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ABSTRACT : This paper deals with the transient response of a nonlinear dynamical system with random

uncertainties and subjected to earthquake. The nonparametric probabilistic model of random uncertainties

recently published and extended to nonlinear dynamical system analysis is used in order to model random

uncertainties related to the linear part of the finite element model. The nonlinearities are due to restoring

forces whose parameters are uncertain and are modeled by the parametric approach. Jayne’s maximum

entropy principle with the constraints defined by the available information allow the probabilistic model of

such random variables to be constructed. Therefore, a nonparametric-parametric formulation is developed

in order to model all the sources of uncertainties in such a nonlinear dynamical system. Finally, a numerical

application for earthquake engineering analysis is proposed and concerned a reactor coolant system under

seismic loads.

1. INTRODUCTION

This paper dealswith the transient response of a non-

linear dynamical system with random uncertainties.

The source of random uncertainties is induced by

themodel uncertainties (or themodel errors) and the

data uncertainties (errors on the parameters of the

model). For the problem under consideration, data

uncertainties concern the local parameters of the

finite element model and the parameters of the non-

linear forces. Usually, parametric approaches are

used to model data uncertainties [1,2] for evaluating

and analyzing the response of structures with uncer-

tain parameters under seismic loads, like piping and

equipement, power plant installations and industrial

structures [3-7]. Nevertheless, such approaches do

not allow model uncertainties to be taken into ac-

count. It should be noted that model uncertainties

can only be modeled by using a nonparametric ap-

proach. Recently, a nonparametric model of ran-

dom uncertainties has been introduced for linear

dynamical system analysis [8,9]. This nonparamet-

ric model has also been extended to the transient

response of nonlinear dynamical system [10] with-

out having random uncertainties on the nonlinear

part. This nonparametric model is constructed by

the use of Jayne’s entropy principle which consists

in maximizing the probabilistic uncertainties with

the constraints defined by the available information

(for instance, related to algebraic properties of the

finite element matrices). Nevertheless, this non-

parametric formulation does not allow the uncer-

tainties related to the nonlinear restoring forces to be

modeled. This is the reason why a nonparametric-

parametric formulation is proposed for analyzing

nonlinear dynamical systems subjected to seismic

loads with data uncertainties for the nonlinearities.

An application to a multisupported reactor coolant

system subjected to seismic loads is presented.

2. MEAN REDUCEDMATRIXMODEL OF THE

NONLINEAR DYNAMICAL SYSTEM SUB-

JECTED TO SEISMIC LOADS

We consider a nonlinear dynamical system consti-

tuted of a damped structure subjected to ms deter-

ministic time-dependent dirichlet conditions corre-

sponding to seismic loads applied to the supports
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of the structure. The nonlinearities are due to stops

with high stiffness, installed with a given gap at

given points of the structure. Let mf be the number

of degrees of freedom of the mean finite element

model of this nonlinear dynamical system. Let  
be the  mf -vector of the total displacements, in-

cluding the displacements of the supports. We are

interested in the transient response t 7→  (t) from
[0, T ] into  mf . Let [M], [D] and [K] be the mass,
damping and stiffness matrices of the linear part

of the mean finite element model. It is assumed

that the structure with fixed supports has no rigid

body modes. Consequently [M], [D] and [K] are
positive-definite symmetric (mf × mf ) real matri-
ces. The real-valued vector  (t) is rewritten as (t) = (z(t), zs(t)) in which zs(t) ∈  ms is the

vector of the constrained DOFs at the supports and

where z(t) ∈  m is the vector of the m uncon-

strained DOFs with m = mf − ms. The block

splitting of matrices [M], [D] and [K] relative to (t) = (z(t), zs(t)) are introduced,

[M] =

[

[!] [!ls]
[!ls]

T [!s]

]

, [D] =

[

["] ["ls]
["ls]

T ["s]

]

,

[K] =

[

[#] [#ls]
[#ls]

T [#s]

]

. (1)

Since [M], [D] and [K] are positive-definite matri-
ces, then [!], ["] and [#] are also positive-definite
symmetric (m × m) real matrices. Consequently,

the inverse matrix [#]−1 exists and the (m × ms)
real matrix [R] = −[#]−1[#ls] and the relative un-
constrained DOFs vector y(t) = z(t) − [R] zs(t)

belonging to m can be defined. Let {ωα}0<α≤n be

the eigenfrequencies of the corresponding structural

modes { α}0<α≤n such that [#] α = ω2
α[!] α.

