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Non-Gaussian simulation using Hermite polynomial expansion

Bénédicte Puig, Fabrice Poirion and Christian Soize
ONERA, BP72 92322 Châtillon, France

ABSTRACT. A general method to generate simulated paths of non-Gaussian homogeneous random fields, based
on an Hermite polynomial expansion, is proposed. Mathematical justifications are given for this Monte Carlo
simulation technique. Different types of convergences are established for the approaching sequence. Moreover
an original numerical method is proposed in order to solve the functional equation yielding the underlying
Gaussian process autocorrelation function.

1 INTRODUCTION

Due to the formidable progress of computer tech-
nology, Monte Carlo simulation (MCS) methods are
leaving their benchmark method status to become
fully effective methods which are more and more inte-
grated in industrial codes. As a consequence, industry
is relying more heavily on MCS methods for decreas-
ing the design and construction costs of their prod-
ucts, performing for instance damage and fatigue op-
timization. In that context, they need to use stochas-
tic loads which match real-life loads –which, as many
examples have shown, are typically non-Gaussian–
rather than Gaussian processes.

Various methods have been proposed for generat-
ing simulated paths of non-Gaussian processes (Grig-
oriu 1998; Gurley and Kareem 1999; I.a.s.s.a.r 1997;
Poirion 1993; Popescu, Deodatis, and Prevost 1998;
Sakamoto and Ghanem 1999; Sakamoto and Ghanem
2002). The main conceptual difficulty lies in the
characterization of the process: unlike Gaussian pro-
cesses which are determined solely through their first
and second order probabilistic characteristics, one
must know the entire family of joint distributions
{L(Xt1, . . . ,Xtn), n ≥ 1, ti ∈ R}. Of course, such a
data is never available (at least for real-life processes),
and one has to deal with a truncated characterization
of the non-Gaussian process. The reasonable mini-
mum amount of information used to “approach” the
real behavior of the non-Gaussian process should at
least include the one-dimension marginal probabil-
ity distribution and the correlation function. But of-
ten, even the one-dimension marginal distribution is
not available and one has to deal instead with a given
number of statistical moments.

Another essential aspect of MCS methods which

has to be considered in order to ensure the soundness
of the method, as it is done for Gaussian simulation
(Poirion and Soize 1995), is the convergence behavior
of approximation.

The goal of this paper is to propose a general
method to generate simulated paths of non-Gaussian
homogeneous random fields, based, as it is done
for instance in (Declercq 1998; Grigoriu 1998; Gur-
ley and Kareem 1999; Sakamoto and Ghanem 1999;
Sakamoto and Ghanem 2002), on an Hermite poly-
nomial expansion, given the spectral measure of the
random field and either the one-dimension marginal
distribution or a fixed number of statistical moments.
Different types of convergence will be given for the
approximating sequence. It will be shown how the
problem of determining the autocorrelation function
of the underlying Gaussian process can be approached
by an optimization problem. Two formulations will
be given, whether the underlying Gaussian process
is generated using a spectral approach method or
a Markovian representation method. Finally, results
of applications including the various aspects of the
method will be given.

2 METHOD DESCRIPTION

Let (Ω,A,P) be a probability space. For any x ∈ R,
Hermite polynomials are defined by:

H0(x) = 1 , (1)

Hn(x) = (−1)ne
x
2

2

dn

dxn
e−

x
2

2 , n ∈ N
∗ . (2)
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2.1 Data

It is aimed to simulate the paths of a strictly stationary
non-Gaussian process (Yt, t ∈ R

+) which statistical
description is reduced either to a finite number of mo-
ments or to its one-dimension marginal distribution.
Two sets of data will therefore be considered:
Case 1

i. let µ1, µ2, ..., µN (N > 1) be real numbers which
are statistical moments of a random variable.

We can assume in the following that µ1 =
0, µ2 = 1.

ii. Let R : R −→ R be a function in L2(R, dx) such
that

R(0) = 1,

R is nonnegative definite.

Case 2

i. a cumulative distribution function FY of a ran-
dom variable Y is given, with E (Y 2) = 1.

ii. Let R : R −→ R be a function in L2(R, dx) such
that

R(0) = 1,

R is nonnegative definite.

