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Non-Gaussian simulation using Hermite polynomial expansion

A general method to generate simulated paths of non-Gaussian homogeneous random fields, based on an Hermite polynomial expansion, is proposed. Mathematical justifications are given for this Monte Carlo simulation technique. Different types of convergences are established for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function.

INTRODUCTION

Due to the formidable progress of computer technology, Monte Carlo simulation (MCS) methods are leaving their benchmark method status to become fully effective methods which are more and more integrated in industrial codes. As a consequence, industry is relying more heavily on MCS methods for decreasing the design and construction costs of their products, performing for instance damage and fatigue optimization. In that context, they need to use stochastic loads which match real-life loads -which, as many examples have shown, are typically non-Gaussianrather than Gaussian processes.

Various methods have been proposed for generating simulated paths of non-Gaussian processes [START_REF] Grigoriu | Simulation of stationary non-Gaussian translation processes[END_REF][START_REF] Gurley | Simulation of non-Gaussian processes[END_REF][START_REF] Spanos | A state-of-the-art report on computational stochastic mechanics[END_REF][START_REF] Poirion | Numerical simulation of homogeneous non-gaussian random vector fields[END_REF][START_REF] Popescu | Simulation of homogeneous nonGaussian stochastic vector fields[END_REF]Sakamoto and Ghanem 1999;[START_REF] Sakamoto | Simulation of multi-dimensinal non-Gaussian nonstationary random fields[END_REF]. The main conceptual difficulty lies in the characterization of the process: unlike Gaussian processes which are determined solely through their first and second order probabilistic characteristics, one must know the entire family of joint distributions {L(X t 1 , . . . , X tn ), n ≥ 1, t i ∈ R}. Of course, such a data is never available (at least for real-life processes), and one has to deal with a truncated characterization of the non-Gaussian process. The reasonable minimum amount of information used to "approach" the real behavior of the non-Gaussian process should at least include the one-dimension marginal probability distribution and the correlation function. But often, even the one-dimension marginal distribution is not available and one has to deal instead with a given number of statistical moments.

Another essential aspect of MCS methods which has to be considered in order to ensure the soundness of the method, as it is done for Gaussian simulation [START_REF] Poirion | Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian fields[END_REF], is the convergence behavior of approximation. The goal of this paper is to propose a general method to generate simulated paths of non-Gaussian homogeneous random fields, based, as it is done for instance in [START_REF] Declercq | Apport des polynômes d'Hermite à la modélisation non gaussienne et tests statistiques associés[END_REF][START_REF] Grigoriu | Simulation of stationary non-Gaussian translation processes[END_REF][START_REF] Gurley | Simulation of non-Gaussian processes[END_REF]Sakamoto and Ghanem 1999;[START_REF] Sakamoto | Simulation of multi-dimensinal non-Gaussian nonstationary random fields[END_REF], on an Hermite polynomial expansion, given the spectral measure of the random field and either the one-dimension marginal distribution or a fixed number of statistical moments. Different types of convergence will be given for the approximating sequence. It will be shown how the problem of determining the autocorrelation function of the underlying Gaussian process can be approached by an optimization problem. Two formulations will be given, whether the underlying Gaussian process is generated using a spectral approach method or a Markovian representation method. Finally, results of applications including the various aspects of the method will be given.

METHOD DESCRIPTION

Let (Ω, A, P) be a probability space. For any x ∈ R, Hermite polynomials are defined by:

H 0 (x) = 1 , (1) 
H n (x) = (-1) n e x 2 2 d n dx n e -x 2 2 , n ∈ N * . (2) 1 2.1 Data
It is aimed to simulate the paths of a strictly stationary non-Gaussian process (Y t , t ∈ R + ) which statistical description is reduced either to a finite number of moments or to its one-dimension marginal distribution. Two sets of data will therefore be considered: Case 1 i. let µ 1 , µ 2 , ..., µ N (N > 1) be real numbers which are statistical moments of a random variable. We can assume in the following that µ 1 = 0, µ 2 = 1.

