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RANDOM UNCERTAINTIES MODELING FOR THE MEDIUM-FREQUENCY DYNAMICS

This paper presents a novel probabilistic model of random uncertainties for complex dynamical system in the medium-frequency (MF) range. This approach combines a nonparametric probabilistic model of random uncertainties for the reduced matrix models in structural dynamics with a reduced matrix model method in the MF range. The theory is presented, the random energy matrix relative to a given MF band is studied and a simple numerical example is analyzed.

INTRODUCTION

In structural dynamics, it is known that the higher the eigenfrequency of a structural mode, the lower its accuracy because the uncertainties in the model increase. The effects of uncertainties (geometrical parameters; boundary conditions; mass density; mechanical parameters of constitutive equations; structural complexity; interface and junction modeling; etc.) increase with the frequency and it should be kept in mind that the mechanical model and the finite element model of a complex structure tend to be less reliable in predicting the higher structural modes. Consequently, for the medium-frequency dynamics, random uncertainties in the mechanical model have to be taken into account in order to improve the efficiency and the robustness of the medium-frequency finite element models. An important aspect of the medium-frequency (MF) domain is the construction of an efficient reduced matrix model of the continuous dynamical system. For low-frequency (LF) dynamic analysis in structural dynamics, reduced matrix models are a very efficient tool for constructing the dynamical response (see for instance [START_REF] Clough | Dynamics of Structures[END_REF]. These techniques correspond to a Ritz-Galerkin reduction of the structural-dynamics model using the structural modes corresponding to the lowest eigenfrequencies of the associated conservative dynamical system. Unfortunately, this modal method which is very efficient in the LF domain cannot be used in the MF domain for general three-dimensional dynamical systems. In this context, a reduced matrix model in the MF range for general dissipative structural-dynamics systems was proposed by [START_REF] Soize | Reduced Models in the Medium-Frequency Range for General Dissipative Structural-Dynamics Systems[END_REF], based on the use of the dominant eigensubspace of the mechanical energy operator related to the MF band as the projection basis.

Recently, a parametric approach of random uncertainties in MF dynamics has been proposed by [START_REF] Sarkar | Mid-frequency Structural Dynamics with Parameter Uncertainty[END_REF] using the reduced matrix model developed by [START_REF] Soize | Reduced Models in the Medium-Frequency Range for General Dissipative Structural-Dynamics Systems[END_REF] combined with the stochastic finite element method [START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF], consisting in a stochastic reduction of the random uncertainties utilizing the Karhunen-Loeve expansion and solving the reduced random matrix equation with the polynomial chaos expansion).

In this paper, we propose a novel probabilistic model of random uncertainties for the MF dynamics resulting from the use of the nonparametric probabilistic model of random uncertainties for the reduced matrix models in structural dynamics [START_REF] Soize | A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics[END_REF][START_REF] Soize | Maximum Entropy Approach for Modeling Random Uncertainties in Transient Elastodynamics[END_REF] and combined with the reduced matrix model method in the MF range developed in [START_REF] Soize | Reduced Models in the Medium-Frequency Range for General Dissipative Structural-Dynamics Systems[END_REF]. The theory is presented, the random energy matrix relative to a given MF band is studied and a simple numerical example is analyzed and shows the high sensitivity of MF dynamics to uncertainties.

THEORY Mean Model of the Dynamical System and its Mean Finite Element Model

In the medium-frequency band B = [ω min , ω max ] with ω min ≫ ω max -ω min > 0, the mean finite element model of linear vibrations of a viscoelastic bounded structure (fixed or free) around a position of static equilibrium taken as reference configuration without prestresses is written as

-ω 2 [ Å ] + iω [ (ω)] + [Ã(ω)] y(ω) = f(ω) , ω ∈ B , (1) 
in which y(ω) = (y 1 (ω), . . . , y m (ω)) is the m -vector of the m DOFs (displacements and/or rotations) and f(ω) = (f 1 (ω), . . . , f m (ω)) is the m -vector of the m inputs (forces and/or moments). The mean mass matrix [ Å ] is a positive-definite symmetric (m × m) real matrix. The mean damping and stiffness matrices [ (ω)] and [Ã(ω)] are symmetric (m × m) real matrices, depend on ω (viscoelastic structure), are such that [ (-ω)] = [ (ω)] and [Ã(-ω)] = [Ã(ω)], and are either positive definite (fixed structure) or positive semidefinite(free structure). In the case of a free structure, for all ω in B, (1) matrices [ (ω)] and [Ã(ω)] have the same null space having a dimension m rig such that 0 < m rig ≤ 6 and spanned by the rigid body modes {y 1 , . . . , y mrig } and (2) external load vector

