the estimate:

‖u‖W 1,p(Ω) + ‖π‖W 1,r(Ω) ≤ C
(
‖f‖

[H r′,p′
0 (curl,Ω)]′

‖g‖W 1−1/p,p(Γ) + ‖π0‖W 1−1/p,p(Γ)

)
,

and c1, . . . , cI are given by (5.44), where we replace the duality bracket on Ω by
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〈 ·, · 〉Ω = 〈 ·, · 〉
[H r′,p′

0 (curl,Ω)]′×H r′,p′
0 (curl,Ω)

.

Proof. Due to the characterization (5.45), we can write f as f = F + curlψ,

where F ∈ Lr(Ω) and ψ ∈ Lp(Ω). By Theorem 5.6, the following problem:


−∆ w +∇ q = curlψ and div w = 0 in Ω,

w × n = g × n on Γ,

q = π0 on Γ0 and q = π0 + di on Γi, 1 ≤ i ≤ I,
〈w · n , 1〉Γi = 0, 1 ≤ i ≤ I,

has a unique solution (w , q, d) ∈W 1,p(Ω)×W 1,p(Ω)×RI , with d = (d1, . . . , dI)

where

di = −〈π0, ∇ qNi · n〉Γ, 1 ≤ i ≤ I,

(note that for any 1 ≤ i ≤ I, 〈curlψ, ∇ qNi 〉Ω = 0). Again, by Theorem 5.6, the

following problem
−∆ z +∇ θ = F and div z = 0 in Ω,

z × n = 0 on Γ,

θ = 0 on Γ0 and θ = ei on Γi, 1 ≤ i ≤I,
〈z · n , 1〉Γi

= 0, 1 ≤ i ≤ I,

has a unique solution (z , θ, e) ∈W 2,r(Ω)×W 1,r(Ω)×RI , where ei = 〈f , ∇ qNi 〉Ω.

Observe that, since 1
r ≤

1
p + 1

3 , W 2,r(Ω) ↪→ W 1,p(Ω). Then, (u , π, c) = (w +

z , q + θ, d + e) is the unique solution of the problem (S ′N ).

6. Helmholtz Decompositions

In this section, we assume that Ω is of class C 1,1 and we give decompositions of

vector fields u in Lp(Ω). Our results may be regarded as an extension of the well-

known De Rham-Hodge-Kodaira decomposition of C∞-forms on compact Rieman-

nian manifolds into Lp-vector fields on Ω. We can find similar decompositions in

Ref. 23, where the authors consider more regular domain with C∞-boundary Γ. We

can see also Ref. 27 for the case p = 2.

We introduce the space:

W 1,p
σ (Ω) = {v ∈W 1,p(Ω); div v = 0 in Ω}

Theorem 6.1.



March 23, 2012 14:27 WSPC/INSTRUCTION FILE SN-style-M3AS

Stokes Equations with Pressure Boundary Conditions 55

(i) Let u ∈ Lp(Ω). Then, there exist χ ∈ W 1,p(Ω), w ∈ W 1,p
σ (Ω) ∩ X p

N (Ω),

z ∈ K p
T (Ω) such that u can be represented as:

u = z +∇χ+ curl w, (6.1)

where z is unique, χ is unique up to an additive constant and w is unique up

to an additive element of K p
N (Ω). Moreover, we have the estimate:

‖z‖Lp(Ω) + ‖χ‖W 1,p(Ω)/R + ‖w‖W 1,p(Ω)/K p
N (Ω) ≤ C‖u‖Lp(Ω). (6.2)

(ii) Let u ∈ Lp(Ω). Then, there exist χ ∈ W 1,p
0 (Ω), w ∈ W 1,p

σ (Ω) ∩ X p
T (Ω), z ∈

K p
N (Ω) such that u can be represented as:

u = z +∇χ+ curl w, (6.3)

where z and χ are unique and w is unique up to an additive element of K p
T (Ω).

Moreover, we have the estimate:

‖z‖Lp(Ω) + ‖χ‖W 1,p(Ω) + ‖w‖W 1,p(Ω)/K p
T (Ω) ≤ C‖u‖Lp(Ω). (6.4)

Proof.

(i) Let u ∈ Lp(Ω). The scalar potential χ ∈ W 1,p(Ω) is taken as a weak solution

of the following problem:

div (∇χ− u) = 0 in Ω, (∇χ− u) · n = 0 on Γ, (6.5)

or equivalently of

∀µ ∈W 1,p′(Ω),

∫
Ω

∇χ · ∇µdx =

∫
Ω

u · ∇µdx . (6.6)

Such a scalar function χ as (6.6) is unique up to an additive constant and

satisfies the estimate:

‖χ‖W 1,p(Ω)/R ≤ C‖u‖Lp(Ω). (6.7)

Next, the vector potential w ∈W 1,p
σ (Ω)∩X p

N (Ω) can be derived from Proposi-

tion 5.1 and the point ii) of Remark 5.1. For u ∈ Lp(Ω), we take w ∈W 1,p(Ω)

such that:

−∆ w = curl u , div w = 0 in Ω and w × n = 0 on Γ.

