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ABSTRACT: This paper is devoted to numerical models for prediction of transient dynamical response induced
by shocks upon structures with areas of non-homogeneous random uncertainties. The usual numerical methods
for analyzing such structures in the LF and MF ranges employ reduced matrix models using the elastic modes.
The contribution of the higher modes is very sensitive to the modeling errors. Here, a recent nonparametric
probabilistic method is applied to construct the random uncertainties matrix model. The paper presents an
extension of the nonparametric method to the case of complex structures, modeled by a dynamic substructuring
method, in which every substructure gets its own uncertainty level. Examples of numerical prediction of the
confidence regions for transient responses are compared with experimental measurements providing a validation
of the presented approach.

1 INTRODUCTION

Shock-induced transient dynamics phenomena are
widely investigated in the literature. Two kinds of
approaches are generally used: either the Finite Ele-
ments methods (FEM) (e.g. [1-4]) or the Statistical
Energy Analysis method (e.g. [5,6]). The present pa-
per concerns transient phenomena for which elastic
eigenmodes can be used for describing the low- and
the medium-frequency ranges. In this framework,
structures made up with non-homogeneous areas are
examined (e.g. two plates attached with a complex
junction).

The FE model of such mechanical systems are
strongly uncertain due to the model uncertainties (for
instance, modeling a complex junction by a simple
subsystem) and due to the data uncertainties of the
constructed model (geometry, boundary conditions,
constitutive equations). In order to improve the re-
liability of the predictions, the model uncertainties
and the data uncertainties have to be considered. In
structural dynamics, uncertainties are usually taken
into account through parametric models (e.g. [7,8]).
Recently, a new nonparametric probabilistic model
of random uncertainties has been introduced [9] in
structural dynamics. This nonparametric approach
allows to handle the modal uncertainties and the data
uncertainties.

In the case of nonhomogeneous uncertainties, im-
plementing the nonparametric model need a dynamic
substructuring method (for example, the Craig and

Bampton method [10]). In this context, works have
been carried out in the field of harmonic responses
[11]. Here the nonparametric approach is extended to
the computation of shock-induced transient responses
for structures with spatially nonhomogeneous uncer-
tainties and the developed numerical model is com-
pared with an experimentation [12] for validation.

The steps of this research are : developing a mean
model by dynamic substructuring, implementing the
probabilistic model from the mean model, analyzing
the random responses and comparing them with ex-
perimental results.

2 EQUATIONS OF THE MEAN MODEL IN
DYNAMIC SUBSTRUCTURING

Let us consider the transient response of a fixed struc-
turewith a linear constitutive equation, slightly damp-
ed, whose boundary ∂ is subjected to an impulsive
external load fext(t). There is a Dirichlet condition
relative to the displacements u = 0 on the part ∂ 0

of boundary ∂ . Here, the dynamic subtructuring
method employed is the fixed interface component
mode synthesis method (Craig and Bampton [10]).
The extension to the case of a free structure is straight-
forward. Structure  is divided into Ns substructures r, where r = 1, .., Ns. One or several substructures are
fixed on a part of their boundary ∂ r. Every substruc-
ture is connected through an interface Σr to one (or
more) substructure. The equation of the mean model
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of substructure  r is

[!r]Ü
r
(t) + ["r]U̇

r
(t) + [#r]Ur(t) = Fr(t), t ≥ 0

U̇
r
(0) = Ur

1, Ur(0) = Ur
0,

(1)

where Ur(t) is the $nr

-valued vector of the nr degrees
of freedom (DOF), Fr(t) is the $nr

-valued vector of
the external and coupling forces and [!r], ["r] and [#r]

are the mass, damping and stiffness matrices which
are symmetric. Matrix [!r] is positive definite and
matrices ["r] and [#r] are positive definite (fixed sub-
structure) or positive semidefinite (free substructure)
depending on the case.The vectors Ur(t) and Fr(t) are
partitioned into nr

i inner DOFs and nΣ = nr − nr
i cou-

pling DOFs,

Ur(t) =

[

Ur
i (t)

Ur
Σ(t)

]

, Fr(t) =

[

Fr
i (t)

Fr
j(t) + Fr

Σ(t)

]

, (2)

where F r
Σ(t) is relative to the coupling forces upon the

coupling interface Σr, Fr
i (t) and F

r
j(t) are due to the

external forces applied. The equation of motion for
the reduced matrix model of substructure  r can be
written as,

[Mr]