f(ω) is in equilibrium, i.e. is such that < f(ω) , y α >= 0 for all α in {1, . . . , m rig }, in which, for all u and v in m , < u , v >= u 1 v 1 +. . .+u m v m . For all ω in B, Eq. (1) has a unique solution y(ω) = [Ì(ω)] f(ω) in which [Ì(ω)] is the matrix-valued FRF (frequency response function) defined by [Ì(ω)] = [ (ω)] -1 where [ (ω)] is the dynamic stiffness matrix such that [ (ω)] = -ω 2 [ Å ] + iω [ (ω)] + [Ã(ω)].
For a fixed or a free structure, and for every ω fixed in B, the sparse complex matrix [ (ω)] is invertible.

Mean Reduced Matrix Model Adapted to an MF Band

The energy matrix [ B ] (twice the kinetic energy) of the mean FEM in MF band B is the positivedefinite symmetric (m × m) real matrix which is written (see [START_REF] Soize | Reduced Models in the Medium-Frequency Range for General Dissipative Structural-Dynamics Systems[END_REF] as

[ B ] = 1 π B ω 2 ℜe {[Ì(ω)] * [ Å ][Ì(ω)]} dω , (2) 
where ℜe is the real part of complex number and where

[Ì(ω)] * = [Ì(ω)]
T is the adjoint matrix. It should be noted that [ B ] depends on MF band B, but does not depend on the external load vector. The eigenvalue problem for energy matrix [ B ] is written as [ B ] P = λ P. The normalization condition of the real eigenvectors is chosen as P 2 =< P , P >= 1. The dominant eigensubspace of dimension n is spanned by the real eigenvectors P 1 , P 2 , . . . , P n associated with the n highest eigenvalues

λ 1 ≥ λ 2 ≥ . . . ≥ λ n . Introducing the rectangular (m × n) real matrix [P B n ] = [P 1 . . . , P n ]
whose columns are constituted of eigenvectors P 1 , . . . , P n and introducing the diagonal square (n × n) real matrix [Λ n ] whose diagonal entries are λ 1 , . . . , λ n , the eigenvalue problem for constructing the dominant eigenspace of energy matrix

[ B ] is written as [ B ] [P B n ] = [P B n ] [Λ n ] , [P B n ] T [P B n ] = [I n ] , (3) 
where

[I n ] is the (n × n) identity matrix. Matrix [P B n
] is calculated by solving Eq. (3). For the computation, matrix [ B ] is not directly calculated by Eq. ( 2) using a direct calculation of matrix-valued frequency response function {[Ì(ω)], ω ∈ B}. An indirect procedure based on the substace iteration method coupled with a solution method in the time domain (see [START_REF] Soize | Reduced Models in the Medium-Frequency Range for General Dissipative Structural-Dynamics Systems[END_REF] is used. Such a procedure does not use the knowledge of complex matrix [Ì(ω)] which is generally full.

The mean reduced matrix model is obtained in projecting the mean finite element model defined by Eq. ( 1) on the dominant eigensubspace of energy matrix [ B ]. The approximation y n (ω) of y(ω) is then written as

y n (ω) = [P B n ] q n (ω) , (4) 
in which, for all ω fixed in B, the n -vector q n (ω) of the generalized coordinates is the unique solution of the mean reduced matrix equation,

-ω 2 [ M n ] + iω [D n (ω)] + [K n (ω)] q n (ω) = F n (ω) , ω ∈ B , (5) 
with

F n (ω) = [P B n ] T f(ω)
∈ n and where the mean generalized mass, damping and stiffness matrices are the positive-definite symmetric

(n × n) real full matrices such that [ M n ] = [P B n ] T [ Å ] [P B n ], [D n (ω)] = [P B n ] T [ (ω)] [P B n ] and [K n (ω)] = [P B n ] T [Ã(ω)] [P B n ].

