N
N

N

HAL

open science

Random matrix theory and random uncertainties
modeling

Christian Soize

» To cite this version:

Christian Soize. Random matrix theory and random uncertainties modeling. 4th International Con-
ference on Computational Stochastic Mechanics, Sep 2002, Corfu, Greece. pp.575-581. hal-00686222

HAL Id: hal-00686222
https://hal.science/hal-00686222

Submitted on 8 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00686222
https://hal.archives-ouvertes.fr

Random Matrix Theory and Random Uncertainties Modeling

C. Soize
Laboratory of Engineering Mechanics, University of Marne-la-Vallée, France
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ABSTRACT: Random matrix theory was intensively studied in the context of nuclear physics. For physical
applications, the most important ensemble is the Gaussian Orthogonal Ensemble (GOE) whose elements are
real symmetric random matrices with statistically independent entries and are invariant under orthogonal linear
transformations. Recently, a new approach, called a nonparametric model of random uncertainties, has been
introduced by the author for modeling random uncertainties in vibration analysis. This approach has been
developed in introducing a new ensemble of random matrices constituted of symmetric positive-definite real
random matrices, called the "positive-definite" ensemble, which differs from the GOE. The first objective of
this paper is to compare the GOE with the "positive-definite" ensemble of random matrices in the context of
the nonparametric approach of random uncertainties in dynamic systems for the low-frequency range. The
second objective of this paper is to give a new validation for the nonparametric model of random uncertainties
in dynamic systems in comparing, in the low-frequency range, the dynamical response of a simple system
having random uncertainties modeled by the parametric and the nonparametric methods. It is proved that the
"positive-definite" ensemble of random matrices, which has been introduced in the context of the development
of this nonparametric approach, is well adapted to the low-frequency vibration analysis, while the use of the

Gaussian orthogonal ensemble (GOE) is not.

1 INTRODUCTION

The random matrix theory was intensively studied by
physicists and mathematicians in the context of nu-
clear physics. These works began with Wigner in the
1950s and received an important effort in the 1960s
by Wigner (1962), Dyson (1962), Mehta and others.
In 1967, Mehta published the first edition of a book
whose second edition (see Mehta (1991)) published
in 1991 is an excellent synthesis of the random matrix
theory. For physical applications, the most important
ensemble of the random matrix theory, is the Gaus-
sian Orthogonal Ensemble (GOE) whose elements are
constituted of real symmetric random matrices with
statistically independent entries and which are invari-
ant under orthogonal linear transformations. The ran-
dom matrix theory has been used in other domains
that nuclear physics. In 1984, Bohigas & Giannoni
& Schmit (1984) found that the level fluctuations of
the quantum Sinai’s billard were able to be predicted
with the GOE of random matrices. In 1989, Weaver
(1989) show that the higher frequencies of elasto-
dynamic structures constituted of small aluminium
blocks have the behavior of the eigenvalues of a ma-
trix belonging to the GOE. Then, Legrand & Schmit

& Sornette (1992) studied the high-frequency spec-
tral statistics with the GOE for elastodynamics and
vibration problems in the high-frequency range. All
these results have clearly been validated for the high-
frequency range in elastodynamics but not at all for
the low- and medium-frequency ranges.

Recently, a new approach, called a nonparametric
model of random uncertainties, has been introduced
by Soize (2000, 2001a & 2001b) for modeling random
uncertainties in linear and nonlinear elastodynamics
in the modal range, that is to say, in the low-frequency
range. This nonparametric approach differs from the
parametric and stochastic finite element methods for
random uncertainties modeling and has been devel-
oped in introducing a new ensemble of random ma-
trices constituted of symmetric positive-definite real
random matrices (see Soize (2000 & 2001a)), that we
call the "positive-definite" ensemble of random matri-
ces. This ensemble differs from the GOE and from the
other known ensembles of the random matrix theory.

