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Abstract: This paper presents a new approach, called a nonparametric approach, for con-
structing a model of random uncertainties in dynamic substructuring in order to predict the
matrix-valued frequency response functions of complex structures. Such an approach allows
nonhomogeneous uncertainties to be modeled with the nonparametric approach. The Craig-
Bampton dynamic substructuring method is used. For each substructure, a nonparametric model
of random uncertainties is introduced. Such a nonparametric model does not require identifying
the uncertain parameters in the reduced matrix model of each substructure as usually done for
the parametric approach. This nonparametric model of random uncertainties is based on the use
of a probability model for symmetric positive-definite real random matrices using the entropy
optimization principle. The theory and a numerical example are presented in the context of
the finite element method. The numerical results obtained show the efficiency of the model

proposed.

INTRODUCTION

Here, we are interested in the low-frequency range where dynamical responses of structures

modeled by finite element method (Zienkiewi&z Taylor, 1989) can be predicted by using
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reduced matrix models constructed with the generalized coordinates of the mode-superposition
method associated with the structural modes corresponding to the lowest eigenfrequencies of
structures (Argyrig: Mlejnek 1991, Bathd: Wilson 1976, Cheund: Leung 1992, Clougli
Penzien 1975, Eadin& Rixen 1994, Meirovitch 1980, Ohaydia Soize 1998). In addition,
dynamic substructuring methods are very efficient tools for dynamic analysis of complex struc-
tures (Benfield: Hruda 1971, Hintz 1975, Hurty 1965,MacNeal 1971, MeiroviicHale 1981,

Rubin 1975) . The Craig-Bampton method (Cr&idgampton 1968 for discrete case; Morand

& Ohayon 1979 for continous case) is very popular and efficient and is based on the use of the
structural modes of each substructure with fixed coupling interface and the static boundary func-
tions related to the coupling interface. Concerning the role played by uncertainties in structural
dynamics modeling, it is known that the effects of uncertainties increase with the frequency.
Consequently, in linear structural dynamics, numerical predictions with finite element models
can be improved by introducing a model of random uncertainties. Random uncertainties in
linear structural dynamics are usually modeled using parametric models. This means that 1) the
uncertain parameters (scalars, vectors or fields) occurring in the boundary value problem (geo-
metrical parameters; boundary conditions; mass density; mechanical parameters of constitutive
equations; structural complexity, interface and junction modeling, etc.) have to be identified;
2) appropriate probabilistic models of these uncertain parameters have to be constructed, and
3) functions mapping the domains of uncertain parameters into the mass, damping and stiffness
operators have to be constructed. Concerning details related to such a parametric approach, we
refer the reader to (Haug et al 1986, Ibrahim 1987, IM@adensen 1993, Le& Singh 1994,

Lin & Cai 1995, Soong 1973, Span&<Zeldin 1994) for general developments, to (Gharfem
Spanos 1991 Kleiber et al 1992, Liu et al 1986, ShinoZulkeodatis 1988, SpandsGhanem

1989, Vanmarcké: Grigoriu 1983) for general aspects related to stochastic finite elements and
to (Ibrahim 1985, Kre&: Soize 1986, Roberts& Spanos 1990, Soize 1994) for other aspects
related to this kind of parametric models of random uncertainties in the context of developments

written in stochastic dynamics and parametric stochastic excitations.

In this paper we present a new approach, that we will call a nonparametric approach, for
constructing a model of random uncertainties in dynamic substructuring in order to predict the

matrix-valued frequency response functions of complex structures. Such an approach allows
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nonhomogeneous uncertainties to be modeled with the nonparametric approach. The use of
dynamic substructuring allows a nonparametric approach of random uncertainties to be used
when uncertainties are not homogeneous through the dynamic systems, that is to say, when the
level of uncertainties differs from a part of the structure to another one. This nonparametric
model of random uncertainties does not require identifying the uncertain local parameters in
the reduced matrix model of each substructure as described above for the parametric approach
but is based on the use of recent research (Soize 1999, 2000, 2001) in which the construction
of a probability model for symmetric positive-definite real random matrices using the entropy
optimization principle (Jaynes 1957, KaguKesavan 1992) has beenintroduced and developed.
These results allow the direct construction of a probabilistic model of the reduced matrix model
of each substructure, for which the only information used in this construction is the available
information constituted of the mean reduced matrix model of the substructure, the existence of
second-order moments of inverses of certain random matrices and some algebraic properties
relative to the positive-definiteness of these random matrices. It should be noted that these
properties have to be taken into account in order to obtain a mechanical system with random
uncertainties, which models a dynamic system. For instance if there are uncertainties on the
reduced mass matrix, the probability distribution has to be such that this random reduced mass
matrix be positive definite. If not, the probability model would be wrong because the reduced

mass matrix of any substructure has to be positive definite.