[

q̈
r(t)

Ü
r

Σ(t)

]

+ [Dr]

[

q̇
r(t)

U̇
r

Σ(t)

]

+ [Kr]

[

qr(t)
Ur

Σ(t)

]

=

[

F
r
Nr(t)

F
r
Σ(t)

]

,

(3)

with the reduced matrices [M r], [Dr] and [Kr] are such
that

[Mr] = [Hr]T [!r][Hr] ,

[Dr] = [Hr]T ["r][Hr] ,

[Kr] = [Hr]T [#r][Hr] ,

(4)

where qr(t) is the vector of the generalized DOFs rel-
ative to the N r first fixed interface eigenmodes, Ur

Σ(t)

are the coupling DOFs and [Hr] is the transformation
matrix expressed bymeans of the (nr

i ×N r)modal ma-
trix [Φr] and of the (nr

i × nΣ) matrix [Sr
Σ] of the static

boundary functions,

[

Ur
i (t)

Ur
Σ(t)

]

= [Hr]

[

qr(t)
Ur

Σ(t)

]

and [Hr] =

[

[Φr] [Sr
Σ]

0 [In
Σ
]

]

. (5)

The reducedmatrixmodels of the substructures are
classically assembled using the continuity of displace-
ments and the equilibrium of the interacting forces at
the interfaces.

3 NONPARAMETRIC PROBABILISTIC MODEL

The physical structure exhibits uncertainty areas of
various levels (nonhomogeneous uncertainties). Con-
sequently, this structure is divided into substructures

such that each ones can be considered as homoge-
neous with respect to its level of uncertainties. Thus
the uncertainty level differs from one substructure to
another one. The nonparametric probabilistic model
of uncertainty is implemented independently for each
substructure.

3.1 Construction principle of a nonparametric
model of random uncertainties for each
substructure

The nonparametric approach [9] proposes to directly
construct the probabilistic model of the generalized
random matrices for each substructure. Let Ur(t) be
the random vector of the nr DOFs of substructure  r.
Vector Ur(t) can be written as,

Ur(t) =

[

Ur
i (t)

Ur
Σ(t)

]

= [Hr]

[

Qr(t)
Ur

Σ(t)

]

, (6)

where Qr(t) is the $Nr

-valued random vector of the
generalized DOFs. The stochastic process Ur(t) in-
dexed by [0, +∞[ with values in $nr

verifies

[Mr]

[

Q̈r(t)
Ür

Σ(t)

]

+ [Dr]

[

Q̇r(t)
U̇r

Σ(t)

]

+ [Kr]

[

Qr(t)
Ur

Σ(t)

]

=

[

F
r
N (t)

F
r
Σ(t)

]

,

(7)

where [Mr] is a random reduced matrix with values
in the set !+

nr($) of all the symmetric positive-definite
(nr×nr) real matrices (nr = N r +nr

Σ) and, [Dr] and [Kr]

are random reduced matrices with values in !+
nr ($)

(for a fixed substruture) or in the set !+0
nr ($) of all the

symmetric positive-semidefinite (nr×nr) realmatrices
(for a free substructure). In equation (7), we have
F

r
Nr(t) = [Φr]TFr

i (t) and the random vector F
r
Σ(t) =

[Sr
Σ]TFr

i (t)+Fr
j(t)+Fr

Σ(t), with Fr
Σ(t) the random vector

of the coupling forces at the interface Σr.
By construction of the nonparametric model, we

have

E{[Mr]} = [ Mr ] ,

E{[Dr]} = [ Dr ] ,

E{[Kr]} = [ Kr ] ,

(8)

where E is the mathematical expectation.
In the next section, we give a short description of

the probabilistic model for random matrices [Mr], [Dr]

and [Kr].

3.2 Probabilistic model for the matrices

Let [Ar] be [Mr], [Dr] or [Kr]. If matrix [Ar] is real pos-
itive definite, then an upper triangular (nr × nr) real
matrix [LAr ] exists such as [Ar] = [LAr ]T [LAr ]. The ran-
dom matrix is then written as [Ar] = [LAr ]T [GAr ][LAr ]

with [GAr ] an !+
nr ($)-valued random matrix whose

probability distribution is defined in reference [9].
If matrix [Ar] is with a rank equal to µr < nr, then

a (µr × nr) real matrix [LAr ] exists such as [Ar] =
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[LAr ]T [LAr ]. For instance, this matrix [LAr ] can be ob-
tained from the eigenvectors related to the non-zero
eigenvalues of matrix [LAr ], but some other construc-
tion exist. In such a case, random matrix [Ar] can also
be written as [Ar] = [LAr ]T [GAr ][LAr ]where [GAr ] is the +