Let yn(t) be the projection of y(t) on the subspace of m spanned by { α}0<α≤n with n ≪ m such that

yn(t) = [Φn] qn(t), in which [Φn] is the (m × n)

real matrix whose columns are vectors { α}0<α≤n

and where qn(t) is the vector of the generalized co-
ordinates belonging to  n. Let the positive-definite

symmetric (n × n) real matrices [Mn], [Dn] and
[Kn] be the generalized mass, damping and stiff-

ness matrices of the nonlinear dynamical system

such that

[Mn] = [Φn]T [!] [Φn] , [Dn] = [Φn]T ["] [Φn] ,

[Kn] = [Φn]T [#] [Φn] . (2)

It can be shown that generalized coordinates qn(t)
is a solution of the reduced matrix model of the

nonlinear dynamical system,

[Mn] q̈n(t) + [Dn] q̇n(t) + [Kn] qn(t)

+ Fn
c (t, qn(t), q̇n(t);w)

= Fn(t) , t ∈ [0, T ] , (3)

with the initial conditions,

qn(0) = q̇n(0) = 0 , (4)

in which Fn(t) ∈  m and Fn
c (t,! ," ;w) ∈  m are

such that

Fn(t) = −[Φn]T ([!] [R] + [!ls]) z̈s(t)

− [Φn]T (["] [R] + ["ls]) żs(t) , (5)

Fn
c (t," ,! ;w) = [Φn]T $c(t, [Φn] " + [R] zs(t),

[Φn] ! + [R] żs(t);w) , (6)

where $c(t, z(t), ż(t);w) is the nonlinear forces in-
duced by the stopswhose parameters are represented

by vector w = (w1, . . . , wν) ∈  ν . Hereinafter, it

is assumed that the nonlinear dynamical problem

defined by Eqs. (3) and (4) has an unique solution

t 7→ qn(t) from [0, T ] into  n.

3. STOCHASTIC NONLINEAR DYNAMICAL

SYSTEM SUBJECTED TO SEISMIC LOADS

The nonparametric approach consists in substituting

the mean generalized mass, damping and stiffness

matrices [Mn], [Dn] and [Kn] of the mean reduced
matrix model by the random matrices [Mn], [Dn]
and [Kn]. For the problem under consideration, the

parametric approach consists in substituting param-

eter mean values w of the nonlinear forces by the ν -valued random variable W. Consequently, the

m unconstrained DOFs and the m unconstrained

relative DOFs are represented by the  m-valued

stochastic processes Zn(t) and Yn(t) indexed by

[0, T ], respectively, such that

Zn(t) = Yn(t) + [R] zs , Yn(t) = [Φn] Qn(t) , (7)

where the  n-valued stochastic process Q(t) in-

dexed by [0, T ] is the unique second-order solution
of the following stochastic nonlinear dynamical sys-

tem,

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn] Qn(t)

+ Fn
c (t,Qn(t), Q̇n(t);W)

= Fn(t) , t ∈ [0, T ] , (8)

with the initial conditions,

Qn(0) = Q̇n(0) = 0 , a.s . (9)
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Random matrices [Mn], [Dn] and [Kn] and random
vector W = (W1, . . . , Wν) are second-order ran-
dom variables subjected to the following constraints

defined by the available information,

[Mn] , [Dn] , [Kn] ∈ Mat+ (n) a.s , (10)

E{[Mn]} = [Mn] , E{[Dn]} = [Dn] ,

E{[Kn]} = [Kn] (11)

E{‖[Mn]−1‖2
F } < +∞ , (12)

E{‖[Dn]−1‖2
F } < +∞ , (13)

E{‖[Kn]−1‖2
F } < +∞ , (14)

W1 ∈ D1, . . . , Wν ∈ Dν , a.s , (15)

E{W} = w , (16)

in which E denotes the mathematial expectation

and where ‖[A]‖F = (tr{[A] [A]T})1/2. In Eq.