Gaussian simulation methods are well known
(Shinozuka 1971; Deodatis and Shinozuka 1991;
I.a.s.s.a.r 1997; Krée and Soize 1986; Poirion and
Soize 1995; Spanos and Zeldin 1998) and very sim-
ple to utilize. That explains why many methods use
nonlinear transformations of Gaussian process in or-
der to simulate non-Gaussian ones. Moreover, the

family
(

(
√

n!)−1Hn

)

n∈N
is an orthonormal base of

L2

(

R, e−
x
2

2√
2π

dx

)

. It is then natural to construct a

strictly stationary process (Yt, t ∈ R
+) defined by the

relation

Yt =
∞
∑

n=1

fnHn(Gt) (3)

where

. Hn is the Hermite polynomial of degree n,

. (Gt, t ∈ R
+) is a standard stationary Gaussian pro-

cess (i.e. for every fixed t, Gt has a zero-mean,
unit variance Gaussian distribution),

such that

. either E (Y n
t ) = µn ∀n ∈ {1, ...,N},(case 1)

. or for every fixed t, the random variables Yt and Y
have the same distribution, (case 2)

and such that

. the autocorrelation function RY of (Yt, t ∈ R
+) is

close to R in the Hilbert space L2(R, dx).

Whether the first statistical moments or the marginal
distribution are given, different assumptions must be
verified. However, at the end, it is the same general
method which is used: find a function f and a Gaus-
sian process Gt such that

Yt ≡ f(Gt) (4)

this last relation meaning that the two processes have
the same given statistical data.

2.2 Distribution of the random variable Yt

In the case 2, the distribution of Yt is given by the
cumulative distribution function FY . For the case 1,
the considered simulation method requires the deter-
mination of a continuous distribution having the N
first moments equal to (µ1, ..., µN) and to calculate its
cumulative distribution function. However any finite
sequence of real numbers isn’t the moments sequence
of a distribution (conditions must be fulfilled which
could be found in (Shohat and Tamarkin 1963) and in
(Devroye 1986)) and such distribution is generally not
unique. So there is a choice of distribution to make.
The entropy optimization principle is particularly in-
dicated for our problem. However, with some hypoth-
esis, an unimodal distribution with the given moments
can be constructed (see for instance (Devroye 1986)
for this) and this second method was used for the ex-
amples of this paper. Actually, the cumulative distri-
bution function can then be obtained analytically. In
a future work, the entropy optimization principle will
be used.

2.3 Utilization of Hermite polynomials

The first step is to identify the nonlinear function f
appearing in the memoryless transformation (4). This
function is constructed using the cumulative distribu-
tion functions of the given non-Gaussian process Yt

and of a standard normal random variable. In what
follows, the function FY denotes either the cumula-
tive distribution function described in the preceding
section for case 1, or the data itself for case 2.

The inverse of the cumulative distribution function
FY is defined by

F−1
Y (y) = inf{x ∈ R/FY (x) ≥ y} (5)

(where inf(∅) = +∞). The cumulative distribution

function of F−1
Y (U), where U is a random variable
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with an uniform probability distribution over [0,1],
is FY . If G is the standard normal random variable
N (0,1) and FG its cumulative distribution function,
FG(G) has an uniform distribution over [0,1]. So the
cumulative distribution function of the random vari-
able F−1

Y ◦ FG(G) is FY . Thus the following hypoth-
esis is considered:

F−1
Y ◦FG ∈ L2

(

R,
e−

x
2

2√
2π

dx

)

. (6)

If this assumption is true, then the function F−1
Y ◦

FG can be projected on the base

(

(√
n!
)−1

Hn

)

n∈N
:

there exists a real sequence (fn)n such that

∀x ∈ R, F−1
Y ◦FG(x) =

∞
∑

n=0

fnHn(x) (7)

where

fn = (n!)−1

∫

R

F−1
Y ◦FG(x)Hn(x)

e−
x
2

2√
2π

dx, (8)

the series being convergent in L2

(

R, e−
x
2

2√
2π

dx

)

.