µr (!)-valued random matrix defined above.
The probability distribution of randommatrix [GAr]

depends only on a real parameter δAr which is inde-
pendent of dimension nr and of frequency ω, and
which allows the dispersion of random matrix [Ar] to
be controlled. This parameter is defined by

δAr =

{

E{‖[GAr ] − [GAr ]‖2
F}

‖[GAr ]‖2
F

}1/2

such that 0 < δAr <

√

n0 + 1

n0 + 5
,

(9)

where n0 is an integer such as 1 ≤ n0 ≤ nr and with
‖[B]‖2

F = tr([B][B]T ). The dispersion of random ma-
trices [Mr], [Dr] and [Kr] are then controlled by the
parameters δMr , δDr and δKr which are independent
of nr and chosen according to inequality (9).

The probabilistic model of the entire structure is
obtained by the assemblage of the stochastic sub-
structures and the random unknown vactor is Ue =

(Q1(t), ...,QNs(t),UΣ(t)).

4 NUMERICAL ANALYSIS

The analysis and the comparisons of the numerical
model developed with the experiments are carried out
by means of the Shock Response Spectra [13] cal-
culated for the acceleration reponses and denoted by
Sa(ξ, ω).

In presence of uncertainties, the transient response
is a time stochastic process and the SRS’s are stochas-
tic process indexed by frequency. The stochastic so-
lution of such a problem can be formally written,
but the solution involves high-dimensional multiple
integrals which can only be computed by the Monte-
Carlo method. Then a direct Monte-Carlo numerical
simulation of the stochastic equations is rather per-
formed. Each realization of the random matrices is
constructed according to the probabilistic model de-
scribed in § 3.1 and § 3.2 and using the algorithm
specified in [9]. The transient responses for every re-
alization is carried out by employing an uncondition-
ally stable step-by-step numerical integration scheme
(Newmark method). The probabilistic magnitudes
describing the stochastic SRS are estimated by the
usual mathematical statistics.

4.1 SRS analysis of responses

Every SRS is computed with a damping ratio ξ =

0.001. The SRS are computed by using the New-
mark integration scheme of the equation of motion.
The SRS’s scale is normalized with respect to g =

9.81m.s−2. We then introduce s(ω) = Sa(ξ, ω)/g. The
results of the random model are displayed by an SRS

confidence region described with an upper (S+) and
a lower (S−) envelope of the SRS related to a given
probability level Pc = 0.95. Let m1(ω) = E{s(ω)},
m2(ω) = E{s2(ω)} and σ(ω) =

√

m2(ω) − m2
1(ω) be the

moments estimated by the usual mathematical statis-
tics.

Three curves are defined: (1)S0(ω) = 10log10(m1(ω)),
which is related to the mean function of the stochas-
tic response, (2) S+ = 10log10

(

m1(ω) + σ(ω)
√

1−Pc

)

, which

is the the upper envelope of the SRS, and (3) S− =

2S0 − S+, which is the lower envelope of the SRS.

5 EXPERIMENTAL AND NUMERICAL
MODELS

5.1 Experimental model description [12]

It consists of two 3mm-thick Dural plates connected
together through a complex junction and excited by
an impulsive load over an LF and an MF range. Plate
I is 0.4mwidth and 0.6m length, plate II is 0.5mwidth
and 0.6m length. The complex junction is constituted
of 2 smaller plates (2mm-thick, 0.14m width, 0.6m
length), tightened by 2 lines of 20 bolts (Figure 1).
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Figure 1. geometry of the experimental configuration

The experimental data base ismadewith 29 accelerom-
eters for 21 experimental configurations correspond-
ing to 21 random distributions of bolt-prestresses hav-
ing the same mean values [12]. The experiment con-
ditions correspond to a free-free structure.
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Two transient loads are presented in this paper, one
corresponding to the low-frequency band [200-400]
Hz (see Figure 2) and the other one to the medium-
frequency band [1000-1200] Hz (see Figure 3).
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Figure 2. excitation load in [200-400] Hz
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Figure 3. excitation load in [1000-1200] Hz

The experimental results are expressed in terms of
SRS and are compared with the confidence regions
built up from the numerical stochastic model.