We then propose an extension of the nonparametric model of random uncertainties to the
Craig-Bampton substructuring method. The method presented could be used if the Craig-
Bampton method was replaced by another substructuring techniques. Such an approach allows
nonhomogeneous random uncertainties in a structure to be modeled by using the nonparametric
approach. In a first section, we introduce the construction of the mean reduced dynamic
stiffness matrix for a substructure using Cr&dgampton dynamic substructuring. The second
section is devoted to the construction of the random reduced dynamic stiffness matrix for a
substructure using the nonparametric model of random uncertainties. In the next section, we
give a summary of the main results established in (Soize 2000, 2001) concerning the probability
model for symmetric positive-definite real random matrices. The two next sections deal with the

nonparametric model of random uncertainties of the reduced matrix model of each substructure
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and the random reduced matrix model for the complete structure. Finally, a numerical example

is presented.

CONSTRUCTION OF THE MEAN REDUCED DYNAMIC STIFFNESS MATRIX FOR
A SUBSTRUCTURE USING DYNAMIC SUBSTRUCTURING

Mean finite element model for a substructure

Let us consider linear vibrations of a damped fixed structiseibmitted to external forces.
We are interested in predicting the frequency response functions of strGdtutke frequency
band of analysi€3 = [wmin,wmay- In order to simplify the presentation, we limit the number
of substructures t@ and consequently, we assume that strucfoiris decomposed into 2
substructure$” with » = 1 or 2 (the extension to a number of substructures greater 2han
is straightforward). Leb be the coupling interface between substruct@esndS2. LetI'”

be the boundary of substructusé& (we then have: C I'"). Each substructur®” is assumed
to be free onl'"\ X (case of afree substructureor fixed on a part of "\ X (case of dixed
substructurg In this paper, the basic finite element model of structtiie identified as the
mean finite element model. In order to simplify the mathematical notations, exporedated

to substructuré&” is canceled when no confusion is possible. For.alh band B and for

substructur&”, the mean matrix equation is written as
[AW)]U(w) = E(w) (1)

in which U(w) is the C#-valued vector constituted of the DOFs, F(w) is the C#-valued
external force vector (due to load vector and coupling force vector)/afud)] is the mean

dynamic stiffness matrix which is written as
[AW)] = ~w?*M] +iw[D] + [K] (2)

where[M], [D] and[K] are the mean mass, damping and stiffness matrices. Mean mass matrix
[M] is symmetric and positive definite. (1) For a fixed substructure, mean damping and stiffness
matrices[D] and [K] are symmetric and positive definite (the substructure with free coupling

interface Y does not have rigid body modes). (2) For a free substructure, mean damping

and stiffness matrice®] and [K] are symmetric but are only semi-positive definite due to the
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presence of rigid body modes (the substructure with free coupling inte¥fdees rigid body
modes); in this case, it is assumed tfidtand[K] have the same null space spanned byifie
rigid body modes with < 11ig < 6. We introduce the usual decompositionuifv) andF(w)
with respect to theu; internal DOFs and thgy, = 1 — p; coupling DOFs. We then write

wo=[G0] = [t | ®)

In Eq. (3),Fs:(w) isinduced by the external prescribed load vector of the mean model on coupling

interfaceX: (for instance, due to the finite element discretization of an external prescribed body

force field applied to the 3D domain of substruct®® and F’"P(w) is the coupling force

vector of the mean model on coupling interfaceThe corresponding block decomposition of

the matrices are

s I o v | I [ ] IR

in which [B]T denotes the transpose of matix].

