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ABSTRACT

This paper presents a novel probabilistic model of random uncertainties for complex dynamical system

in the medium-frequency (MF) range. This approach combines a nonparametric probabilistic model of

random uncertainties for the reduced matrix models in structural dynamics with a reduced matrix model

method in the MF range. The theory is presented, the random energy matrix relative to a given MF band

is studied and a simple numerical example is analyzed.

INTRODUCTION

In structural dynamics, it is known that the higher the eigenfrequency of a structural mode, the lower

its accuracy because the uncertainties in the model increase. The effects of uncertainties (geometrical

parameters; boundary conditions; mass density; mechanical parameters of constitutive equations; struc-

tural complexity; interface and junction modeling; etc.) increase with the frequency and it should be kept

in mind that the mechanical model and the finite element model of a complex structure tend to be less

reliable in predicting the higher structural modes. Consequently, for the medium-frequency dynamics,

random uncertainties in the mechanical model have to be taken into account in order to improve the

efficiency and the robustness of the medium-frequency finite element models. An important aspect of

the medium-frequency (MF) domain is the construction of an efficient reduced matrix model of the

continuous dynamical system. For low-frequency (LF) dynamic analysis in structural dynamics, reduced

matrix models are a very efficient tool for constructing the dynamical response (see for instance Clough

& Penzien, 1975). These techniques correspond to a Ritz-Galerkin reduction of the structural-dynamics

model using the structural modes corresponding to the lowest eigenfrequencies of the associated con-

servative dynamical system. Unfortunately, this modal method which is very efficient in the LF domain

cannot be used in the MF domain for general three-dimensional dynamical systems. In this context, a

reduced matrix model in the MF range for general dissipative structural-dynamics systems was proposed

by Soize (1998), based on the use of the dominant eigensubspace of the mechanical energy operator

related to the MF band as the projection basis.

Recently, a parametric approach of random uncertainties in MF dynamics has been proposed by

Sarkar & Ghanem (2001) using the reduced matrix model developed by Soize (1998) combined with the

stochastic finite element method (Ghanem & Spanos, 1991), consisting in a stochastic reduction of the

random uncertainties utilizing the Karhunen-Loeve expansion and solving the reduced random matrix

equation with the polynomial chaos expansion).

In this paper, we propose a novel probabilistic model of random uncertainties for the MF dynamics

resulting from the use of the nonparametric probabilistic model of random uncertainties for the reduced

matrix models in structural dynamics (Soize, 2000 & 2001) and combined with the reduced matrix model

method in the MF range developed in (Soize, 1998). The theory is presented, the random energy matrix

C. Soize, the 5th Int. Conf. of Stochastic Structural Dynamics (SSD03), Hangzhou, China, May 26-28, 2003 1



relative to a given MF band is studied and a simple numerical example is analyzed and shows the high

sensitivity of MF dynamics to uncertainties.

THEORY

Mean Model of the Dynamical System and its Mean Finite Element Model

In the medium-frequency bandB = [ωmin , ωmax]with ωmin ≫ ωmax−ωmin > 0, the mean finite element

model of linear vibrations of a viscoelastic bounded structure (fixed or free) around a position of static

equilibrium taken as reference configuration without prestresses is written as

(

−ω2 [ ] + iω [!(ω)] + ["(ω)]
)

y(ω) = f(ω) , ω ∈ B , (1)

in which y(ω) = (y
1
(ω), . . . , y

m
(ω)) is the #m-vector of the m DOFs (displacements and/or rotations)

and f(ω) = (f
1
(ω), . . . , f

m
(ω)) is the #m-vector of the m inputs (forces and/or moments). The mean

mass matrix [ ] is a positive-definite symmetric (m×m) real matrix. The mean damping and stiffness

matrices [!(ω)] and ["(ω)] are symmetric (m × m) real matrices, depend on ω (viscoelastic structure),

are such that [!(−ω)] = [!(ω)] and ["(−ω)] = ["(ω)], and are either positive definite (fixed structure)

or positive semidefinite(free structure). In the case of a free structure, for all ω in B, (1) matrices [!(ω)]

and ["(ω)] have the same null space having a dimension mrig such that 0 < mrig ≤ 6 and spanned by

the rigid body modes {y1, . . . , ymrig} and (2) external load vector f(ω) is in equilibrium, i.e. is such that

< f(ω) , yα >= 0 for allα in {1, . . . , mrig}, inwhich, for all u and v in#m,<u , v>= u1 v1+. . .+um vm.