Nonparametric Model of Random Uncertainties in the MF Band

Using the idea of the nonparametric model of random uncertainties introduced by [START_REF] Soize | A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics[END_REF], the principle of construction of the nonparametric model of random uncertainties in the MF band consists in modeling the generalized mass, damping and stiffness matrices of the mean reduced model defined by Eqs. ( 4) and ( 5) by random matrices

[M n ], [D n (ω)] and [K n (ω)].
Consequently, the nonparametric model of random uncertainties in the MF band is written as

Y n (ω) = [P B n ] Q n (ω) , (6) 
in which, for all ω fixed in B, the n -valued random variable Q n (ω) of the random generalized coordinates is the unique solution of the random reduced matrix equation,

-ω 2 [M n ] + iω [D n (ω)] + [K n (ω)] Q n (ω) = F n (ω) , ω ∈ B . (7) 
From [START_REF] Soize | A Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics[END_REF][START_REF] Soize | Maximum Entropy Approach for Modeling Random Uncertainties in Transient Elastodynamics[END_REF], these random matrices are written as

[M n ] = [L Mn ] T [G Mn ] [L Mn ] , (8) 
[D n (ω)] = [L Dn (ω)] T [G Dn ] [L Dn (ω)] , (9) 
[K n ] = [L Kn (ω)] T [G Kn ] [L Kn (ω)] , (10) 
in which the upper triangular

(n × n) real matrices [L Mn ], [L Dn (ω)] and [L Kn (ω)] correspond to the Chowlesky factorization [ M n ] = [L Mn ] T [L Mn ], [D n (ω)] = [L Dn (ω)] T [L Dn (ω)] and [K n (ω)] = [L Kn (ω)] T [L Kn (ω)] of positive-definite symmetric (n × n) real matrices [ M n ], [D n (ω)] and [K n (ω)] respectively. Random matrices [G Mn ], [G Dn ] or [G Kn ]
are independent and the dispersion of random matrices [G Mn ], [G Dn ] and [G Kn ] are controlled by the positive real parameters δ M , δ D and δ K which are independent of dimension n and do not depend on frequency ω.

If A n is M n , D n or K n , then random matrix [G An ], with dispersion parameter δ A , is such that [G An ] = [L An ] T [L An ], in which [L An ]
is an upper triangular random (n × n) real matrix such that the random variables {[L An ] jj ′ , j ≤ j ′ } are independent and such that

(1) for j < j ′ , real-valued random variable [L An ] jj ′ is written as

[L An ] jj ′ = σ n U jj ′ in which σ n = δ A (n + 1) -1/2
and where U jj ′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(2) for j = j ′ , positive-valued random variable [L An ] jj is written as [L An ] jj = σ n 2V j in which σ n is defined above and where V j is a positive-valued gamma random variable whose probability density function p Vj (v) with respect to dv is written as

p Vj (v) = ½ Ê + (v){Γ( n+1 2δ 2 A + 1-j 2 )} -1 v n+1 2δ 2 A -1+j 2 e -v .
damping matrix [ (ω)] of the mean finite element model depends on the frequency and is written as

[ (ω)] = 2 ξ ω [ Å ]
in which ξ = 0.002. In the system, the observations are the three DOFs number j obs1 , j obs2 and j obs3 corresponding to the x 3 -translation of the mesh node located at points of coordinates (0.22, 0.24, 0) (excitation central point), (0.31, 0, 0) (in the free edge) and (0.37, 0.15, 0) (inside the plate) respectively.
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Reference Solution for the Mean Model on a Broad Frequency Band

For the mean model, the reference solution is obtained by solving Eq. ( 1) with the direct frequencyby-frequency method with 2100 sample points in the frequency band [0 , 2100] Hertz. Figure 2 shows the graph of the function ω → log 10 ( -ω 2 y(ω) ). In this figure, it can be seen that frequency band B = 2π × [1600 , 1900] rad/s belongs to the medium-frequency range.

Mean Reduced Matrix Model on MF Band B

The dominant eigensubspace of energy matrix [ B ] relative to MF band B = [1600 , 1900] Hz is calculated by solving the symmetric eigenvalue problem defined by Eq. (3) as explained above. The 50 highest eigenvalues are calculated. Figure 3 shows the graph α → λ α of the distribution of the eigenvalues of [ B ]. Horizontal axis is the rank α = 1, . . . , 50 of the eigenvalues. It can be seen the strong decrease of eigenvalues when the order of the eigenvalues is greater than 20 allowing the construction of a mean reduced matrix model having a small dimension. [1600 , 1900] Hz for the mean dynamical system. Horizontal axis is the order α =1,..., 50 of the eigenvalues.