Mean reduced dynamic stiffness matrix for a substructure using Craig-Bampton method

The Craig-Bampton method (Craig & Bampton 1968) is used wWitistructural modes with
fixed coupling interfac&: in order to construct the mean reduced dynamic stiffness matrix for

substructur&”. We then obtain the following mean reduced matrix model for substrugtyre

[i((z))} = [H] {292(8)} with [H] = [[%] [ﬁ” , 5)

in which g(w) is theC* -valued vector of the generalized coordinat€s,is the(u; x N) real

matrix whose columns are the structural modes of the mean model with fixed coupling interface,
[S] is the (u; x ux) real matrix defined byS] = —[K.]~![K.], related to the static boundary
functions and[ | is the(us X ps) unity matrix. From Egs. (1), (3) and (5), we deduced that

q(w) } [ F(w)
A - = , 6
[—<W>] |:QZ (w) EE (w> + E;OUp(w> ( )
in which [A(w)] is the mean reduced dynamic stiffness matrix such that

[A(w)] = ~w*[M] +w[D] + [K] (7)
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where reduced mass, damping and stiffness matricgsraxen) real symmetric matrices, with

m = N + us, such that
[M] = [H]"M[H] , [D] = [H]"[D][H] , [K]=[H]"[K|[H] . (8)

Since for a free or a fixed substructure, the null space of mgifjxs reduced td 0}, from the
previous properties, it can be deduced that reduced mass ndtriis symmetric and positive
definite and, (1) for a fixed substructure, reduced damping and stiffness méabicasd [ K|

are symmetric and positive definite, (2) for a free substructure, reduced damping and stiffness
matrices[D] and[K] are symmetric but are only semi-positive definite &bl and[£] have

the same null space spanned by thg rigid body modes withl < g < 6. In Eq. (6), the

C¥ -valued vectorF (w) and theC#=-valued vectoff s, (w) are defined by

FE(w)=[2]"F;(w) (9)

Fy(w) =[8]" Fi(w) + Ex(w) . (10)

CONSTRUCTION OF THE RANDOM REDUCED DYNAMIC STIFFNESS MATRIX
FOR A SUBSTRUCTURE USING A NONPARAMETRIC PROBABILISTIC MODEL
OF RANDOM UNCERTAINTIES

In this section, we consider substructué with random uncertainties. We construct the
probability model for the reduced dynamic stiffness matrix of this substructure using the principle
introduced in the second section. This construction is fundamentally based on the use of the
mean reduced dynamic stiffness matrix of substructirentroduced in the previous section.

In the following, we need notation relative to the following sets of matrices)M.&R), M2 (R),

MO (R) andMt (R) be the set of all thénxn) real, real symmetric, real symmetric semi-positive

definite and real symmetric positive-definite matrices, respectively. We then have

M (R) ¢ MIO(R) € M3(R) c M, (R) . (11)

n

Let M, »(R) be the set of all théy. xn) real rectangular matrices. We then havg(R) =
Mpn(R).
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Factorization of the mean reduced matrices for a substructure

For the construction of the nonparametric probabilistic model of random uncertainties, we need
the factorization of the mean reduced mass, damping and stiffness matrices for each substructure

S”. Since[M] belongs ta; (R), then the Cholesky factorization of matfi/] yields
(M] = [Lp]" [Ln] (12)

in which [L,,] is an upper triangular sparse matrixfi, ., (R).
(1) For a fixed substructure, since reduced damping and stiffness mafpicesd K| belong

to M;" (R), then the Cholesky factorization of matridd3] and[K] yield
[D] = [Lp]" [Lp] (13)

(K] = [Lg]" [Lg] (14)

in which [L ] and[L ]| are upper triangular sparse matrice$tin,,, (R) with
n=m . (15)

(2) For a free substructure, reduced damping and stiffness mafiideand [K]| belong to
M;'(R) and have the same null space spannegyectors deduced from theiq rigid body
modes of substructufe” with free coupling interfac&. It can easily be proved that Egs. (13)-
(14) hold but[L ] and[L ] are rectangulafn x m) real sparse matrices (which are almost
upper triangular) in which

n=m— g - (16)
The computation of such a factorization is usual and will not be explained here.