For all ω in B, Eq. (1) has a unique solution y(ω) = [$(ω)] f(ω) in which [$(ω)] is the matrix-valued

FRF (frequency response function) defined by [$(ω)] = [%(ω)]−1 where [%(ω)] is the dynamic stiffness

matrix such that [%(ω)] = −ω2 [ ] + iω [!(ω)] + ["(ω)]. For a fixed or a free structure, and for every

ω fixed in B, the sparse complex matrix [%(ω)] is invertible.

Mean Reduced Matrix Model Adapted to an MF Band

The energy matrix [&B] (twice the kinetic energy) of the mean FEM in MF band B is the positive-

definite symmetric (m × m) real matrix which is written (see Soize, 1998) as

[&B] =
1

π

∫

B

ω2 ℜe {[$(ω)]∗[ ][$(ω)]} dω , (2)

whereℜe is the real part of complex number and where [$(ω)]∗ = [$(ω)]
T
is the adjoint matrix. It should

be noted that [&B] depends onMFbandB, but does not depend on the external load vector. The eigenvalue

problem for energy matrix [&B] is written as [&B ] P = λ P. The normalization condition of the real

eigenvectors is chosen as ‖P‖2 =<P , P>= 1. The dominant eigensubspace of dimension n is spanned

by the real eigenvectors P1, P2, . . . , Pn associated with the n highest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Introducing the rectangular (m × n) real matrix [PB
n ] = [P1 . . . , Pn] whose columns are constituted of

eigenvectors P1, . . . , Pn and introducing the diagonal square (n × n) real matrix [Λn] whose diagonal

entries are λ1, . . . , λn, the eigenvalue problem for constructing the dominant eigenspace of energy matrix

[&B ] is written as

[&B] [PB
n ] = [PB

n ] [Λn] , [PB
n ]T [PB

n ] = [In] , (3)

where [In] is the (n × n) identity matrix. Matrix [PB
n ] is calculated by solving Eq. (3). For the

computation, matrix [&B] is not directly calculated by Eq. (2) using a direct calculation of matrix-valued

frequency response function {[$(ω)], ω ∈ B}. An indirect procedure based on the substace iteration

method coupled with a solution method in the time domain (see Soize, 1998) is used. Such a procedure

does not use the knowledge of complex matrix [$(ω)] which is generally full.
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The mean reduced matrix model is obtained in projecting the mean finite element model defined by

Eq. (1) on the dominant eigensubspace of energy matrix [ B ]. The approximation yn(ω) of y(ω) is then

written as

yn(ω) = [PB
n ] qn(ω) , (4)

in which, for all ω fixed in B, the !n-vector qn(ω) of the generalized coordinates is the unique solution

of the mean reduced matrix equation,

(

−ω2 [ Mn ] + iω [Dn(ω)] + [Kn(ω)]
)

qn(ω) = Fn(ω) , ω ∈ B , (5)

with Fn(ω) = [PB
n ]T f(ω) ∈ !n and where the mean generalized mass, damping and stiffness matrices

are the positive-definite symmetric (n × n) real full matrices such that [ Mn ] = [PB
n ]T [" ] [PB

n ],

[Dn(ω)] = [PB
n ]T [#(ω)] [PB

n ] and [Kn(ω)] = [PB
n ]T [$(ω)] [PB

n ].

Nonparametric Model of Random Uncertainties in the MF Band

Using the idea of the nonparametric model of random uncertainties introduced by Soize (2000), the

principle of construction of the nonparametric model of random uncertainties in the MF band consists

in modeling the generalized mass, damping and stiffness matrices of the mean reduced model defined

by Eqs. (4) and (5) by random matrices [Mn], [Dn(ω)] and [Kn(ω)]. Consequently, the nonparametric

model of random uncertainties in the MF band is written as

Yn(ω) = [PB
n ] Qn(ω) , (6)

inwhich, for allω fixed inB, the!n-valued randomvariableQn(ω) of the randomgeneralized coordinates

is the unique solution of the random reduced matrix equation,

(

−ω2 [Mn] + iω [Dn(ω)] + [Kn(ω)]
)

Qn(ω) = Fn(ω) , ω ∈ B . (7)

From (Soize 2000 & 2001), these random matrices are written as

[Mn] = [LMn
]T [GMn

] [LMn
] , (8)