Stochastic System with Nonparametric Model of Random Uncertainties

It is assumed that the dispersion parameters which control the mass, damping and stiffness uncertainties are such that δ M = δ D = δ K = 0.02. The Monte Carlo numerical simulation is used for solving random Eqs. ( 6) and ( 7). Let n s be the number of simulations. Since

|||Y n ||| = |||Q n |||, norm |||Y n ||| can be estimated by Conv(n s , n) = 1 ns ns k=1 B Q n (ω, θ k ) 2 dω 1/2
in which θ 1 , . . . , θ ns correspond to the n s realizations. Probability density function e → p En (e) of random variable E n is estimated by the usual method. Let be Y n (ω) = (Y n 1 (ω), . . . , Y n m (ω)) and let S(ω) = | -ω 2 Y n j (ω)| be the random response corresponding to the acceleration of DOF j. Let dB(ω) be the random variable defined by dB(ω) = log 10 (S(ω)). For a given probability level P c (for instance P c = 0.95), the confidence region Proba{dB -(ω) < dB(ω) ≤ dB + (ω)} = P c of stochastic process {dB(ω), ω ∈ B} is defined by the lower and upper envelopes dB -(ω) and dB + (ω) such that dB + (ω) = log 10 E{S(ω)} + σ(ω)/ √ 1 -P c and dB -(ω) = 2 dB 0 (ω) -dB + (ω) in which dB 0 (ω) = log 10 (E{S(ω)}) and where σ(ω) is the standard deviation of S(ω). 
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 1 Figure 1 Definition of the mean dynamical system.

Figure 2

 2 Figure 2 (left) Reference solution of the mean model. Graph of function ν →log 10 ( -(2πν) 2 y(2πν) ) on the frequency band [0 , 2100] Hertz (horizontal axis).
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 3 Figure 3 (right) Graph α → λ α of the distribution of the eigenvalues of the energy matrix relative to band B =[1600 , 1900] Hz for the mean dynamical system. Horizontal axis is the order α =1,..., 50 of the eigenvalues.
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 4 Figure 4 Convergence analysis. (Left): for n = 35, graph of function n s → log 10 {Conv(n s , n)}. (Right): for n s = 10000, graph of function n → log 10 {Conv(n s , n)}

Figure 5

 5 Figure 5 Probability density function of the trace of the random energy operator. (Left): Graphs of probability density functions {e → p En (e)} n for n = 5,15,20,25,35 (thin solid lines) and for n = 45 (thick solid line), corresponding to δ M =δ D =δ K = 0.02 and n s = 10000. (Right): Zoom of the graph of probability density function function e → p En (e) for n = 35 shown in Figure 5 on the left.
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 6 Figure 6 Coherence of the results for three overlapped MF bands B = [1600 , 1900] Hz, B ′ = [1400 , 1900] Hz and B ′′ = [1600 , 2100] Hz. Acceleration for DOF number j obs3 of the stochastic system subjected to the prescribed external load for bands B, B ′ and B ′′ , for δ M =δ D =δ K = 0.02 and n s = 10000. Graphs of the random acceleration dB (vertical axis) as a function of the frequency (horizontal axis in Hz). Deterministic response of the mean model on frequency band [1400 , 2100] Hz (mid irregular thin solid line). Lower and upper envelopes of the confidence region corresponding to the probability level 0.95: band B ′ (lower and upper thick dashdot lines), band B ′′ (lower and upper thick dashed lines), band B (lower and upper thick solid lines).
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 6 Figure 6 is related to the coherence of the proposed nonparametric model of random uncertainties in the medium-frequency range. Let B = [1600 , 1900] Hz, B ′ = [1400 , 1900] Hz and B ′′ = [1600 , 2100]

Convergence Analysis of the Random Response and Random Energy Matrix

For every ω ∈ B, let Y n (ω) be the n -valued second-order random variable which is the solution of Eqs. ( 6) and (7), that is to say, the random response of the stochastic system subjected to the prescribed external load. The norm of the n -valued second-order stochastic process {Y n (ω), ω ∈ B} is defined by