Proposition 2.1
Let (Gt, t ∈ R

+) be a standard stationary Gaussian
process and RG its autocorrelation function.
Then the process (Yt, t ∈ R

+) defined by

Yt = F−1
Y ◦ FG(Gt), (9)

is strictly stationary, and

∀n ∈ {1, ...,N}, E (Y n
t ) = µn. (10)

Proof. As it was remarked above, Yt = F−1
Y ◦FG(Gt)

has FY for cumulative distribution function and has
then (µ1, ..., µN) for first moments.
The second step is to identify the underlying Gaus-
sian process Gt used in relation (4). Its autocorrela-
tion function is solution of a functional equation:

RY (t) =
∞
∑

n=1

(n!)f 2
nRG(t)n (11)

This is the difficult point of this method because it
is not guarantee that this equation has a solution, and
even if a solution exists, it has to be a nonnegative
definite function. Two numerical methods based on an
optimization technique will be given further in order
to construct an autocorrelation function "approach-
ing" a solution of this equation.

3 CONVERGENCE RESULTS

Let (Y M
t )M be the sequence defined by

Y M
t =

M
∑

n=1

fnHn(Gt). (12)

Our goal is to study the convergence of the sequence
(Y M

t )M towards Yt as M → ∞. Various convergence
results of the truncated sum sequence will be given.

3.1 Mean-square convergence

Proposition 3.1
For any fixed t, the sequence (Y M

t )M∈N∗ converges

uniformly in t towards Yt in the space L2(Ω,A,P).

Proof. Owing to the transport of measure, the coeffi-
cients (fn) are given by

fn = (n!)−1
E (YtHn(Gt)) (13)

= (n!)−1
E (F−1

Y ◦ FG(Gt).Hn(Gt)). (14)

(f0 = 0)
Since Gt is stationary, fn does not depend on t.

Therefore for any fixed t, we have

Yt = F−1
Y ◦FG(Gt) (15)

=
∞
∑

n=1

fnHn(Gt) (16)

in L2(Ω,A,P).
We will prove now that the autocorrelation function
of the truncated sum converges towards the target au-
tocorrelation function.

Proposition 3.2
Let RM denotes the autocorrelation function of

(Y M
t , t ∈ R

+) and RY the autocorrelation function of
(Yt, t ∈ R).

∀t ∈ R, RM(t) −−−→
M→∞

RY (t). (17)

Proof.

Lemma 3.3 (Mehler Formula, (Declercq 1998))
Let (Gt, t ∈ R

+) a zero-mean Gaussian process such

that E [G2
t ] = 1 for all t ∈ R

+ and let RG(t, s) be its
autocorrelation function. Then

E [Hn(Gt)Hm(Gs)] = n!(RG(t, s))nδnm, (18)

(where δ denotes the Kronecker symbol).
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Using Mehler’s formula:

RY (t− s) = E (YtYs) (19)

= E (F−1
Y ◦FG(Gt).F

−1
Y ◦ FG(Gs))(20)

=
∑

m,n

fmfnE (Hn(Gt)Hm(Gt)) (21)

=
∑

n

(n!)f 2
nRG(t− s)n (22)

= lim
M→∞

M
∑

n=1

(n!)f 2
nRG(t− s)n (23)

= lim
M→∞

E (Y M
t Y M

s ) (24)

= lim
M→∞

RM(t− s). (25)

3.2 Error evaluation

By assuming some decreasing conditions for the co-
efficients fn, an evaluation of the error due to the trun-
cation can be obtained.