The first objective of this paper is to compare the GOE
with the "positive-definite" ensemble of random ma-
trices in the context of the nonparametric approach of
random uncertainties in dynamic systems for the low-
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frequency range. This comparison will be limited to
the case for which the generalized stiffness matrix of
the dynamic system is random while its generalized
mass and damping matrices are deterministic. This
limitation is due to the fact that, in the state of the
art, the GOE does not allow a damped dynamic sys-
tem to be modeled while the new ensemble allows
mass, damping and stiffness random uncertainties to
be modeled. The second objective of this paper is
to give a new validation for the nonparametric model
of random uncertainties in dynamic systems in com-
paring, in the low-frequency range, the dynamical
response of a simple system having random uncer-
tainties modeled by the parametric method and by the
nonparametric method.

1.1 Notation

In this paper, M,,(R), M5(R) and M (R) are the set of all
the (nxn) real matrices, the set of all the symmetric (nx
n) real matrices and the set of all the positive-definite
symmetric (n x n) real matrices, respectively. One
has Mt (R) c M3(R) c M,(R). If [A] belongs to M, (R),
IA]lr = (tr{[A][A]"})*/? is the Frobenius norm of
matrix [A], where tr is the trace of the matrices, det
is the determinant of the matrices and [A]7 is the
transpose of matrix [A]. The indicatrix function 15(b)
of any set B is such that 15(b) is equal to 1 if b € B
and is equal to zero if b ¢ B. The gamma function
is defined for z > 0 by I'(z) = ["®¢=~Le~tdt. All the
random variables are defined on a probability space
(A, 7,P) and E is the mathematical expectation.

1.2 A nonparametric model of random uncertainties
in vibration analysis

We briefly recall the main ideas introduced in Soize
(2000 & 2001a) concerning the nonparametric model
in elastodynamics and vibrations for the low-frequen-
cy range. We limit the developments to the case of
linear dynamic systems for which only the general-
ized stiffness matrix is uncertain. The main available
information is constituted of the mean reduced model
constructed with the n generalized coordinates of the
mode-superposition method associated with the elas-
tic modes corresponding to the n» lowest eigenfrequen-
cies of the linear dynamic system, presently assumed
to be fixed, damped and stable. The nonparametric
probabilistic model of random uncertainties consists
in replacing the generalized diagonal stiffness matrix
[K,] € M} (R) of the mean reduced model by the full
random matrix [K,] with values in M} (R), for which
the mean value is known and such that

E{[K,]} = [K,] (1)
The probability model of random matrix [K,] was
constructed in Soize (2000 & 2001a). Random ma-
trix [K,] has to be with values in M} (R) in order to
obtain a mechanical system with random uncertain-

ties, which models a fixed and stable dynamic system.
This probability model is summarized in Section 1.3.

1.3 Probability model for a random matrix belonging
to the "positive-definite" ensemble of random matrices

In this subsection, we summarize a part of the results
developed in Soize (2000 & 2001a), concerning the
probability model of random matrix [K,] belonging
to the "positive-definite" ensemble of random matri-
ces. Consequently, random matrix [K,] is a random
matrix with values in M} (R). Its mean value [K,] is a
positive-definite real matrix. There is an upper trian-
gular matrix [Lj ] in M,(R) (Cholesky factorization)
such that

[Kn] = [LK,I]T [LKn] : (2)

Random matrix [K,,] is written as

K] = [L,]" Gk, ][Lk,] 3)

in which matrix [G, ] is arandom variable with values
in M} (R) such that

Gk, ] = E{[Gk,]} = [1n] (4)

where [ I,,] is the (n x n) identity matrix. Let 65 > 0 be
the real parameter defined by

Nl
e ={ S )

Parameter 6 allows the dispersion of the probability
model of random matrix [K,] to be controlled. If ny >
1 is a given and fixed integer, then the dispersion of
the probability model is defined by giving parameter
§r, independent of n, a value such that 0 < §x <
{(no+1)/(no+5)}/2. Random matrix [G, ] is written
as