(10), Mat+ (n) is the set of all the positive-definite
symmetric (n × n) real matrices and in Eq. (15),

for all 1 ≤ ℓ ≤ ν, Dℓ is a subset of  .
Let Z1(t), . . . , Zn(t) be the coordinates of Zn(t).
Let Sj(ξ, ω) be the random normalized response

spectrumof stochastic transient responseZn
j (t)with

(ξ, ω) belonging to Jξ ×Jω ⊂  2 where Jξ = [0, 1]
and Jω = [ωmin, ωmax]. We then have

Sj(ξ, ω) =
ω2

g
maxt∈[0,T ]|Xj(t)| , (17)

in which g is a normalization constant (for instance,
the gravity acceleration) and where Xj(t) is the

solution of the linear dynamical system,

Ẍj + 2ξωẊj + ω2Xj = −Zn
j , t ∈ [0, T ] (18)

Xj(0) = Ẋj(0) = 0 . (19)

Normalized response spectrumSj(ξ, ω) is a random
variablewhosemean valuesm1j(ξ, ω), second-order
moment m2j(ξ, ω), variance Vj(ξ, ω) and standard
deviation σj(ξ, ω) are estimated by theMonte-Carlo

numerical simulation. The stochastic convergence

of the probabilistic model is studied with respect to

n and with respect to the number ns of samples for

theMonte-Carlo numerical simulation, by introduc-

ing the norm |||Z̈n
j ||| defined as

|||Z̈n
j |||2 = E{

∫ T

0

Z̈n
j (t)2dt} . (20)

This norm is estimated by |||Z̈n
j ||| ≃ Convj(ns, n)

with

Convj(ns, n)2 =
1

ns

ns
∑

k=1

∫ T

0

Z̈n
j (t, θk)2dt , (21)

where θ1, . . . , θns
denotes the ns samples for the

Monte-Carlo numerical simulation.

LetdB(ξ, ω) be the randomvariable such thatdBj(ξ,
ω) = log10(Sj(ξ, ω)). The confidence region as-

sociated with the probability level Pc is delimited

by the upper envelope dB+
j (ξ, ω) and the lower en-

velope dB−
j (ξ, ω) such that Proba{dB−

j (ξ, ω) <

dBj(ξ, ω) ≤ dB+
j (ξ, ω)} ≥ Pc in which dB+

j and

dB−
j are constructed by using the Tchebychev in-

equality and which are such that dB−
j (ξ, ω) =

2dB0
j (ξ, ω)− dB+

j (ξ, ω) and dB+
j (ξ, ω) = log10(

m1j(ξ, ω)+aj(ξ, ω)) in which dB0
j (ξ, ω) = log10(

m1j(ξ, ω)) and aj(ξ, ω) = σj(ξ, ω)/(
√

1 − Pc).

The probability model of random matrices [Mn],
[Dn] and [Kn] are defined in references [8-10]. The
probability model of random variable W is con-

structed by using Jayne’s maximum entropy princi-

ple with the constraints defined by Eqs. (15) and

(16). If Dℓ is a bounded interval of  such that

Dℓ = [aℓ, bℓ] then it can be shown that, for all

1 ≤ ℓ ≤ ν, the probability density function pWℓ
(w)

of random variable Wℓ is written as

pWℓ
(w) = ![aℓ,bℓ](w)

kℓ

αℓ(kℓ)
e−kℓw , (22)

in which !B(ω) is is the indicatrix function of the
set B and where the positive real kℓ is such that