Proposition 3.4
If there exists a constant C > 0 such that for any n,

f 2
n ≤ C

(n!)2
, (26)

then for any fixed t

|RY (t)−RM(t)| ≤ C

M.M !
|RG(t)|M+1

(27)

≤ C

M.M !
. (28)

Remark 3.5
If the function f := F−1

Y ◦FG is a C∞ function which
n-th derivatives are uniformly bounded in n by a pos-
itive constant K > 0, then the assumption is checked.
As a matter of fact, using integration by parts, we have

fn = (n!)−1
E (f (n)(Gt)). (29)

Thus

f 2
n ≤ K2

n!2
. (30)

Proof. The autocorrelation functions are given re-
spectively by

RY (t) =
∞
∑

n=1

(n!)f 2
nRG(t)n (31)

and

RM(t) =
M
∑

n=1

(n!)f 2
nRG(t)n. (32)

On the other hand, using Cauchy-Schwarz inequality
and using the fact that, for any t, the Gt distribution is
N (0,1),

|RG(t)| = E (G0Gt) (33)

≤ E (G2
0)

1/2
E (G2

t )
1/2 (34)

≤ 1. (35)

Therefore

|RY (t)−RM(t)| =

∣

∣

∣

∣

∣

∞
∑

n=M+1

(n!)f 2
nRG(t)n

∣

∣

∣

∣

∣

(36)

≤
∞
∑

n=M+1

(n!)f 2
n|RG(t)|M+1

(37)

≤ C
∞
∑

n=M+1

(n!)−1|RG(t)|M+1
(38)

≤ C

M.M !
|RG(t)|M+1

(39)

≤ C

M.M !
. (40)

The last but one inequality is of course finer than the
last. But the quantity |RG(t)| is unknown.

Corollary 3.6
Under assumption of the former proposition and for
any t,

E((Yt − Y M
t )2) ≤ C

M.M !
. (41)

Proof.

E((Yt − Y M
t )2) = E (Y 2

t )− 2E (YtY
M
t ) + E ((Y M

t )2)(42)

=
∣

∣E (Y 2
t )− E ((Y M

t )2)
∣

∣ (43)

= |RY (0)−RM (0)|. (44)

The proof is concluded using the preceding proposi-
tion with t = 0.
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3.3 Almost sure convergence

Assuming now a stronger condition on the sequence
(fn), almost-sure convergence can be proved.

Proposition 3.7
If

∞
∑

n=1

(ln(n))2f 2
n(n!) < ∞, (45)

then for any fixed t, the sequence (Y M
t )M∈N∗ con-

verges a.s. towards Yt.

Proof.

Lemma 3.8 ((Loève 1960))
Let (Zn)n be a sequence of second order random vari-
ables which are orthogonal. If

∑

n∈N∗

(ln(n))2
E (Z2

n) < ∞, (46)

then the sum
∑

n∈N∗ Zn converges almost surely.

(Hn(Gt))n∈N∗ is a sequence of random variables
which are orthogonal in L2(Ω,A,P), so the propo-
sition is proved by using the lemma to the sequence
(Hn(Gt))n∈N∗ .

4 SIMULATION TECHNIQUES

Two effective methods will be given here in order
to construct simulated paths of a stationary non-
Gaussian process. A common ingredient of these two
methods is the simulation of a particular stationary
Gaussian process for which two methods have been
examined: the spectral method (Deodatis and Shi-
nozuka 1991; Poirion and Soize 1995; Spanos and
Zeldin 1998) and the Markovian model method (Krée
and Soize 1986; Bernard, Fogli, Bressolette, and
Lemaire 1984). As it will be shown later, the choice
of the method has some incidence on the method effi-
ciency.

The first stage is to generate the stationary Gaus-
sian process (Gt, t ∈ R

+) with marginal distribution
N (0,1) and autocorrelation function RG. The second
stage is to generate the random process (Y M

t , t ∈ R
+)

given by Y M
t =

∑M
n=1 fnHn(Gt) (M is fixed a priori),

where the coefficients (fn) are obtained either by nu-
merical integration (8) or by Monte-Carlo simulation
(13).

4.1 Determination of RG

The goal is to find a nonnegative definite function RG

which minimizes the quantity

‖R(t)−RM(t)‖L2(R,dx) = ‖R(t)−
M
∑

n=1

(n!)f 2
n(RG(t))n‖

L2(R,dx)

.