ii. Let R : R -→ R be a function in

L 2 (R, dx) such that R(0) = 1, R is nonnegative definite. Case 2 i. a cumulative distribution function F Y of a ran- dom variable Y is given, with E(Y 2 ) = 1. ii. Let R : R -→ R be a function in L 2 (R, dx) such that R(0) = 1, R is nonnegative definite.
Gaussian simulation methods are well known [START_REF] Shinozuka | Simulation of multivariate and multidimensional random processes[END_REF][START_REF] Deodatis | Simulation of stochastic processes by spectral representation[END_REF][START_REF] Spanos | A state-of-the-art report on computational stochastic mechanics[END_REF][START_REF] Krée | Mathematics of random phenomena[END_REF][START_REF] Poirion | Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian fields[END_REF]Spanos and Zeldin 1998) and very simple to utilize. That explains why many methods use nonlinear transformations of Gaussian process in order to simulate non-Gaussian ones. Moreover, the family (

√ n!) -1 H n n∈N is an orthonormal base of L 2 R, e -x 2 2 √ 2π dx . It is then natural to construct a strictly stationary process (Y t , t ∈ R + ) defined by the relation Y t = ∞ n=1 f n H n (G t ) (3) 
where . 

Y of (Y t , t ∈ R + ) is close to R in the Hilbert space L 2 (R, dx).
Whether the first statistical moments or the marginal distribution are given, different assumptions must be verified. However, at the end, it is the same general method which is used: find a function f and a Gaussian process G t such that

Y t ≡ f (G t ) (4) 
this last relation meaning that the two processes have the same given statistical data.

2.2 Distribution of the random variable Y t In the case 2, the distribution of Y t is given by the cumulative distribution function F Y . For the case 1, the considered simulation method requires the determination of a continuous distribution having the N first moments equal to (µ 1 , ..., µ N ) and to calculate its cumulative distribution function. However any finite sequence of real numbers isn't the moments sequence of a distribution (conditions must be fulfilled which could be found in (Shohat and Tamarkin 1963) and in [START_REF] Devroye | Non Uniform Random Variate Generation[END_REF])) and such distribution is generally not unique. So there is a choice of distribution to make. The entropy optimization principle is particularly indicated for our problem. However, with some hypothesis, an unimodal distribution with the given moments can be constructed (see for instance [START_REF] Devroye | Non Uniform Random Variate Generation[END_REF] for this) and this second method was used for the examples of this paper. Actually, the cumulative distribution function can then be obtained analytically. In a future work, the entropy optimization principle will be used.

Utilization of Hermite polynomials

The first step is to identify the nonlinear function f appearing in the memoryless transformation (4). This function is constructed using the cumulative distribution functions of the given non-Gaussian process Y t and of a standard normal random variable. In what follows, the function F Y denotes either the cumulative distribution function described in the preceding section for case 1, or the data itself for case 2. The inverse of the cumulative distribution function F Y is defined by

F -1 Y (y) = inf{x ∈ R/F Y (x) ≥ y} (5) (where inf(∅) = +∞). The cumulative distribution function of F -1 Y (U)
, where U is a random variable with an uniform probability distribution over

[0, 1], is F Y . If G is the standard normal random variable N (0, 1) and F G its cumulative distribution function, F G (G) has an uniform distribution over [0, 1]. So the cumulative distribution function of the random vari- able F -1 Y • F G (G) is F Y .
Thus the following hypothesis is considered:

F -1 Y • F G ∈ L 2 R, e -x 2 2 √ 2π dx . (6) 
If this assumption is true, then the function

F -1 Y • F G can be projected on the base √ n! -1 H n n∈N :
there exists a real sequence

(f n ) n such that ∀x ∈ R, F -1 Y • F G (x) = ∞ n=0 f n H n (x) (7) 
where

f n = (n!) -1 R F -1 Y • F G (x)H n (x) e -x 2 2 √ 2π dx, (8) the series being convergent in L 2 R, e -x 2 2 √ 2π dx . Proposition 2.1
Let (G t , t ∈ R + ) be a standard stationary Gaussian process and R G its autocorrelation function.

Then the process (Y t , t ∈ R + ) defined by

Y t = F -1 Y • F G (G t ), (9) 
is strictly stationary, and

∀n ∈ {1, ..., N}, E(Y n t ) = µ n . (10) 
Proof. As it was remarked above,

Y t = F -1 Y • F G (G t ) has F Y
for cumulative distribution function and has then (µ 1 , ..., µ N ) for first moments. The second step is to identify the underlying Gaussian process G t used in relation ( 4). Its autocorrelation function is solution of a functional equation:

R Y (t) = ∞ n=1 (n!)f 2 n R G (t) n (11)
This is the difficult point of this method because it is not guarantee that this equation has a solution, and even if a solution exists, it has to be a nonnegative definite function. Two numerical methods based on an optimization technique will be given further in order to construct an autocorrelation function "approaching" a solution of this equation.