(wℓkℓ−1) αℓ(kℓ)−kℓβℓ(kℓ) = 0 in whichαℓ(k) =
e−aℓk − e−bℓk and βℓ(k) = aℓ e−aℓk − bℓ e−bℓk. If

there exists a real aℓ such that Dℓ = [aℓ, +∞[, then
it can be shown that

pWℓ
(w) = ![aℓ,+∞[(w)

e−(w−aℓ)/(w
ℓ
−aℓ)

wℓ − aℓ
. (23)

If the additional constraintE{(Wℓ−aℓ)
−2} < +∞

is introduced, then the probability density function

pWℓ
(w) is such that

pWℓ
(w) = ![aℓ,+∞[(w)×CWℓ

×(w−aℓ)
(1−δ2

ℓ )/(δ2
ℓ )

× e−(w−aℓ)/((w
ℓ
−aℓ) δ2

ℓ ) , (24)

in which

CWℓ
= (wℓ δ2

ℓ − aℓ δ2
ℓ )

− 1

δ2
ℓ /Γ(

1

δ2
ℓ

) , (25)

where the real parameter δℓ > 0 allows the disper-

sion of random variable Wℓ to be fixed. Let σℓ be

the standard deviation of random variable Wℓ. It

can be shown that δℓ = σℓ/|wℓ − al|.
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4. MULTISUPPORTED REACTOR COOLANT

SYSTEM SUBJECTED TO SEISMIC LOADS

The structure under consideration is a typical four

loops reactor coolant system [11] (see Fig. 1). Each

loop is constituted of a reactor, a reactor coolant

pump and a steam generator (see Fig. 2). These

three elements are connected to each other by three

primary coolant pipes: a hot leg which links the

reactor with the steam generator, a cold leg which

links the reactor with a reactor coolant pump and

an intermediate leg which links the reactor coolant

with and the steam generator. The structure is mul-

tisupported with 36 supports. Its supports are con-

stituted of anchors located under the reactor coolant

pumps, the steam generators and the cold legs. Due

to seismic loads, the displacement field of all the 36

supports are constrained by time-dependent Dirich-

let conditions (mesh nodes 1 of Fig. 2).

The vibrations of each steam generator (see Fig. 3)

are limited by three elastic stops located at their

connection point with the intermediate leg and the

hot leg (mesh nodes 3 of Fig. 3) and by four elastic
stops located at the middle of each steam generator

(mesh nodes 2 of Fig. 3). These elastic stops induce
nonlinear restoring forces. Futhermore, each elastic

stops is subjected to seismic load and consequently,

at each stop, the displacement is constrained by a

time-dependent Dirichlet condition. The mean fi-

nite element model of the reactor coolant system is

composed of beam finite elements. Let jstop be the

DOF number corresponding to the horizontal trans-

lation of the steam generator mesh node B which

is close to four stops (see Figs.1 to 3). Let jobs

be the DOF number corresponding to the horizontal

translation of the node A (see Figs. 1 and 2).

B

A

Figure 1. Four loops reactor coolant system.

1

A1 1

B

Figure 2. One loop : one reactor, one reactor coolant
system, one steam generator and three coolant pipes.

33

3

2

22

2

B

Figure 3. Steam generator.

1 10 100
−1

−0.5

0

0.5

1

1.5

2

Figure 4. Normalized response spectrum of the mean
reduced matrix model of the nonlinear dynamical system
for DOF number jstop
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Figure 5. Normalized response spectrum of the mean
reduced matrix model of the nonlinear dynamical system
for DOF number jobs. The horizontal axis in log scale
correspond to the frequency (in Hz).

Figure 4 to 5 show the normalized response spectra

of the mean reduced matrix model of the nonlinear

dynamical system for DOF number jstop (Fig 4) and

for DOF number jobs (Fig. 5).

The dispersions of random matrices [Mn], [Dn] or
[Kn] are controlled by parameters δM , δD and δK .