[Gx,] =Lk, )" [Lx,] (6)

in which [Lg, ] is an upper triangular random matrix
with values in M,,(R) such that:

()

(1) random variables {[Lg, ];;,j < j'} are indepen-
dent;

(2) for j < 4, real-valued random variable [Lg,];;
1S written as [LKn]jj’ = O’ntj/ in which Op = (SK(TL +
1)~/2 and where U, is areal-valued Gaussian random
variable with zero mean and variance equal to 1;

(3) for j = j/, positive-valued random variable [L, |;;
is written as [Lg,];; = o../2V; In which o, is de-
fined above and where V; is a positive-valued gamma
random variable whose probability density function
pv, (v) with respect to dv is written as

1 n41 145
2 2 —
'U25K e v . (7)

Py ) = e () s

r (25% + T)
The variance VﬁjK = E{([Gk,];» — [Gk,];x)*} of ran-
dom variable [G, ];x 1s such that

2

Gk, _ 0
Vi = g (L 0) (8)

in which 6jk =0 lfj #*k and (5jj =1.
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1.4 Probability model for a random matrix belonging
to the GOE

In this subsection, the random matrix [K$°F] with val-
ues in M7 (R) is constructed by using the Gaussian
Orthogonal Ensemble (GOE) (concerning the GOE,
see for instance Mehtah (1991) ). In order to perform
the comparisons with the model summarized in Sec-
tion 1.3, it is assumed that the mean value of random
matrix [KS°F] is the positive-definite symmetric real
matrix [K,,] defined by Eq. (1), that is to say

E{K%")} = [K,] e MI(R) . )

Random matrix [KSOF| is written as
K] = [Li, " [GRF] Lk, ] (10)

in which matrix [G§°] is a random variable with val-
ues in M3(R) such that

G = B{IGE N} = 1] - (11)

The dispersion parameter of random matrix [KS°F] is
taken as parameter Jx of random matrix [K,,], defined
by Eq. (5). One then has

B{IGR ~ 1GR3 _
1G5 |13 ®

(12)

It should be noted that || [GF°"] |2 = n. As the mean
value of a random matrix [H$°F] belonging to the GOE
is such that E{[HS°"]} = [0], random matrix [G§*F]
constructed with the GOE has to be written as

(GSO%] = [ 1] + [HSO] (13)
in which [HSCF] belongs to the GOE, that is to say, is
a random matrix with values in M9(R). Real-valued
random variables {[HS®F;;, j < k} are mutually inde-
pendent, second-order, centered, Gaussian and such
that

E{H;°;c} =[0]

(19)
2
B{(HE%) = (1 + )

Therefore, random matrices [HS%"], [GFOF] and [KSOF]

are not positive matrices almost surely. The variance
aso

Ve o = E{([GEF]jx — [GXF1in)?} = B{(H:];)%}

of the random variable [G§°¥];; is such that, for all j

and k in {1,...,n},

GOE 2
VGK'H. _ VGKn _ 5K
Jk - Yk - n

+1(1+6jk) . (15)

2 NONPARAMETRIC MODEL OF RANDOM UN-
CERTAINTIES IN VIBRATION ANALYSIS

2.1 Definition of the mean reduced model of the dy-
namic system

We consider a fixed stable linear mean dynamic sys-
tem whose Fourier transform u(x,w) with respect to
t of the vector-valued displacement field u(x,t), is
defined on a bounded domain Q ¢ R? with d > 1,
equipped with the measure denoted dx and such that
Q] = [, dx is the "volume" of domain . For all w
belonging to the frequency band of analysis [0, wa]
with wpe > 0, the mean reduced model of dimension
n > 1 of this mean dynamic system is written as

u(x,w) = Z Ga(w)e, (x) , xeQ (16)
(—w? M, ] +iw[D,] + [K,]) qw) = fw) . (17)

inwhich ¢ ..., ¢ are the elastic modes correspond-
ing to the n lowest eigenfrequencies 0 < w, < w, <
. < w,, of the mean dynamic system, q(w) = (¢1(w),
..,qn(w)) € C» is the complex vector of the gener-
alized coordinates, f(w) = (fi(w),..., fn(w)) € C™ is
the complex vector of the generalized external forces,
[M,], [D,] and [K, ] belong to M (R) and represent the
generalized diagonal mass matrix, the generalized full
damping matrix and the generalized diagonal stiffness
matrix, respectively. It is assumed that
(1) the mass density of the mean dynamic system is a
constant equal to 1,