(47)

The constraint of nonnegative definite property for
the autocorrelation function is rather tricky to in-
clude numerically in the minimization algorithm. It
can be replaced by a simpler constraint by introduc-
ing the spectral density using Bochner theorem. Ac-
tually, denoting SG the spectral density function of
(Gt, t ∈ R

+) (assuming the density exists), the prob-
lem becomes:
minimize the quantity

‖R(t)−RM(t)‖L2(R,dx) =

‖R(t)−
M
∑

n=1

(n!)f 2
n

(
∫

R

SG(ω)eiωtdω

)n

‖
L2(R,dx)

,

(48)

under the following constraints:

i. SG nonnegative,

ii. SG even,

iii.
∫

R
SG(ω)dω = 1.

4.2 Autocorrelation function determination for the
spectral method

The minimization is here achieved by discretizing in
a first step each integral, and using then a global
stochastic recursive approximation algorithm (see
(Duflo 1996)):

min
σk≥0

∑

l

(

R(tl)−
M
∑

n=1

(n!)f 2
n

(

∆ω

∑

k

σke
iωktl

)n)2

(49)

The minimization solution (σk)k is obtained using for
instance a simulated annealing algorithm or any other
method as genetic algorithm.

The spectral density SG is then approached by the
step function:

SG(ω) =
∑

k

σk1I[ωk,ωk+1](ω) (50)

The spectral method is used to simulate the station-
ary Gaussian process (Gt, t ∈ R

+). Finally the pro-

cess (Y M
t =

∑M
n=1 fnHn(Gt)) is simulated.

4.3 Autocorrelation function determination for the
Markovian model representation

The advantage of using a Markovian model is that it
yields a much smaller dimension minimization prob-
lem than the former method. It is based on the follow-
ing assumption:

5



suppose that
∫

R

ln(SG(ω))
1+ω2 dω > −∞. Then it implies

that there exists H ∈ H+(C ) (Hardy space) such that
( (Krée and Soize 1986), (Bernard, Fogli, Bressolette,
and Lemaire 1984))

SG(ω) = |H(iω)|2. (51)

The function H(iω) ( (Krée and Soize 1986),
(Bernard, Fogli, Bressolette, and Lemaire 1984),
(Poirion 1999)) is either a rational function itself or
can be approached by a rational function:

Φ(iω)

Ψ(iω)
(52)

where

i. Φ, Ψ are real coefficient polynomials (Ψ is uni-
tary),

ii. degΦ < degΨ,

iii. the roots of Ψ lie in {ℜe(z) < 0}.

The goal is to minimize the quantity

‖R(t)−
M
∑

n=1

(n!)f 2
n

(

∫

R

∣

∣

∣

∣

Φ(iω)

Ψ(iω)

∣

∣

∣

∣

2

eiωtdω

)n

‖
L2(R,dx)

,

(53)

relatively to the coefficients (φk)
degΦ
k=0 and (Ψk)

degΨ
k=0 of

polynomials Φ and Ψ (respectively), under the con-
straint that Φ and Ψ are described as above.

Remark 4.1
The dimension of this new minimization problem is
equal to the number of coefficients of Φ and Ψ while
the dimension of the former minimization problem is
equal to the number of points used for calculating the
integrals in (49).

Once the polynomials Φ and Ψ are determined, it
remains to simulate the underlying stationary Gaus-
sian process by the following method.

Let (ξt, t ∈ R
+) a random process with values in

R
deg Ψ, which is solution of the Itô stochastic differ-

ential equation

dξt −Aξtdt = dZt, (54)

where

i. A is the companion matrix of polynomial Ψ,

ii. dZt = (0, ...,0, dWt)
T , and Wt is the standard

Wiener process.

Various schemes exist in order to construct its solu-
tion (ξ(0) = ξ0; ξt, t ∈ R

+) (Talay 1990; Bernard and
Fleury 1999).

Let (Gt, t ∈ R
+) be a scalar process defined by

Gt = Bξt, (55)

where

B = (φ0, φ1, ..., φdegΦ,0...,0) ∈ R
deg Ψ. (56)

Then (Gt, t ∈ R) is a Gaussian process which spectral

measure has a density given by

∣

∣

∣

Φ(iω)
Ψ(iω)

∣

∣

∣

2

.