The stochastic convergence analysis is performed

for n ≥ 5 which yields n0 = 5. Consequently,

parameters δM , δD and δK are such that

0 < δM , δD, δK < 0.9258 =

√

n0 + 1

n0 + 5
. (26)

Data uncertainties are relative to the stiffnesses of

the stops whose probabilistic models are defined

by Eqs.(24) to (25). Parameters {Wℓ}1≤ℓ≤ν corre-

spond to the 28 stiffnesses of the 28 elastic stops.

Therefore, each parameter belongs toDℓ = [0, +∞[.
Since the structure ismultisupported and the number

of nonlinear elastic stops is large, then the solution

is very sensitive to the value of the time-step size

∆t of the time integration scheme. Time-step size
∆t has the same value for all n ∈ {5, 50, 100, 200}.
For each sample θk, Eq.(8) is solved by using the

Euler explicit step-by-step integration scheme with

∆t = 1/25000s and for a time duration T =
15s. The Monte-Carlo numerical simulation is per-

formed with ns = 700 samples with a finite ele-

ment code [12]. Figure 6 shows the graphs of the

functions ns 7→ log10{Convjobs
(ns, n)} for n =

{5, 50, 100, 200} and for δM = δD = δK = 0.2
and δ1 = . . . = δ28 = 0.2. It can be seen that con-
vergence with respect to n and ns is obtained for

n = 100 and ns = 500. Figures 7 to 10 show the

confidence region associated with the probability

level Pc = 0.95 for ns = 700, n = 200, ξ = 0.001.

Figures 7 and 9 are relative to DOF jstop and Figs.

8 and 10 are relative to DOF jobs.

0 50 100 150 200 250 300 350
3.4

3.45

3.5

3.55

3.6

3.65

3.7

Figure 6. Graphof functionns 7→ log10{Convjobs
(ns, n)}

for n = 5 (upper solid lines), n = 50 (thick dotted line),
n = 100 (lower thin solid line) and n = 200 (lower
thick solid line).

Figures 7 and 8 correspond to a nonparametric and a

parametric level of uncertainties equal to 0.2 while
Figs. 9 and 10 correspond to a nonparametric level

of uncertainties equal to 0.00002 and a parametric

level of uncertainties equal to 0.

5. COMMENTS AND CONCLUSIONS

A nonparametric-parametric probabilistic model of

random uncertainties has been developed for non-

linear dynamical system in the time domain. A

nonparametric probabilistic model of random un-

certainties is used for modeling the random uncer-

tainties concerning the linear part of the system.

The random uncertainties of the nonlinear part is

modeled by the use of a parametric approach.

From the analysis of the normalized response spec-

tra, it can be seen that a DOF close to stops is sen-

sitive to the parametric uncertainties while a DOF

not close to a stop is sensitive to the nonparametric

uncertainties. In addition, it should be noted that the

responses are always very sensitive to uncertainties.

For almost zero level of uncertainties, the random

responses look like to chaotic responses due to a

large number of shocks along the structure. Con-

sequently, it is necessary to model the uncertainties

for such a nonlinear dynamical system in order to al-

low an efficient engineering design process of such

a structure to be performed.
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Figure 7. Confidence region of DOF number jstop with
a nonparametric and a parametric level of uncertainties
equal to 0.2. The upper line corresponds to the upper
envelope dB+

j
(ξ,ν) and the lower line corresponds to the

lower envelope dB−
j

(ξ,ν). The frequency ν is represented

on the horizontal axis in log scale (in Hz).
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Figure 8. Confidence region of DOF number jobs with
a nonparametric and a parametric level of uncertainties
equal to 0.2. The upper line corresponds to the upper
envelope dB+

j
(ξ,ν) and the lower line corresponds to the

lower envelope dB−
j

(ξ,ν). The frequency ν is represented

on the horizontal axis in log scale (in Hz).

For such a dynamical system, the nonparametric-

parametric approach allows the level of uncertain-

ties to be extended and is well adapted to this kind

of problem.
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