5.2 Numerical model description

5.2.1 Finite Element model of the mean system
The three substructures of the mean model are rep-
resented by a uniform FE model of 4 nodes plates
elements following the Kirchhoff thin plate assump-
tions (e.g. DOFs Tz, Rx and Ry are retained). The
main structure consists of the 3 substructures (Figure
1): there are 6222 DOFs in plate 1, 2745 DOFs in
the complex junction and 8052 in plate 2, e.g. a to-
tal amount of more than 16000 DOFs. Plates 1 and
2 are isotropic whereas the complex junction needs
an orthotropic desription. The updating of the first 3
modes and the associated damping ratios of the mean
FE model has been performed using experiments.

5.2.2 Damping model of the mean system

The damping ratios ξ of the mean Fe model has
been deduced from the measurements and leads to
ξ = 0.0021. The dampingmatrix of themean FEmodel
has then been chosen [12] for each substructure  r as,

[!r] =

N
∑

γ=1

2 ξγ
ωγ

µγ
["r]Vr

γ V
r
γ

T ["r]

where N is such that 1 ≤ N ≤ nr and where

Vr
γ =

[

Vr
γi

Vr
γΣ

]

, ωγ and ξγ

are respectively the eigenvector, the natural frequency
and the damping ratio relative to the γth free interface
eigenmode. In order to make the computation of
the damping matrix efficient, we have chosen N =

N r + nΣ, ξγ = ξ, µγ = 1 and we directly construct the
reduced damping matrix such that

[Dr] =

N
∑

γ=1

2 ξ ωγ Cγ Cγ
T with Cγ = [Hr]T ["r]Vr

γ .

6 NUMERICAL RESULTS

In order to evaluate the role played by the nonho-
mogeneity of uncertainties which are assumed to be
larger in the complex junction, a sensitivity analysis
with respect to parameters δr has been carried out.
Below, we limit the presentation to a sampling of the
values used. The results displayed correspond to the
following values of the dispersion parameters:

δCJ
K = δCJ

D = 0.5, δCJ
M = 0 and δplates

K = 0.15, δplates
D = 0.3,

δplates
M = 0 for [200-400] Hz and δCJ

K = δCJ
D = 0.8,

δCJ
M = 0 and δplates

K = 0.15, δplates
D = 0.3, δplates

M = 0 for
[1000-1200] Hz.

The mass of the mean model has been updated
with experiments and consequently, there are no er-
rors on the mass matrices. Monte-Carlo simulations
have been carried out for a sufficiently high amount
of realizations (500 to 1000), depending on the un-
certainty level assigned. Convergence anlysis with
respect to the number of eigenmodes ν in the reduced
matrixmodels have been performed aswell. As a con-
sequence, the results are displayed for the 2 following
cases:

ν = 48 = 20(N1)+2(N2)+26(N3) for [200-400] Hz and
ν = 125 = 50(N1)+8(N2)+67(N3) for [1000-1200] Hz.

Figures 4 and 5 show the results obtained with
these values. The thick dashed lines represent the
mean model. The solid lines are related to the 21 ex-
perimental configurations. The gray region is the 95%
confidence regions of the random responses, com-
puted with the nonparametric model of uncertainties.
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Figure 4. SRS at the observation points 1,2 and 4 for an impulsive
load in the band [200-400] Hz with:
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K = 0.15, δplates
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M = 0
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Figure 5. SRS at the observation points 1,2 and 3 for an impulsive
load in band [1000-1200] Hz with:

δplates
K = 0.15, δplates

D = 0.3, δplates
M = 0

δCJ
K = δCJ

D = 0.8, δCJ
M = 0

7 CONCLUSIONS

About uncertainty modeling, the comparisons of the
developed model with the experiments show the ca-
pability of the nonparametric probabilistic approach
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to predict the shock-induced transient response in the
LF and the MF ranges.About mechanical considera-
tion, in spite of a rather large number of DOFs used
in the mean FE model, significant errors appears be-
tween experiments and numerical prediction. These
errors are mainly due to the simplified model used
for modeling the complex junction. It implies that
model uncertainties exist in the mean FE model. The
nonparametric approach of nonhomogeneous uncer-
tainties proposed in this paper allows the robustness of
the numerical prediction to be increased. The compar-
isons of the experiments with the confidence region
predicted by this probabilistic approach is satisfying
for an LF and an MF frequency band. A general
methodology to estimate the values of the dispersion
parameters is in progress.
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