[Dn(ω)] = [LDn
(ω)]T [GDn

] [LDn
(ω)] , (9)

[Kn] = [LKn
(ω)]T [GKn

] [LKn
(ω)] , (10)

in which the upper triangular (n × n) real matrices [LMn
], [LDn

(ω)] and [LKn
(ω)] correspond to the

Chowlesky factorization [ Mn ] = [LMn
]T [LMn

], [Dn(ω)] = [LDn
(ω)]T [LDn

(ω)] and [Kn(ω)] =

[LKn
(ω)]T [LKn

(ω)] of positive-definite symmetric (n× n) real matrices [ Mn ], [Dn(ω)] and [Kn(ω)]

respectively. Random matrices [GMn
], [GDn

] or [GKn
] are independent and the dispersion of random

matrices [GMn
], [GDn

] and [GKn
] are controlled by the positive real parameters δM , δD and δK which

are independent of dimension n and do not depend on frequency ω. If An is Mn, Dn or Kn, then

random matrix [GAn
], with dispersion parameter δA, is such that [GAn

] = [LAn
]T [LAn

], in which [LAn
]

is an upper triangular random (n × n) real matrix such that the random variables {[LAn
]jj′ , j ≤ j′} are

independent and such that

(1) for j < j′, real-valued random variable [LAn
]jj′ is written as [LAn

]jj′ = σnUjj′ in which σn =

δA(n + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean and variance

equal to 1;

(2) for j = j′, positive-valued random variable [LAn
]jj is written as [LAn

]jj = σn

√

2Vj in which σn

is defined above and where Vj is a positive-valued gamma random variable whose probability density

function pVj
(v) with respect to dv is written as pVj

(v) = % +(v){Γ(n+1
2δ2

A

+ 1−j
2

)}−1 v
n+1

2δ2
A

− 1+j

2

e−v.
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Convergence Analysis of the Random Response and Random Energy Matrix

For every ω ∈ B, let Yn(ω) be the  n-valued second-order random variable which is the solution of

Eqs. (6) and (7), that is to say, the random response of the stochastic system subjected to the prescribed

external load. The norm of the  n-valued second-order stochastic process {Yn(ω), ω ∈ B} is defined by
|||Yn||| =

(

E{
∫

B
‖Yn(ω)‖2 dω}

)1/2
. From Eqs. (3) and (6), it can be deduced that |||Yn||| = |||Qn|||.

Consequently, the mean-square convergence with respect to n of the sequence of stochastic processes

{Yn(ω), ω ∈ B}n can be studied considering the mapping n 7→ |||Qn|||. Since |||Yn||| depends on the
prescribed external load, it is interesting to introduce the approximation [!n

B] of order n of the random

energy matrix relative to MF band B, which is independent of the prescribed external load. This is a

random positive semidefinite symmetric (m × m) real matrix defined (see Eq. (2)) by

[!n
B] = [PB

n ] [En] [PB
n ]T , [En] =

1

π

∫

B

ω2 ℜe {[Tn(ω)]∗[Mn][Tn(ω)]} dω , (11)

where [Tn(ω)] is the random symmetric (n × n) complex matrix defined by

[Tn(ω)] =
(

−ω2 [Mn] + iω [Dn(ω)] + [Kn(ω)]
)−1

. (12)

Let En be the trace of random energy matrix [!n
B]. Consequently, En is a positive-valued random variable

such that En = tr{[!n
B]} = tr{[En]} whose probability density function is the mapping e 7→ pEn

(e)

defined in "+ with values in "+. In the next Section, the convergence with respect to n of the sequence

of probability density functions {e 7→ pEn
(e)}n is studied.

APPLICATION

Mean Model of the Dynamical System and its Mean Finite Element Model

The mean model of the nonhomogeneous dynamical system is composed of a homogeneus thin plane

with two attached point masses and two springs. The thin plate is rectangular, homogeneous, isotropic

and located in the plane (Ox1, Ox2) of a Cartesian coordinate system (Ox1x2x3), in bending mode (the

outplane displacement is x3), with constant thickness 1 × 10−3 m, width along Ox2 is 0.40m, length

along Ox1 is 0.50m, mass density 7800 kg/m3 , Young’s modulus 2.1 × 1011 N/m2 and Poisson ratio

0.29 . This plate is simply supported on 3 edges and free on the fourth edge corresponding to x2 = 0

(see Figure 1). To this plate are attached (1) two point masses having a mass of 10 kg and 6 kg located

at points (0.15, 0.15, 0) and (0.31, 0.20, 0) respectively, and (2) two springs having a stiffness coefficient

k = 1.2090 × 109 N/m and k = 7.0893 × 108 N/m located at the same points that the point masses,

that is to say at points (0.15, 0.15, 0) and (0.31, 0.20, 0) respectively.