As in the previous method, the simulation of the
non-Gaussian process Yt is achieved by constructing
the approaching truncated sum

Y M
t =

M
∑

n=1

fnHn(Gt). (57)

5 EXAMPLES

As the aim of this paper is to prove the theoretical
validity of the proposed simulation methods, we give
here just some illustrations of these methods without
qualitative comments. Comparison between existing
simulation methods of non-Gaussian processes will
be the object of a future work.

5.1 Data

i. 5 statistical moments are given

µ1 = 0, µ2 = 1, µ3 = 2, µ4 = 9, µ5 = 44,
(58)

ii. the spectral density is given by

S(ω) =
1

2π

100

270

1 + 0.6558ω2

(1 + 0.2459ω2)11/6
. (59)

iii. M=4, 1024 discretization points are used and
1000 simulations are performed.

Using the ergodic property of process Yt, the various
statistics are estimated using each point of simulated
trajectories.

5.2 Case where the marginal distribution is given

We consider the case where the one dimensional
marginal distribution of the non-Gaussian process is
given. Let X a random variable with the exponential
distribution exp(1) and let Y = X − 1. Then

E (Y ) = 0, E (Y 2) = 1,

E (Y 3) = 2, E (Y 4) = 9,

E (Y 5) = 44.
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The inverse of the cumulative distribution function of
Y is obtained easily:

F−1
Y (y) = −1− ln(1− y). (60)

The cumulative distribution function of the random
variable

F−1
Y ◦FG(G) = −1− ln(1− FG(G)) (61)

is FY . The coefficients fn can be obtained by a nu-
merical integration:

fn = (n!)−1

∫

R

(−1− ln(1− FG(x)))Hn(x)
e−

x
2

2√
2π

dx.

(62)

Simulation using the spectral approach
The comparison between the target and the esti-

mated spectral density is shown on figure 1. The his-
togram of Yt marginal distribution is compared to the
target marginal distribution, figure 2.

Simulation using the Markovian model
For this application Φ et Ψ are defined by:

Φ(x) = (α1 + β1x)(α2 + β2x), (63)

Ψ(x) = (x2 + 2γ1δ1x + δ2
1)(x

2 + 2γ2δ2x + δ2
2),

(64)

where (α1, β1), (α2, β2) ∈ R r {(0,0)} and γ1, γ2, δ1,
δ2 are positive real numbers. As in the preceding sec-
tion, the same comparisons can be found figure 3 and
figure 4. Even if the Markovian model brings another
level of approximation, since the power spectral den-
sity is approached by a rational function, the two ap-
proaches give a very good estimate of the target power
spectral density.

5.3 Case where a finite number of statistical mo-
ments are given

In the case where only a number of statistical mo-
ments are given, we have to generate a random vari-
able Y with given moments and which distribution
is absolutely continuous with respect to the Lebesgue
measure (see section 2). The inverse of the cumula-
tive distribution function of Y is then constructed nu-
merically. Moreover, contrary to the preceding case,
the coefficients fn appearing in the approaching se-
quence are estimated using Monte-Carlo simulations.
The results concerning the spectral density function
are illustrated on figure 5 and 6 for respectively the
spectral and Markovian approach. Results concerning
moments are, in the same way, resumed in table 1 and
table 2. As in the preceding case, the agreement is ex-
cellent between estimated and target quantities.

Looking at the optimization problem dimension,
it is obvious that the Markovian approach needs a
lesser computational effort than the spectral approach:
8 parameters to optimize for the first method versus
1024 parameters for the spectral approach. Neverthe-
less it appears that the optimization procedure con-
verges very rapidly in this last case, for this particu-
lar application. This can be explained by the fact that
the starting point (the target spectral density) of the
optimization procedure is "close" to the correct Gaus-
sian spectral density. This property was observed by
the authors of (Sakamoto and Ghanem 1999). Mathe-
matically, this is explained by the convergence speed
of RM towards RY , given by relation (27). Moreover,
when only one term is kept in the expansion, M = 1:

|RY (t)−RG(t)| ≤ |RG(t)|2 (65)

with |RG(t)| ≤ 1. A last comment considering the op-
timization problem for the spectral approach is that
its overall dimension could be reduced in a signifi-
cant manner if other numerical integration methods
were used, such as the Gauss point method. And this
should be used for random fields Y (t), t ∈ R

d .