Construction of a nonparametric model of random uncertainties for the reduced dynamic

stiffness matrix of a substructure

Let us assume that random uncertainties exist in substrugturérhen its reduced dynamic
stiffness matrix is a random matrix. As explained in the second section, the nonparametric
probabilistic model of substructu consists in writing the random reduced dynamic stiffness
matrix (see Eg. (7)) as

AW)] = ~w?[M] +iwD] + K] | (17)
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in which [M], [D] and[K] are (m xm) real random matrices which are defined below. Conse-
quently, the mean reduced matrix equations for substruéttyreefined by Egs. (5)-(10), are
replaced by the following random equations. Equation (5) is replaced by

[3;((03)] = [uqéc(ﬁ)} ) (18)

inwhichU; (w) andUy (w) are theC*: — andC*= —random vectors constituted of thginternal
DOFs anduy, coupling DOFs, wheréH | is the matrix defined by Eq. (5) and whegév) is
the CV-valued random vector constituted of thé generalized coordinates. Equation (6) is
replaced by the following. For alb fixed in B, random vectorsj(w) andUx(w) verify the

random reduced matrix equation

AN |G| = [ roo] 19

in which F(w) is defined by Eqg. (9) and vectbk. (w) by Eg. (10), that is to say,

Ex(w) = [S]"Ei(w) + Ex(w) (20)

whereFy "?(w) is the random coupling force vector on coupling interfaceFinally, we have

to define the available information concerning the random reduced mass, damping and stiffness
matrices appearing in Eq. (17):

(a) Reduced mass matri¥] is a random matrix with values ;" (R) and, (1) for a fixed
substructure[D] and[K] are random matrices with valueslity, (R), (2) for a free substructure,

[D] and[K] are random matrices with valueslify;’ (R) and it is assumed that random matrices

[D] and[K] have the same deterministic null space of dimengignspanned by the;ig constant
vectors deduced from theq rigid body modes of the mean finite element model; this assumption

is automatically satisfied when the finite element model under consideration corresponds to the
finite element discretization of a boundary value problem related to elastodynamics of a bounded

continuum.

(b) The mean values of random reduced matribls [D] and[K ] are given by the mean reduced

matrix model,

E{M]} =[M] , E{D}}=[D] , E{K]}=[K] , (21)
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in which E is the mathematical expectation.

(c) An additional available information will be introduced hereinafter concerning the existence

of certain second-order moments of the random matrices introduced in the probabilistic model.

From Egs. (12)-(16) and (21), we deduce that random reduced mdv¢eg®] and[K| can be

written as
M] = [La]" (G [Las) (22)
D] = [Lp]" [Gp] [Lp] (23)
K] = [Lg]" [Gk][Lk] (24)

in which the available information for the random matrig@s,|, [Gp| and[G k] is the follow-

ing:

(a) Matrix [G /] is a random matrix with values it (R), matrice§G p] and[G k| are random
matrices with values it} (R) with n = m for a fixed substructure and= m — w4 for a free

substructure.

(b) The mean values of random matri¢€s|, [Gp| and[G k| are
E{[Guml]} = [Im] , E{[Gpl}=1[1.] , E{[Gkl]} =[] , (25)

inwhich[I,,] and[ I,,] are the(m x m) and(n xn) unity matrices respectively.

(c) Since[G ] is a random matrix with values iri;> (R), [Gp] and[G k] are random matrices
with values il (R), these matrices are invertible almost surely. As explained in (Soize 2000),
this property does not imply that the second-order moment of their inverse exist and this kind

of property is required. Consequently, we introduce the following constraint,
E{[Gu] ™ F < +oo, B{|[[Gp] % < +oo , B{|[[Gk] |} < +oo,  (26)

inwhich|| [B]]|r = (tr{[B][B]T})"* is the Frobenius norm of matri8 ] where tris the trace

of the matrices. The last step concerns the construction of the probability model for symmetric
positive-definite real random matricéS /], [Gp] and [G k] with the available information
defined by Egs. (25) and (26).
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PROBABILITY MODEL FOR SYMMETRIC POSITIVE-DEFINITE REAL RANDOM
MATRICES

We then need to construct a probability model for symmetric positive-definite real random
matrices|G ], [Gp| and[G k] using the available information defined by Egs. (25) and (26).
Let [G] be any one of these three matrices. In this section, we recall the main results established
in (Soize 2000,2001) concerning the construction of such a probability model for a random
matrix [G] with values inM(R) using the entropy optimization principle which allows the
available information to be only used. It should be noted that the results obtained and presented
below differ from the known results concerning the Gaussian Orthogonal Ensemble (GOE)

which has been extensively studied in the literature (see for instance (Mehta 1991)).