The mean finite element model of the plate is composed of a regular rectangular mesh with a constant

step size of 0.01m in x1 and x2 (41 nodes in the width, 51 nodes in the length). Consequently, all

the finite elements have the same size and each one is a 4-node square plate element. There are 2000

finite elements and m = 6009 degrees of freedom (x3-translations and x1- and x2-rotations). The

two first eigenfrequencies of the mean undamped dynamical system, calculated with the mean finite

element model, are 27.73Hz and 57.35Hz. There are 82 eigenfrequencies in the frequency band

[0 , 1400] Hz and respectively, 13, 20 and 11 eigenfrequencies in the frequency bands [1400 , 1600] Hz,

[1600 , 1900] Hz and [1900 , 2100] Hz. The medium-frequency band of analysis is defined as B =

2π × [1600 , 1900] rad/s. In the frequency domain, for all ω ∈ B, the prescribed external load vector

f(ω) ∈  m is written as f(ω) = Z in which the spatial part Z = (Z1, . . . , Zm) ∈ "m is independent

of ω and is such that Zj = 0 for all j in {1, . . . , m} except for the nine DOFs in x3-translations

corresponding to the nodes whose (x1, x2) coordinates are (0.21, 0.23), (0.21, 0.24), (0.21, 0.25), (0.22,

0.23), (0.22, 0.24), (0.22, 0.25), (0.23, 0.23), (0.23, 0.24) and (0.23, 0.25), for which Zj = 1. The
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damping matrix [ (ω)] of the mean finite element model depends on the frequency and is written as

[ (ω)] = 2 ξ ω [! ] in which ξ = 0.002. In the system, the observations are the three DOFs number

jobs1, jobs2 and jobs3 corresponding to the x3-translation of the mesh node located at points of coordinates

(0.22, 0.24, 0) (excitation central point), (0.31, 0, 0) (in the free edge) and (0.37, 0.15, 0) (inside the

plate) respectively.

x
2

x
1

Spring

Point mass

load
impulsive
External

Point mass

Springedge
supported

Simply Simply
supported
edge

Simply supported edge

Free edge
obs2

obs1

obs3

0.15

0.21

0.31

0.37

0
.1
50
.2
3

0
.2
0

O

Figure 1 Definition of the mean dynamical system.

Reference Solution for the Mean Model on a Broad Frequency Band

For the mean model, the reference solution is obtained by solving Eq. (1) with the direct frequency-

by-frequency method with 2100 sample points in the frequency band [0 , 2100] Hertz. Figure 2 shows

the graph of the function ω 7→ log10(‖ − ω2y(ω)‖). In this figure, it can be seen that frequency band
B = 2π × [1600 , 1900] rad/s belongs to the medium-frequency range.

Mean Reduced Matrix Model on MF Band B

The dominant eigensubspace of energy matrix ["B] relative to MF band B = [1600 , 1900] Hz is

calculated by solving the symmetric eigenvalue problem defined by Eq. (3) as explained above. The 50

highest eigenvalues are calculated. Figure 3 shows the graphα 7→ λα of the distribution of the eigenvalues

of ["B]. Horizontal axis is the rank α = 1, . . . , 50 of the eigenvalues. It can be seen the strong decrease

of eigenvalues when the order of the eigenvalues is greater than 20 allowing the construction of a mean

reduced matrix model having a small dimension.
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Figure 2 (left) Reference solution of the meanmodel. Graph of function ν 7→log10(‖−(2πν)2y(2πν)‖) on the frequency
band [0 , 2100] Hertz (horizontal axis).
Figure 3 (right) Graph α 7→ λα of the distribution of the eigenvalues of the energy matrix relative to band B =
[1600 , 1900] Hz for the mean dynamical system. Horizontal axis is the order α =1,..., 50 of the eigenvalues.