(2) fQ ¢ (x) Eﬂ(x) dx = 0,5 and

(3) the generalized damping matrix is a diagonal ma-
trix.

We then have

[Mn] - 504[1 ) [Qn] = 2§Wref5a,6 ) [Kn] = Qigaﬁ ) (18)

in which ¢ > 0 and w.s > 0 are given positive con-
stants. The observation of the mean dynamic system
is defined by the positive-valued function w +— e, (w)
such that

en() = & [ @)lr (19)

is the generalized frequency response function of the
mean dynamic system and ||[A]||r = (tr{[A][A]*})!/?
with [A]* =[4]7.
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2.2 Nonparametric model of random uncertainties

The nonparametric model of random uncertainties is
introduced as explained in Section 1.2. For the rea-
sons given in Section 1, it is assumed that only the
stiffness operator is uncertain. Consequently, the use
of the "positive-definite" ensemble for the nonpara-
metric modeling of random uncertainties leads us to
the following random generalized frequency response
function of the random dynamic system,

[H,(w)] = (-w? [M,] +iw [D,] + [Kn]) ™", (20)

in which the probability model of random matrix [K,,]
is defined in Section 1.3. The random observation as-
sociated with Eq. (19), is the positive-valued random
variable &, (w) defined by

En(w) = [[w? Ha(@)]llF (21)

If the generalized stiffness matrix is modeled by the
GOE, then [K,,] is replaced by [KS°F] whose probability
model is defined in Section 1.4. In this case, &, (w) is
denoted £5°F (w).

2.3 Comparison of the two ensembles of random ma-
trices

It is assumed that the mean reduced model of the
dynamic system is such that dimension n = 30 and
such that, for all « and g in {1,...,30},

[Mn]aﬁ = 504,5 )
(22)

+1 +1

Koo =t [

-1

@ (@) () do+ ko /

B @, (@) () da,

in which ¢ (z) = sin(ra(1 + z)/2) and el is the sec-
ond derivative of ¢ with respect to z. This model
corresponds to an Euler beam in bending mode, with
length 2, simply supported at its ends, attached to a
continuous elastic support along its length, and for
which elastic bending modes ¢_ are associated with

the 30 lowest eigenfrequencies w,, such that

Ei =20 T Ry (7)4 + ks . (23)

For all the numerical examples considered in this pa-
per, one takes k; = 0.9999987 and k, = 2.0278508 x
10~7. Consequently, one has 1 < )\, < 2 with )\, =1,
A, = 1.000 185, . . ., Ao = 1.873186, Ay, = 2. In addition,
it is assumed that ¢ = 0.01 and wf = 27 x 0.02rad/s.
The frequency band of analysis is such that wp., =
2m x 0.22rad/s. The value of the dispersion param-
eter is 0x = 0.50. The Monte Carlo numerical sim-
ulation method is carried out with n, = 40000 re-
alizations, denoted 6,,...6,_, for which the realiza-
tions w — &, (w;01), ..., w — E,(w;0,,) are numerically
calculated for the two ensembles of random matri-
ces, with a sampling frequency step Aw = wiax/300.
For w fixed in [0,wmx], the mean values E{&,(w)}
and E{€S°E(w)}, and the standard deviations o¢, (w)

and ogoor (w), of random variables &, (w) and £7°F(w)
respectively, are usually estimated. For the com-
parisons, we define the functions v — dB(v) and
v — dB“*(v) such that

dB(v) = log,o(E{E.(2m)})
(24)
dB (1) = log,o(E{ESOE (2m0)})