Probability density function on the space of positive-definite symmetric real matrices and

characteristic function

Let [G] be a random matrix with values iM.} (R) whose probability distributionPg; =

pie)([G]) dG is defined by a probability density functide'] — pie)([G]) from M (R) into

R+ = [0, +oo[ with respect to the measure (volume elemeit)on 15 (R) defined bydG =

27" =D/ << i<, dGy;. This probability density functionis such thfify ) pie) (G 1) dG =

1. For all [0] in M7 (R), the characteristic function of random matfi@] is defined by
bg)([0)) = Efexp(i < [0],[G] )} = [y g exp(i < [6],[G] ) pe([G]) G in

which< [0], [G]>=tr{[0] [G]T} = tr{[O] [G]}.

Available information for construction of the probability model

We are interested in the construction of the probability distribution of a second-order random
variable [G] with values inM!(R) for which the available information is the mean value
[G] = E{[G]} = [ I,] (inwhich[ I,,] is the unity matrix i’ (R)) and the constraint defined by
E{In(de{G])} = vwith |v| < +oc0. Itis proved (Soize 2000 and 2001) that this constraint yields
E{|l[G]71||%} < +o00. Consequently, the available information which is used to construct the
probability model of random matrixG] with values in;t(R) is defined by the following

constraints
/ (G dG =1, (27)
M (R)
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/ G 7aG) 06 = 1) € VE®) 28)

/n4+(u2) In(def{G]) pig)([G]) dG = v , ] < 4o . (29)

It should be noted that, in the proposed theory, the covariance tensor of random [@atsix

not considered as an available information.

Probability model using the maximum entropy principle

Introducing the measure of entropy (Shannon 1948) and the maximum entropy principle (Jaynes
1957) to construct the probability model of random maj@xwith values i ;" (R) based only

on the use of the available information defined by Egs. (27)-(29), it is proved (Soize 2000) that,
for [©] € M7 (R), probability density functiomg)([G ]) and characteristic functiofg)([©])

of positive-definite random matri)G| are written as

P(G]) = Ty ) (G]) ¥ x (defG]) ™ x exp (- “=52{[G}) , (30)
21 —(n—1+2Xg)/2
26 (O] ={deq[ 1] ~ (55 1€)) } , (31)

in which A\¢ > 0 is a parameter depending enand defined below, where det denotes the
determinant of matrices and whetg- &, ([G]) is equal to 1 flG] € M+ (R) and is equal to
zero if [G] ¢ M (R). When)\g is an integer, the probability distribution defined by Eq. (30)
or (31) coincides with a Wishart distribution (Anderson 1958)\ df is not an integer, then the
probability distribution defined by Eq. (30) or (31) is not a Wishart distribution. In Eq. (30),
positive constant. is written as

(27)~n(n=1)/4 (n—l;zxa)nm—l”w/?

S T 2 | *

where, forRe z > 0, I'(z) is the gamma function defined z) = [~ e~ dt. Letdg

0
be the positive real number defined by

1/2
[ B - (G}
5G‘{ TP } ’ (33

in which [G] = [I,,] and||[G]||% = n. Parameteiq (n) is defined by

1 -6 1+ 62
Ac(n) = 202, ' 20%

(34)

C. Soize and H.Chebli - ASCE - Journal of Engineering Mechanics , Revised version, February 2002 11



in which ¢ has to be chosen independeniicdnd such that

(35)

whereny is a fixed positive integer such thag > 1. Equations (33) to (35) are used as follows.
The lower boundh of positive integen is fixed. Then, the dispersion of the probability model
is fixed by giving parametefs, independent of,, a value such that Eq. (35) is satisfied. For
each value of integet > n, parametei(n) is then calculated by using Eq. (34). It can then
be proved (Soize 2000 and 2001) that

E{[[G] 7} <+, E{llGIIF} <+o0, >0 (36)

and that the covarian@€$}, ..., = E{([Gl;x — [G];+)([G];+ — [G];+)} of random variables
[G];x and[G];/x is written as
0¢

Cﬁc,j’k’ = n——l-l{éj/k 5jk’ + (5]‘]'/ 5]44} , (37)

whered;, = 0if j # k andd;; = 1. The variancd’ = C¥;

1.jx Of random variablgG] . is

. 2
written asVG = n‘s—fl(l + k).