CONVERGENCE RESULTS

Let (Y M t ) M be the sequence defined by

Y M t = M n=1 f n H n (G t ). ( 12 
)
Our goal is to study the convergence of the sequence

(Y M t ) M towards Y t as M → ∞.
Various convergence results of the truncated sum sequence will be given.

3.1 Mean-square convergence Proposition 3.1 For any fixed t, the sequence (Y M t ) M ∈N * converges uniformly in t towards Y t in the space L 2 (Ω, A, P).

Proof. Owing to the transport of measure, the coefficients (f n ) are given by

f n = (n!) -1 E(Y t H n (G t )) (13) = (n!) -1 E(F -1 Y • F G (G t ).H n (G t )). ( 14 
) (f 0 = 0)
Since G t is stationary, f n does not depend on t. Therefore for any fixed t, we have

Y t = F -1 Y • F G (G t ) (15) = ∞ n=1 f n H n (G t ) (16) 
in L 2 (Ω, A, P).

We will prove now that the autocorrelation function of the truncated sum converges towards the target autocorrelation function.

Proposition 3.2 Let R M denotes the autocorrelation function of (Y M t , t ∈ R + ) and R Y the autocorrelation function of (Y t , t ∈ R). ∀t ∈ R, R M (t) ---→ M →∞ R Y (t). ( 17 
)
Proof.

Lemma 3.3 (Mehler Formula, (Declercq 1998))

Let (G t , t ∈ R + ) a zero-mean Gaussian process such that E [G 2 t ] = 1 for all t ∈ R + and let R G (t, s) be its autocorrelation function. Then E[H n (G t )H m (G s )] = n!(R G (t, s)) n δ nm , (18) 
(where δ denotes the Kronecker symbol).

Using Mehler's formula:

R Y (t -s) = E (Y t Y s ) (19) = E (F -1 Y • F G (G t ).F -1 Y • F G (G s )) (20) = m,n f m f n E (H n (G t )H m (G t )) (21) = n (n!)f 2 n R G (t -s) n (22) = lim M →∞ M n=1 (n!)f 2 n R G (t -s) n (23) = lim M →∞ E (Y M t Y M s ) (24) = lim M →∞ R M (t -s). ( 25 
)
3.2 Error evaluation By assuming some decreasing conditions for the coefficients f n , an evaluation of the error due to the truncation can be obtained.

Proposition 3.4

If there exists a constant C > 0 such that for any n,

f 2 n ≤ C (n!) 2 , ( 26 
)
then for any fixed t

|R Y (t) -R M (t)| ≤ C M.M! |R G (t)| M +1 (27) ≤ C M.M! . ( 28 
) Remark 3.5 If the function f := F -1 Y • F G is a C ∞ function
which n-th derivatives are uniformly bounded in n by a positive constant K > 0, then the assumption is checked. As a matter of fact, using integration by parts, we have

f n = (n!) -1 E (f (n) (G t )). (29) 
Thus

f 2 n ≤ K 2 n! 2 . ( 30 
)
Proof. The autocorrelation functions are given respectively by

R Y (t) = ∞ n=1 (n!)f 2 n R G (t) n (31)
and

R M (t) = M n=1 (n!)f 2 n R G (t) n . ( 32 
)
On the other hand, using Cauchy-Schwarz inequality and using the fact that, for any t, the G t distribution is N (0, 1),

|R G (t)| = E (G 0 G t ) (33 
)

≤ E (G 2 0 ) 1/2 E (G 2 t ) 1/2 (34) ≤ 1. (35) 
Therefore

|R Y (t) -R M (t)| = ∞ n=M +1 (n!)f 2 n R G (t) n (36) ≤ ∞ n=M +1 (n!)f 2 n |R G (t)| M +1 (37) ≤ C ∞ n=M +1 (n!) -1 |R G (t)| M +1 (38) ≤ C M.M! |R G (t)| M +1 (39) ≤ C M.M! . ( 40 
)
The last but one inequality is of course finer than the last. But the quantity |R G (t)| is unknown.