(3) and ( 6), it can be deduced that

Consequently, the mean-square convergence with respect to n of the sequence of stochastic processes {Y n (ω), ω ∈ B} n can be studied considering the mapping n → |||Q n |||. Since |||Y n ||| depends on the prescribed external load, it is interesting to introduce the approximation [ n B ] of order n of the random energy matrix relative to MF band B, which is independent of the prescribed external load. This is a random positive semidefinite symmetric (m × m) real matrix defined (see Eq. ( 2)) by

where [T n (ω)] is the random symmetric (n × n) complex matrix defined by

Let E n be the trace of random energy matrix

defined in Ê + with values in Ê + . In the next Section, the convergence with respect to n of the sequence of probability density functions {e → p En (e)} n is studied.

APPLICATION Mean Model of the Dynamical System and its Mean Finite Element Model

The mean model of the nonhomogeneous dynamical system is composed of a homogeneus thin plane with two attached point masses and two springs. The thin plate is rectangular, homogeneous, isotropic and located in the plane (Ox 1 , Ox 2 ) of a Cartesian coordinate system (Ox 1 x 2 x 3 ), in bending mode (the outplane displacement is x 3 ), with constant thickness 1 × 10 -3 m, width along Ox 2 is 0.40 m, length along Ox 1 is 0.50 m, mass density 7800 kg/m 3 , Young's modulus 2.1 × 10 11 N/m 2 and Poisson ratio 0.29 . This plate is simply supported on 3 edges and free on the fourth edge corresponding to x 2 = 0 (see Figure 1). To this plate are attached (1) two point masses having a mass of 10 kg and 6 kg located at points (0.15, 0.15, 0) and (0.31, 0.20, 0) respectively, and (2) two springs having a stiffness coefficient k = 1.2090 × 10 9 N/m and k = 7.0893 × 10 8 N/m located at the same points that the point masses, that is to say at points (0.15, 0.15, 0) and (0.31, 0.20, 0) respectively.

The mean finite element model of the plate is composed of a regular rectangular mesh with a constant step size of 0.01 m in x 1 and x 2 (41 nodes in the width, 51 nodes in the length). Consequently, all the finite elements have the same size and each one is a 4-node square plate element. There are 2000 finite elements and m = 6009 degrees of freedom (x 3 -translations and x 1 -and x 2 -rotations). The two first eigenfrequencies of the mean undamped dynamical system, calculated with the mean finite element model, are 27.73 Hz and 57.35 Hz. There are 82 eigenfrequencies in the frequency band [0 , 1400] Hz and respectively, 13, 20 and 11 eigenfrequencies in the frequency bands [1400 , 1600] Hz, [1600[ , 1900[ ] Hz and [1900[ , 2100] ] Hz. The medium-frequency band of analysis is defined as B = 2π × [1600 , 1900] rad/s. In the frequency domain, for all ω ∈ B, the prescribed external load vector f(ω) ∈ m is written as f(ω) = Z in which the spatial part Z = (Z 1 , . . . , Z m ) ∈ Ê m is independent of ω and is such that Z j = 0 for all j in {1, . . . , m} except for the nine DOFs in x 3 -translations corresponding to the nodes whose (x 1 , x 2 ) coordinates are (0.21, 0.23), (0.21, 0.24), (0.21, 0.25), (0.22, 0.23), (0.22, 0.24), (0.22, 0.25), (0.23, 0.23), (0.23, 0.24) and (0.23, 0.25), for which Z j = 1. The Hz be the three MF bands such that

, ω ∈ B ′′ } be the solutions of the stochastic problem for a prescribed external load defined on MF bands B, B ′ and B ′′ respectively. These three stochastic processes are converged for n = 35, n ′ = 58 and n ′′ = 58 respectively. It has to be verified that, over MF band B,the confidence regions of stochastic processes {Y n B (ω), ω ∈ B}, {Y n ′ B (ω), ω ∈ B ′ } and {Y n ′′ B (ω), ω ∈ B ′′ } coincide. Figure 6 shows that the coincidence is obtained with a good accuracy.

CONCLUSIONS

We have presented a novel approach for modeling random uncertainties for the medium-frequency dynamics. Convergence properties have been verified and the proposed method is coherent with respect to the bandwith of the MF band of analysis.