Representation of random matrix [G]

Generally, \¢(n) defined by Eq. (34) is a positive real number. The following algebraic
representation of positive-definite real random maf@x allows a procedure for the Monte
Carlo numerical simulation of random mat| to be defined. Random matrj&] can be

written as

Gl =[Lal" [La) (38)
in which [L ] is an upper triangular random matrix with value$ip(R) such that:

(1) random variable$§[L ];,/, j < j'} are independent;

(2) forj < 4/, real-valued random variable | ,;;» can be written afl_ ¢|;;» = 0,,U;;» in which
o, = 6c(n+1)"Y/2 and wherd/;; is a real-valued Gaussian random variable with zero mean

and variance equal tg
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(3) for j = j/, positive-valued random variable ;|,,; can be written afl ], = 0,1/2V; in
which o, is defined above and whe#§ is a positive-valued gamma random variable whose

probability density functiomy, (v) with respect taiv is written as

v T eV (39)

Probability model of a set of positive-definite symmetric real random matrices

Let us consider random matrice$G,], .. ., [G,] with values inM;" (R) such that for each
in {1,...,v}, the probability density function of random matfi® ;] satisfies Egs. (27)-(29).
Applying the maximum entropy principle, it is proved (Soize 2000) that the probability density

function([G1], ..., [G.]) — pGi].....16,]([G1], - - -, [Gy]) from MF(R) x ... x M (R) into R*™
with respect to the measure (volume elemett) x ... x dG, on MI(R) x ... x M3(R) is
written as

P16, ([G1], - [Gu]) = pey)([GA]) x ... x p, ) ([GL]) (40)
which means thdG,], .. ., [G, | are independent random matrices.

NONPARAMETRIC MODEL OF RANDOM UNCERTAINTIES

We apply the results of the previous section to random matrfigEgD] and [K] defined

by Egs. (22)-(24), for which the available information concerning matri€eg|, [Gp| and

[Gk] is defined by Egs. (25)-(26). From Eq. (40), we deduce that these random matrices are
independent. The dispersion of each random mifix[D] or [K] is controlled by parameter

o, 0p Or ok (see Eg. (33)), independentaf andn, chosen such that Eq. (35) holds,

1
0<5M75D75K< ZEIS )
and defined by
1/2
E{|[[Gs] — [GplllF}
op = , 41
’ { G e

in which B is M, D or K. With this nonparametric model, the probability distribution of each

random reduced matrijM|,[D] or [K] of substructuré5”, depends only on two parameters:
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the mean reduced matrpd/ ], [ D] or [ K | associated with the mean mechanical model and
corresponding to the design model, and a scalar paramgted, or 6 whose values have

to be fixed by the designer in the interyal, 1] in order to give the dispersion level related to

the random reduced matrix of the substructure. Paranigiev or ix can be viewed as a
global parameter. Because the model uncertainties which can be taken into account with the
nonparametric model, cannot be directly quantified in terms of correlation between random
variables, indirect methods have to be imagined in order to estimate paramet®s or dx. A

priori, such a parameter can be estimated (1) by using theoretical condiderations and numerical
experiments, (2) by using measurements of the frequency response functions for a given class
of dynamic systems (that is to say, estimatingarameter for that the measured experimental
responses belong to the confidence region constructed with the nonparametric approach) and
(3) from expertise. Concerning the last one, if there is no uncertainty for the reduced stiffness
matrix of a substructure, thedyy = 0. On the other hand, if it is assumed that the global
uncertainty for the reduced stiffness matrix of a substructure is 10%/thdras to be.1.

In order to carry out the Monte Carlo numerical simulation (Cochran 1977, KaM#itlock

1986, Rubinstein 1981) of random dynamical responses of the coupled systeenuse the
adapted algebraic representation of random matjtégg, (G| and[G k] defined by Egs. (38)-

(39). We then have,

M] = [Ly]" [Gar] [Las] , [Gu] = [Law]" Lol (42)
D] = [Lp]" [Gp][Lp] . [Gp]=ILey]" [Lan] (43)
K] =[Lg]" [GK][Lk] , [Gxl=[Leil" [Lax] - (44)

RANDOM REDUCED MATRIX MODEL FOR THE COMPLETE STRUCTURE

In order to distinguish substructuge (r = 1) from substructur&? (r = 2), exponent (with
r = 1 or = 2) is reintroduced. The coupling conditions on coupling interfaceonsist in
writing the continuity of the random displacement field which leads to idtte= UZ = Uy,
and the equilibrium of coupling random force vectors leading to té***+F3; ©°“P = 0. The

block decomposition of random reduced dynamic stiffness mghrixw)] defined by Eq. (17)
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corresponding to Eq. (19) is written as

A" (w)] = (45)

[A"(W)] - [AL(W)] }
AL @) AL W)