5.4 Case of a scalar homogeneous random field

Data

i. the same statistical data as in the previous exam-
ple are utilized.

ii. the spectral density is given by

S(ω1, ω2) =
1

2π

100

270

1 + 0.6558ω2
1

(1 + 0.2459ω2
1)

11/6

× 1

2π

100

270

1 + 0.6558ω2
2

(1 + 0.2459ω2
2)

11/6
. (66)

iii. M=4, 128× 128 discretization points are utilized
and 1000 simulations are performed.

The simulation of the underlying Gaussian random
field is performed here using the spectral method.
Although one can construct a Markovian model for
random field yielding a stochastic partial differential
equation, it is difficult to integrate it because one has
to discretize a partial differential equation on a do-
main of Rd . Therefore the Markovian model is not
effective for random fields.

In the case where the marginal distribution is given,
the target spectral density is shown in figure 7 and
has to be compared to the estimated spectral density
shown in figure 8. Figure 9 depicts the comparison
of the target and estimated marginal distribution his-
togram.
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The results of the case 2 data are given in figure 10
for the estimated spectral density and in table 3 for
the comparison between the target and the estimated
statistical moments.

Here again, the agreement between the estimated
and the target quantities is very good.

6 CONCLUSION

In this paper, various convergence results for Her-
mite polynomial expansion of a Gaussian process are
given. These results act as lifeguards for simulation
techniques based on such Hermite polynomial expan-
sions. In particular, it can be proved under some reg-
ularity assumption that the speed of convergence of
Hermite expansion correlation function towards the
non-Gaussian correlation function is controlled by the
quantity (M × M !)−1 where M is the number of
polynomials in the sum. Various algorithms are also
given, allowing to construct simulations of general
non-Gaussian processes. The simulation method re-
lies on the simulation of a Gaussian process, which
can be simulated using either a spectral approach, or a
Markovian approach. This last method yields a lesser
computational effort, but which is not effective for
random fields. Various examples illustrate the sound-
ness of the method. The general method can be ex-
tended in theory to non-stationary random processes,
but, in practice, such a generalization would lead to
numerical and estimation difficulties, the first one be-
ing to deal with time dependent statistical character-
istics of the non-Gaussian process and time (or space)
dependent estimations of real-life random phenom-
ena. Extension to vector valued random process is
also straightforward, since it is based on the simula-
tion of a vector valued Gaussian process and on the
simulation of a vector valued random variable.
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Moment target estimated
order 2 1.00 1.01
order 3 2.00 2.05
order 4 9.00 8.90
order 5 44.00 41.13

TABLE 1:
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FIGURE 6:

Moment target estimated
order 2 1.00 1.01
order 3 2.00 2.03
order 4 9.00 8.88
order 5 44.00 41.38

TABLE 2:
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FIGURE 9:

FIGURE 10:

Moment target estimated
order 2 1.00 1.00
order 3 2.00 2.01
order 4 9.00 9.17
order 5 44.00 45.58

TABLE 3:

Figure 1 : comparison between target and estimated
spectrum, marginal distribution given / spectral
method

Figure 2 : histogram, comparison between target and
simulated marginal distribution /spectral method

Figure 3 : comparison between target and estimated
spectrum, marginal distribution given /Marko-
vian model

Figure 4 : histogram, comparison between target
and simulated marginal distribution /Markovian
model

Figure 5 : comparison between target and estimated
spectrum, fixed moments /spectral method

Figure 6 : comparison between target and estimated
spectrum, fixed moments /Markovian model

Figure 7 : target spectrum, random field case

Figure 8 : estimated spectrum, marginal distribution
given

Figure 9 : histogram, comparison between target and
simulated marginal distribution

Figure 10 : estimated spectrum, fixed moments

Table 1 : target and estimated statistical moments,
fixed moments / spectral method

Table 2 : target and estimated statistical moments,
fixed moments /Markovian model

Table 3 : target and estimated statistical moments,
fixed moments / spectral method
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