Stochastic System with Nonparametric Model of Random Uncertainties

It is assumed that the dispersion parameterswhich control themass, damping and stiffness uncertainties

are such that δM = δD = δK = 0.02. The Monte Carlo numerical simulation is used for solving random

Eqs. (6) and (7). Let ns be the number of simulations. Since |||Yn||| = |||Qn|||, norm |||Yn||| can
be estimated by Conv(ns, n) =

{

1
ns

∑ns

k=1

∫

B
‖Qn(ω, θk)‖2 dω

}1/2

in which θ1, . . . , θns
correspond

to the ns realizations. Probability density function e 7→ pEn
(e) of random variable En is estimated by

the usual method. Let be Yn(ω) = (Y n
1 (ω), . . . , Y n

m(ω)) and let S(ω) = | − ω2Y n
j (ω)| be the random

response corresponding to the acceleration of DOF j. Let dB(ω) be the random variable defined by

dB(ω) = log10(S(ω)). For a given probability level Pc (for instance Pc = 0.95), the confidence region

Proba{dB−(ω) < dB(ω) ≤ dB+(ω)} = Pc of stochastic process {dB(ω), ω ∈ B} is defined by the lower
and upper envelopes dB−(ω) and dB+(ω) such that dB+(ω) = log10

(

E{S(ω)} + σ(ω)/
√

1 − Pc

)

and

dB−(ω) = 2 dB0(ω) − dB+(ω) in which dB0(ω) = log10(E{S(ω)}) and where σ(ω) is the standard

deviation of S(ω).
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Figure 4 Convergence analysis. (Left): for n = 35, graph of function ns 7→ log10{Conv(ns, n)}. (Right): for

ns = 10000, graph of function n 7→ log10{Conv(ns, n)}
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Figures 4 (left and right) are related to the convergence of |||Yn||| with respect to dimension n and to

the number ns of realization. It can be seen that convergence is reached for n = 35 and ns = 10000.

Figure 5 on the left is related to the convergence of the probability density function e 7→ pEn
(e) with

respect to dimension nwhen ns = 10000. It should be noted that convergence is also reached for n = 35.

Figure 5 on the right shows the graph of e 7→ pEn
(e) for n = 35 and ns = 10000 (it is not a Gaussian

pdf).
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Figure 5 Probability density function of the trace of the random energy operator. (Left): Graphs of probability
density functions {e 7→ pEn

(e)}n for n = 5,15,20,25,35 (thin solid lines) and for n = 45 (thick solid line),
corresponding to δM=δD=δK= 0.02 and ns = 10000. (Right): Zoom of the graph of probability density function
function e 7→ pEn

(e) for n = 35 shown in Figure 5 on the left.
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Figure 6 Coherence of the results for three overlapped MF bands B = [1600 , 1900] Hz, B′ = [1400 , 1900] Hz
and B′′ = [1600 , 2100] Hz. Acceleration for DOF number jobs3 of the stochastic system subjected to the prescribed
external load for bands B, B′ and B′′, for δM=δD=δK= 0.02 and ns = 10000. Graphs of the random acceleration
dB (vertical axis) as a function of the frequency (horizontal axis in Hz). Deterministic response of the mean model
on frequency band [1400 , 2100] Hz (mid irregular thin solid line). Lower and upper envelopes of the confidence
region corresponding to the probability level 0.95: band B′ (lower and upper thick dashdot lines), band B′′ (lower
and upper thick dashed lines), band B (lower and upper thick solid lines).

Figure 6 is related to the coherence of the proposed nonparametric model of random uncertainties in the

medium-frequency range. Let B = [1600 , 1900] Hz, B′ = [1400 , 1900] Hz and B′′ = [1600 , 2100]
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Hz be the three MF bands such that B ⊂ B′, B ⊂ B′′ and B = B′ ∩ B′′. Let {Yn
B(ω), ω ∈ B},

{Yn′

B (ω), ω ∈ B′} and {Yn′′

B (ω), ω ∈ B′′} be the solutions of the stochastic problem for a prescribed

external load defined on MF bands B, B′ and B′′ respectively. These three stochastic processes are

converged for n = 35, n′ = 58 and n′′ = 58 respectively. It has to be verified that, over MF band B,the

confidence regions of stochastic processes {Yn
B(ω), ω ∈ B}, {Yn′

B (ω), ω ∈ B′} and {Yn′′

B (ω), ω ∈ B′′}
coincide. Figure 6 shows that the coincidence is obtained with a good accuracy.

CONCLUSIONS

We have presented a novel approach for modeling random uncertainties for the medium-frequency

dynamics. Convergence properties have been verified and the proposed method is coherent with respect

to the bandwith of the MF band of analysis.
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