The vector potential w is unique up to an additive element of K p
N (Ω) and

satisfies the estimate:

‖w‖W 1,p(Ω)/K p
N (Ω) ≤ C‖u‖Lp(Ω). (6.8)
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Finally, let us define z = u −∇χ− curl w . Then z ∈ K p
T (Ω) and satisfies the

estimate

‖z‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖∇χ‖Lp(Ω) + ‖curl w‖Lp(Ω) ≤ C‖u‖Lp(Ω), (6.9)

which yields the representation (6.1) of u . The estimate (6.2) is a consequence

of (6.7), (6.8) and (6.9).

(ii) Let u ∈ Lp(Ω). Compared with (6.5), the scalar potential χ ∈W 1,p
0 (Ω) is taken

as the weak solution of the Dirichlet problem:

∆χ = div u in Ω, χ = 0 on Γ.

Such a scalar function χ is unique and satisfies the estimate:

‖χ‖W 1,p(Ω) ≤ C‖u‖Lp(Ω).

The vector potential w ∈W 1,p
σ (Ω) ∩X p

T (Ω) can be derived from Proposition

4.2. For u ∈ Lp(Ω) we take w ∈W 1,p(Ω) such that:

{
∆ w = curl u and div w = 0 in Ω,

w · n = 0, (curl w − u)× n = 0 on Γ.

The vector potential w is unique up to an additive element of K p
T (Ω) and

satisfies the estimate:

‖w‖W 1,p(Ω)/K p
T (Ω) ≤ C‖u‖Lp(Ω).

Let us define z = u −∇χ− curl w . Then, similarly to the proof of the above

i) we obtain the representation (6.3) of u and the estimate (6.4).

Remark 6.1.

(i) Note that in the representation (6.1), if Ω is simply connected then z = 0,

situation that can be the same in (6.3) if we suppose that the boundary Γ is

connected or in other words without holes.

(ii) In the decomposition (6.1), z being a divergence-free vector field with a zero

normal trace on the boundary. We know from Theorem 4.1 that z = curlψ

with ψ ∈W 1,p(Ω), divψ = 0 in Ω and ψ · n = 0 on Γ.

(iii) In the decomposition (6.3), z being an element of K p
N (Ω). We know then that

z is a gradient of a function of W 1,p(Ω).

An immediate consequence of the above theorem is the following result.

Corollary 6.1.
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By the unique decompositions (6.1) and (6.3), we have two kinds of direct sums:

Lp(Ω) = K p
N (Ω)⊕H1 ⊕H3 ⊕H p

0 (div, Ω), (6.10)

Lp(Ω) = K p
T (Ω)⊕H0 ⊕H1 ⊕H2, (6.11)

where

H0 =
{
v ∈ H p

0 (div, Ω); 〈v · n, 1〉Σj = 0, ∀j = 1, . . . , J
}
,

H1 =
{
∇χ ; χ ∈W 1,p

0 (Ω)
}
, H2 =

{
∇ q ; q ∈W 1,p(Ω), ∆ q = 0

}
,

H3 =
{
∇ θ; θ ∈W 1,p(Ω), ∆ θ = 0, 〈 ∂ θ

∂ n
, 1〉Γi

= 0, ∀i = 1, . . . , I
}
.

Proof.

(i) The direct sum (6.10) is a consequence of the representation formula (6.3)

with the uniqueness. Indeed, suppose that u is decomposed as in (6.3) and let

θ ∈W 1,p(Ω) solution of the following problem

div (∇ θ − curl w) = 0 in Ω,
∂ θ

∂ n
= curl w · n on Γ,

which is unique up to an additive constant. The function y = curl w − ∇ θ
belongs to H p

0 (div, Ω). Moreover, since 〈curl w · n , 1〉Γi
= 0, we have

〈 ∂ θ
∂ n

, 1〉Γi
= 0 for any i = 0, . . . , I. Then, we can write u as

u = z +∇χ+∇ θ + y , (6.12)

where θ ∈ H 3 and y ∈ H p
0 (div, Ω). This completes the proof of (6.10).

(ii) Now, we give the proof of (6.11). Let u ∈ Lp(Ω). There exists a unique χ ∈
W 1,p(Ω) such that ∆χ = div u in Ω and χ = 0 sur Γ. Since (u − ∇χ) · n ∈

W −1/p,p(Γ), then the following problem ∆ q = 0 in Ω and
∂ q

∂ n
= (u −∇χ) ·n

on Γ has a unique solution q ∈ W 1,p(Ω). Note that 〈(u − ∇χ) · n , 1〉Γ =∫
Ω

div (u − ∇χ) dx = 0. We set, u1 = ∇χ, u2 = ∇ q and z = u − u1 − u2.

Observe that u = z + u1 + u2 ∈ H p
0 (div, Ω)⊕H 1 ⊕H 2. Now, it remains to

prove that H p
0 (div, Ω) = K p

T (Ω)⊕H 0. For this, it suffices to observe that any

function v ∈ H p
0 (div, Ω) can be written as

v = w +

J∑
j=1

〈v · n , 1〉Σj
g̃rad qTj ,

where w = v −
∑J
j=1〈v · n , 1〉Σj g̃rad qTj ∈ H 0. This completes the proof.
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