Finally, for the "positive-definite" ensemble and for
the GOE, for all v fixed in [0, wma /27|, the extreme

value statistics associated with realizations 6, ..., 6,
are defined by
dBunax(v) = loglo{mgxfn@wy; 0x)}

(25)
dBuin(v) = loglo{mkin En(2mr;0k)},
dB,.,\ (v) = logio{max £7° (2mv; 6,)}

(26)

dBSﬁE(V) = loglo{mkin ESOE(27v; 0;,)}

Figures 1, 2 and 3 are relative to the frequency band
[0,0.22] Hz. Figure 1 displays (1) the response v —
log,,e,(2mv) of the mean dynamic system (dashed
line), (2) the graphs of functions v — dB(v) (thick
solid line) and v — dB®*(v) (thin solid line).

0.05 0.1 0.15 0.2

Figure 1. Nonparametric approach. Dispersion parameter 0 x =
0.50. Frequency band [0, 0.22] Hz (horizontal axis). Graphs of
functions v — logy e, (27v) (dashed line), v — dB(v) (thick
solid line) and v — dB“*(v) (thin solid line).

Figure 2 displays the graphs of functions v — o¢, (27v)
(thick solid line) and v — o ok (27v) (thin solid line).
Figures 1 and 2 show an impgrtant difference between
the "positive-definite" ensemble and the GOE. For the
GOE, the first random eigenvalues (the lowest eigen-
values of'the order statistics) have a larger standard de-
viation than for the "positive-definite" ensemble and
their probability distributions are different. This is
the reason why the mean value and the standard de-
viation of the random response are very different in
the frequency band [0,0.1] Hz for the two ensembles
of random matrices.

These differences can also be seen in Figure 3 which
shows (1) for the "positive-definite" ensemble, the
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graphs of functions v — dB(v) (thick dashed line),
v — dBuu(v) (upper thick solid line), v — dBu(v)
(lower thick solid line), (2) for the GOE, the graphs
of functions v — dB*"(v) (thin dashed line), v —
dBJ°F (1) (upper thin solid line), v — dBSo"(v) (lower

max min

thin solid line).

120r

100f

80

601

401

20r

0

0.05 0.1 0.15 0.2

Figure 2. Nonparametric approach. Dispersion parameter 6 x =
0.50. Frequency band [0, 0.22] H z (horizontal axis). Graphs of
functions v — o, (27v) (thick solid line) and v — o ggor (277v)
(thin solid line).

0.05 0.1 0.15 0.2

Figure 3. Nonparametric approach. Dispersion parameter 0 x =
0.50. For the "positive-definite" ensemble: graphs of functions
v — dB(v) (thick dashed line), v — dBmax(v) (upper thick
solid line), v—dBmin(v) (lower thick solid line). For the Gaus-

sian orthogonal ensemble, graphs of functions v — dB%“F(v)
(thin dashed line), v — dBSOF(v) (upper thin solid line), v +—

max
dBS9E (1) (lower thin solid line).

3 VALIDATION OF THE NONPARAMETRIC
MODEL

The nonparametric model of random uncertainties
(introduced in Section 1.2) in vibration analysis has
been introduced to replace the usual parametric model
for complex dynamic systems when the number of un-
certain local parameters is large and above all, to take
into account the model uncertainties which cannot be
modeled with the parametric models. Nevertheless,
as Section 2 shows that the results given by the two
ensembles of random matrices are very different, it is
interesting to analyze a simple dynamic system with
random uncertainties which can easily be modeled by
using the usual parametric approach, in order to con-
clude if the use of the "positive-definite" ensemble is

better than the use of the GOE for the nonparamet-
ric model of random uncertainties in low-frequency
vibration analysis. Consequently, we consider the dy-
namic system with parametric random uncertainties
whose associated mean dynamic system is defined in
Sections 2.1 and 2.3.