Corollary 3.6

Under assumption of the former proposition and for any t,

E((Y t -Y M t ) 2 ) ≤ C M.M! . ( 41 
) Proof. E((Y t -Y M t ) 2 ) = E (Y 2 t ) -2E (Y t Y M t ) + E ((Y M t ) 2 ) (42) = E (Y 2 t ) -E ((Y M t ) 2 ) (43) = |R Y (0) -R M (0)|. ( 44 
)
The proof is concluded using the preceding proposition with t = 0.

Almost sure convergence

Assuming now a stronger condition on the sequence (f n ), almost-sure convergence can be proved.

Proposition 3.7 If ∞ n=1 (ln(n)) 2 f 2 n (n!) < ∞, (45) 
then for any fixed t, the sequence (Y M t ) M ∈N * converges a.s. towards Y t .

Proof.

Lemma 3.8 ((Loève 1960))

Let (Z n ) n be a sequence of second order random variables which are orthogonal. If

n∈N * (ln(n)) 2 E (Z 2 n ) < ∞, (46) 
then the sum n∈N * Z n converges almost surely.

(H n (G t )) n∈N * is a sequence of random variables which are orthogonal in L 2 (Ω, A, P), so the proposition is proved by using the lemma to the sequence

(H n (G t )) n∈N * .

SIMULATION TECHNIQUES

Two effective methods will be given here in order to construct simulated paths of a stationary non-Gaussian process. A common ingredient of these two methods is the simulation of a particular stationary Gaussian process for which two methods have been examined: the spectral method [START_REF] Deodatis | Simulation of stochastic processes by spectral representation[END_REF][START_REF] Poirion | Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous Gaussian fields[END_REF]Spanos and Zeldin 1998) and the Markovian model method [START_REF] Krée | Mathematics of random phenomena[END_REF][START_REF] Bernard | Un algorithme de simulation stochastique par markovianisation approchée application à la mécanique aléatoire[END_REF]. As it will be shown later, the choice of the method has some incidence on the method efficiency.

The first stage is to generate the stationary Gaussian process (G t , t ∈ R + ) with marginal distribution N (0, 1) and autocorrelation function G . The second stage is to generate the random process

(Y M t , t ∈ R + ) given by Y M t = M n=1 f n H n (G t ) (M
is fixed a priori), the coefficients (f n ) are obtained either by numerical integration (8) or by Monte-Carlo simulation (13).

Determination of R G

The goal is to find a nonnegative definite function R G which minimizes the quantity

R(t) -R M (t) L 2 (R,dx) = R(t) - M n=1 (n!)f 2 n (R G (t)) n L 2 (R,dx) . ( 47 
)
The constraint of nonnegative definite property for the autocorrelation function is rather tricky to include numerically in the minimization algorithm. It can be replaced by a simpler constraint by introducing the spectral density using Bochner theorem. Actually, denoting S G the spectral density function of (G t , t ∈ R + ) (assuming the density exists), the problem becomes: minimize the quantity

R(t) -R M (t) L 2 (R,dx) = R(t) - M n=1 (n!)f 2 n R S G (ω)e iωt dω n L 2 (R,dx) , (48) 
under the following constraints:

i. S G nonnegative,

ii. S G even,

iii. R S G (ω)dω = 1.

Autocorrelation function determination for the spectral method

The minimization is here achieved by discretizing in a first step each integral, and using then a global stochastic recursive approximation algorithm (see [START_REF] Duflo | Algorithmes stochastiques[END_REF])):

min σ k ≥0 l R(t l ) - M n=1 (n!)f 2 n ∆ ω k σ k e iω k t l n 2 (49) 
The minimization solution (σ k ) k is obtained using for instance a simulated annealing algorithm or any other method as genetic algorithm.

The spectral density S G is then approached by the step function:

S G (ω) = k σ k 1I [ω k ,ω k+1 ] (ω) (50) 
The spectral method is used to simulate the stationary Gaussian process

(G t , t ∈ R + ). Finally the pro- cess (Y M t = M n=1 f n H n (G t )) is simulated.