3.1 Defining the dynamic system with parametric ran-
dom uncertainties

We consider a dynamic system with parametric ran-
dom uncertainties on the stiffness operator, for which
the mean dynamic system is defined in Sections 2.1
and 2.3. In the frequency domain, the weak formula-
tion of the corresponding boundary value problem is
written as

+1

+1
—w? U 5 d 21 ref U ) d
w /_1 (z,w) v(z) do + 2iwiw t/—l (z,w)v(z)dx

+1 +1
+k, 71Y(x) U"(z,w)v" (z) do+k, [1T(m) U(z,w)v(z)d

+1
:/ glx,w)v(x)de (27)

-1

in which v” is the second derivative of v with re-
spect to z and where the test function v belongs to the
admissible function space constituted of the "suffi-
ciently differentiable" real-valued functions v defined
on Q =] — 1,+1[ and such that v(-1) = v(+1) = 0 and
v"(=1) =v"(+1) = 0. The external excitation is repre-
sented by the complex-valued force field = — g(x,w)
define on Q. In Eq. (27), &, wer, k; and k, are defined
in Section 2.3. Parameters Y (z) and T'(x) are second-
order stochastic processes indexed by © with values
in R*, statistically independent, such that, for all z in
Q, E{Y(2)} = 1 and E{T(x)} = 1. For x fixed in Q,
Y (x) and T'(z) are written as

1 — Y 2 1 — T 2
V()= 20 @), T) = =37 (@), (28)
Jj=1 Jj=1
in which my > 1 and ms > 1 are two finite posi-
tive integers and where 2Y',..., 2} , ZT ... Z! are

my +m7 independent copies of a stochastic process 7,
defined as follows. Stochastic process {Z,(z),z € R} is
indexed by R, with values in R, second-order, centered,
Gaussian and stationary, such that £{Z,(z)} = 0 and
E{Zy(z)*} = 1. Let Sz, (k) be its power spectral density
function defined on R with values in R, related to its
autocorrelation function Rz, (n) = E{Zy(x+n)Z(z)} by
the equation Rz, (n) = [ e’ Sz, (k) dk. Power spectral
density function is defined by

L 1

Sz, (k) = ma (14 L2k2)

sy (k) (29)

in which 0 < b < +c is a finite positive real constant
and where « is such that a = 2 arctan(bL). It can then
verified that
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o} = BY(@)?}-1= >
" (30)
of = E{T(x)’} — 1= 2
mp

3.2 Constructing the random reduced model

The random reduced model of dimension n is ob-
tained by using the » elastic modes ¢ ,...,¢ intro-
duced in Section 2.3, associated with the 7" lowest
eigenfrequencies w,, . .., w, defined by Eq. (23). From
Eq. (27), it can be deduced that

U(z,w) = Z Qaw)p () , z€Q (31)
(—w? [M,] +iw[D,] + [KF™) Q(w) = f(w) (32)
in which [M,] = [I,] (see Eq. (22)), [D,,] = 2§ wrer [1]

(see Eq. (18)) and where Q(w) = (Q1(w),...,Qn(w)) 18
the random vector of the generalized coordinates and
where f(w) = (f1(w), ..., fo(w)) is the complex vector
of the generalized external forces which is such that
Jalw) = [Mg(e.w) e (@) de. Let [K,Jag = w2 5as be
the matrix defined by Eq. (18) which can be written
as [K,] = [Ly, " [Ly.] With [Ly Jas = w, das. In Eq.
(32), the random matrix [K}'™"] can be written as

[Kparam] —

n

L, T [GRI™M L, ] (33)

where the random matrix [G}"™"] is such that

Gk, as =

+1
ky / Y(gc)gg(z)ﬁg(x) dx

Yol J-1
+1
We then deduce that
[Qggram] E{|G param]} AN )