Autocorrelation function determination for the

Markovian model representation The advantage of using a Markovian model is that it yields a much smaller dimension minimization problem than the former method. It is based on the following assumption:

suppose that R ln(S G (ω))
1+ω 2 dω > -∞. Then it implies that there exists H ∈ H + (C ) (Hardy space) such that ( (Krée and Soize 1986), [START_REF] Bernard | Un algorithme de simulation stochastique par markovianisation approchée application à la mécanique aléatoire[END_REF])

S G (ω) = |H(iω)| 2 . ( 51 
)
The function H(iω) ( (Krée and Soize 1986), [START_REF] Bernard | Un algorithme de simulation stochastique par markovianisation approchée application à la mécanique aléatoire[END_REF], [START_REF] Poirion | Effective methods in stochastic non-linear dynamics. aeroservoelasticity applications[END_REF])) is either a rational function itself or can be approached by a rational function:

Φ(iω) Ψ(iω) (52) where i. Φ, Ψ are real coefficient polynomials (Ψ is uni- tary), ii. deg Φ < deg Ψ,
iii. the roots of Ψ lie in {ℜe(z) < 0}.

The goal is to minimize the quantity

R(t) - M n=1 (n!)f 2 n R Φ(iω) Ψ(iω) 2 e iωt dω n L 2 (R,dx) , ( 53 
)
relatively to the coefficients (φ k ) deg Φ k=0 and (Ψ k ) deg Ψ k=0 of polynomials and Ψ (respectively), under the constraint that Φ and Ψ are described as above.

Remark 4.1

The dimension of this new minimization problem is equal to the number of coefficients of Φ and Ψ while dimension of the former minimization problem is equal to the number of points used for calculating the integrals in (49).

Once the polynomials Φ and Ψ are determined, it remains to simulate the underlying stationary Gaussian process by the following method.

Let (ξ t , t ∈ R + ) a random process with values in R deg Ψ , which is solution of the Itô stochastic differential equation

dξ t -Aξ t dt = dZ t , (54) 
where i. A is the companion matrix of polynomial Ψ,

ii. dZ t = (0, ..., 0, dW t ) T , and W t is the standard Wiener process.

schemes exist in order to construct its solution (ξ(0) = ξ 0 ; ξ t , t ∈ R + ) (Talay 1990;[START_REF] Bernard | Stochastic Newmark Method[END_REF].

Let (G t , t ∈ R + ) be a scalar process defined by

G t = Bξ t , (55) 
where

B = (φ 0 , φ 1 , ..., φ deg Φ , 0..., 0) ∈ R deg Ψ . ( 56 
)
Then (G t , t ∈ R) is a Gaussian process which spectral measure has a density given by Φ(iω) Ψ(iω)

2

. As in the previous method, the simulation of the non-Gaussian process t is achieved by constructing the approaching truncated sum

Y M t = M n=1 f n H n (G t ).
(57)

EXAMPLES

As the aim of this paper is to prove the theoretical validity of the proposed simulation methods, we give here just some illustrations of these methods without qualitative comments. Comparison between existing simulation methods of non-Gaussian processes will be the object of a future work.

5.1 Data i. 5 statistical moments are given

µ 1 = 0, µ 2 = 1, µ 3 = 2, µ 4 = 9, µ 5 = 44, (58) 
ii. the spectral density is given by

S(ω) = 1 2π 100 270 1 + 0.6558ω 2 (1 + 0.2459ω 2 ) 11/6 . ( 59 
)
iii. M=4, 1024 discretization points are used and 1000 simulations are performed.

Using the ergodic property of process Y t , the various statistics are estimated using each point of simulated trajectories.

Case where the marginal distribution is given We consider the case where the one dimensional marginal distribution of the non-Gaussian process is given. Let X a random variable with the exponential distribution exp(1) and let Y = X -1. Then

E (Y ) = 0, E (Y 2 ) = 1, E (Y 3 ) = 2, E (Y 4 ) = 9, E (Y 5 ) = 44.
The inverse of the cumulative distribution function of Y is obtained easily:

F -1 Y (y) = -1 -ln(1 -y). (60) 
The cumulative distribution function of the random variable

F -1 Y • F G (G) = -1 -ln(1 -F G (G)) (61) 
is F Y . The coefficients f n can be obtained a numerical integration:

f n = (n!) -1 R (-1 -ln(1 -F G (x)))H n (x) e -x 2 2 √ 2π dx.
(62)

Simulation using the spectral approach

The comparison between the target and the estimated spectral density is shown on figure 1. The histogram of Y t marginal distribution is compared to the target marginal distribution, figure 2.