In order to compare the nonparametric model with the
parametric one, we introduce the global dispersion
parameter 6% " > 0 of random matrix [G}"™"] defined
(see Egs. (2) to (5)) by

param param 1/2
graram _ {E{II Gk, |~ Gk, ]II%}} (36)

| [G‘}?f?m] I

The random generalized frequency response function
associated with Eq. (32) is written as
[Hy (0)P"] = (—w? [M,,] + iw[D,] + [KE™")~" . (37)

Finally, the random observation defined by Eq. (21)
is written as

ERN(w) = Jlw? [P W)]lF (38)

3.3 Numerical parameters and computation

The Monte Carlo numerical simulation method is
carried out with n, = 40000 realizations, denoted
01,...0,.. The realizations w +— "™ (w;01), ..., w —
EN™(w; 0,,,) are numerically calculated on the fre-
quency band [0, wmax] With wye = 27 x 0.227rad/s and
with a sampling frequency step Aw = wiax/300. The
values of the numerical parameters are n = 30, my =
mp =4, L = 0.076m, b = 804.25m~! and a = 0.9896.
The calculation of parameter 67" defined by Eq. (36)
yields 65" = 0.4942 ~ 0.50. Figures 4, 5 and 6 are
relative to the frequency band [0,0.22] Hz. Figure 4
displays the response v — log,, e, (2mv) of the mean
dynamic system (dashed line) calculated in Section
2.3 and the graph of function v — dB™"(v) (thick
solid line) such that

dBparam(V) _ IOglo (E{gzaram(Qﬂy) }) . (39)

Figure 5 displays the function v + o gparam (27v) (s0lid
line) in which oparam (w) s the standard deviation of

random variable Epar'“““( ). Figure 6 shows the graphs
of v — dB™"(v) (dashed line), v — dB2"(v) (upper
solid line) and v — dB*"(v) (lower solid line) in

min

which
dBl (v) = logyo {max EF (2w O )}
(40)
dBEir;m( )= loglo{mkin ERT (2my; Ok )
3,
0.65 0‘.1 O.‘15 012
Figure 4. Parametric approach. Dispersion parameter 65 =

0.4942. Frequency band [0, 0.22] H z (horizontal axis). Graphs
of v+ logyg e, (27v) (dashed line) and v — dBP*™"(v) (thick
solid line).
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3.4 Comparison of the parametric model with the non-
parametric model

Due to the fact that 6x = 0.50 ~ &% = 0.4942, we
can compare the results given by the nonparametric
approach (Figures 1, 2 and 3) with the results given by
the parametric approach (Figures 4, 5 and 6). These
figures cleary prove that the nonparametric results
look like the parametric results when the "positive-
definite" ensemble is used and is very different in the
low-frequency domain when the GOE is used. Con-
sequently, the present results give an additional val-
idation point of the nonparametric model of random
uncertainties whose theory is recalled in Sections 1.2
and 1.3 and which is based on the "positive-definite"
ensemble.
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20r

0.05 0.1 0.15 0.2

Figure 5. Parametric approach. Dispersion parameter 05 =
0.4942. Frequency band [0, 0.22] H z (horizontal axis). Graph
of function v +— & gparam (2771 (solid line).

0.05 0.1 0.15 0.2

Figure 6. Parametric approach. Dispersion parameter 85, =

0.4942. Frequency band [0, 0.22] H z (horizontal axis). Graphs

of functions v +— dBP™™(v) (dashed line), v +— dBba2"(v)

(upper solid line) and v — dBFE*™(v) (lower solid line).

4 CONCLUSIONS

This paper gives a new validation point of the non-
parametric theory of random uncertainties in vibra-
tion analysis, recently introduced by the author. It is
proved that the "positive-definite" ensemble of ran-
dom matrices, which has been introduced in the con-
text of the development of this nonparametric ap-
proach, is well adapted to the low-frequency vibration
analysis, while the use of the Gaussian orthogonal en-
semble (GOE) is not. In addition, as it is explained
in previous papers devoted to the construction of this
nonparametric approach, the "positive-definite" en-
semble allows random uncertainties to be modeled
for the damping operator while the GOE does not, in
the present state of the art.
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