Simulation using the Markovian model For this application Φ et Ψ are defined by:

Φ(x) = (α 1 + β 1 x)(α 2 + β 2 x), (63) 
Ψ(x) = (x 2 + 2γ 1 δ 1 x + δ 2 1 )(x 2 + 2γ 2 δ 2 x + δ 2 2 ), (64) 
where (α 1 , β 1 ), (α 2 , β 2 ) ∈ R r {(0, 0)} and γ 1 , γ 2 , δ 1 , δ 2 are positive real numbers. As in the preceding section, the same comparisons can be found figure 3 and figure 4. Even if the Markovian model brings another level of approximation, since the power spectral density is approached by a rational function, the two approaches give a very good estimate of the target power spectral density.

Case where a finite number of statistical moments are given In the case where only a number of statistical moments are given, we have to generate a random variable Y with given moments and which distribution is absolutely continuous with respect to the Lebesgue measure (see section 2). The inverse of the cumulative distribution function of Y is then constructed numerically. Moreover, contrary to the preceding case, the coefficients f n appearing in the approaching sequence are estimated using Monte-Carlo simulations. The results concerning the spectral density function are illustrated on figure 5 and 6 for respectively the spectral and Markovian approach. Results concerning moments are, in the same way, resumed in table 1 and table 2. As in the preceding case, the agreement is excellent between estimated and target quantities.

Looking at the optimization problem dimension, it is obvious that the Markovian approach needs a lesser computational effort than the spectral approach: 8 parameters to optimize for the first method versus 1024 parameters for the spectral approach. Nevertheless it appears that the optimization procedure converges very rapidly in this last case, for this particular application. This can be explained by the fact that the starting point (the target spectral density) of the optimization procedure is "close" to the correct Gaussian spectral density. This property was observed by the authors of (Sakamoto and Ghanem 1999). Mathematically, this is explained by the convergence speed of R M towards R Y , given by relation ( 27). Moreover, when only one term is kept in the expansion, M = 1:

|R Y (t) -R G (t)| ≤ |R G (t)| 2 (65)
with |R G (t)| ≤ 1. A last comment considering the optimization problem for the spectral approach is that its overall dimension could be reduced in a significant manner if other numerical integration methods were used, such as the Gauss point method. And this should be used for random fields Y (t), t ∈ R d .

Case of a scalar homogeneous random field Data

i. the same statistical data as in the previous example are utilized.

ii. the spectral density is given by (1 + 0.2459ω 2 2 ) 11/6 .

S(
(66)

iii. M=4, 128 × 128 discretization points are utilized and 1000 simulations are performed.

The simulation of the underlying Gaussian random field is performed here using the spectral method. Although one can construct a Markovian model for random field yielding a stochastic partial differential equation, it is difficult to integrate it because one has to discretize a partial differential equation on a domain of R d . Therefore the Markovian model is not effective for random fields.

In the case where the marginal distribution is given, the target spectral density is shown in figure 7 and has to be compared to the estimated spectral density shown in figure 8. Figure 9 depicts the comparison of the target and estimated marginal distribution histogram.

The results of the case 2 data are given in figure 10 for the estimated spectral density and in table 3 for the comparison between the target and the estimated statistical moments.

Here again, the agreement between the estimated and the target quantities is very good.

CONCLUSION

In this paper, various convergence results for Hermite polynomial expansion of a Gaussian process are given. These results act as lifeguards for simulation techniques based on such Hermite polynomial expansions. In particular, it can be proved under some regularity assumption that the speed of convergence of Hermite expansion correlation function towards the non-Gaussian correlation function is controlled by the quantity (M × M!) -1 where M is the number of polynomials in the sum. Various algorithms are also given, allowing to construct simulations of general non-Gaussian processes. The simulation method relies on the simulation of a Gaussian process, which can be simulated using either a spectral approach, or a Markovian approach. This last method yields a lesser computational effort, but which is not effective for random fields. Various examples illustrate the soundness of the method. The general method can be extended in theory to non-stationary random processes, but, in practice, such a generalization would lead to numerical and estimation difficulties, the first one being to deal with time dependent statistical characteristics of the non-Gaussian process and time (or space) dependent estimations of real-life random phenomena. Extension to vector valued random process is also straightforward, since it is based on the simulation of a vector valued Gaussian process and on the simulation of a vector valued random variable. Shohat, J. and J. Tamarkin (1963) Moment target estimated order 2 1.00 1.00 order 3 2.00 2.01 order 4 9.00 9.17 order 5 44.00 45.58 TABLE 3: 
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