Using the coupling conditions on interfagkand Eq. (45) forr = 1 andr = 2, the random

reduced matrix equation for structugas written as

(A @) [0] Ac(w)] q'(w) F(w)
[0]  [A*(w)] [AZ(w)] W | = |FwW]| . (46)
Ac@)]" [AZW)]T [Ap(w)]+[AZ(w)]] LUs(w) Fy(w)

in which F£'(w) andF?(w) are defined by Eq. (9) for = 1 andr = 2, and where
Fy(w) = [S'"F; (w) + [S’)"F} (w) + Fx(w) + F3(w) (47)

inwhichE} (w) andFy; (w) are defined by Egs. (3) fer= 1 andr = 2, and whergS"] is defined
in Eq. (5) forr = 1 andr = 2. The random respon3&w), constituted of the: = i} + u? + s

DOFs of structuré, is then calculated by the following matrix equation

Ul (w) @] [0] [8']14'(w)
V)= | WVw) | =|[0] [@] [$]]|d*w) | - (48)
Us(w) [0] [o] [I]] LUs(w)

NUMERICAL EXAMPLE
Definition of the mean model

We consider a mean model constituted of a rectangular, homogeneous, isotropic thin plate,
simply supported, with a constant thicknéss x 10 =3 m, width 0.5 m, length1.0 m, mass
density 7800 kg/m?, Young's modulu2.1 x 10** N/m?, Poisson’s ratid).29. Two point
masses oB kg and4 kg are located at point§.4,0.2) and (0.75,0.35), and three springs
having the same stiffness coefficien888 x 107 N/m are attached normally to the plate and
located at point$0.28, 0.22), (0.54, 0.33) and(0.83, 0.44). Consequently, the master structure

defined above is not homogeneous. This master structure is decomposed into two substructures
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S andS2. The first one has a length6 m and the second one, a lengtl m (see Figure 1).
The frequency band of analysis i = 27 x [1,100] rad/s. The mean finite element model

of the master structure is constructed using 4-nodes bending plate elements. The mesh size is
0.01 m x 0.01 m. The master structure has= 14849 DOFs corresponding tp! = 8840,

p? = 5860 andus = 149. The mean damping matrix of the master structure is constructed
using a Rayleigh model corresponding to a mean damping rate).03 for eigenfrequencies

fi = 2.6Hz and f35 = 106.38H 2z of the mean master structure. The master structure is
subjected to an external load vectgt)g in which spatial parg = (g,,...,g,) € R" is such
thatgj = 0 forall j € {1,...,n} excepted for DOF dafcorresponding to the node whose
(z,y) coordinates ar€0.24,0.24). Functionw — n(w) is defined byp(w) = 15 (w) in which

w i 1p(w)issuchthatl p(w) = 1if w € Bandlg(w) = 0if w ¢ B. We introduce daf and

dof; as the observed DOFs corresponding to the nodes whoggcoordinates aré).39, 0.31)
and(0.79,0.24) respectively.

Dynamic substructuring model with random uncertainties

Concerning the dynamic substructuring model with random uncertainties, the calculations are
carried out withV = N! = N2, The dispersion parameters are defined for each substructure
S"(r = 1,2) byng = 4 andéy; = dp = dx = 0.1. Random responses of the master
structure modeled by substructuring are obtained by solving Eqgs. (46)-(48). A Monte Carlo
numerical simulation is carried out with, = 1000 samples denoted §#,}’>, and for each

0;, [IVO)IIE = [5|IV(w;0;)||*dw is calculated. The mean vallgV|||3 = E{||V||%} of
random variabl¢|V||% is then estimated by|V|||% ~ (1/ns) 2272, ||V (6;)][3-

Convergence analysis

Figure 2 shows the graph ef; — 101log,,(]||V|||%) for N = 10, 20,30 and100. A good
convergence is obtained far, = 500. Figure 3 shows the graph of — 101log,(|||V]||%)
for a number of samples fixed to, = 500. A good convergence is obtained fof = 20.
From Figures 2 and 3, it can be deduced that= 500 and N = 20 correspond to a good
approximation. Fow fixed in B, let dB;(w) be the random variable defined by gdB) =

1010g10 (Vi (w)]?) with V(w) = (Vi(w), ..., Vi (w)).
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Confidence region associated with a given probability level

The construction of the confidence region related to random variablg«dBs carried out

as explained in (SoiZe Bjaoui 2000). This confidence region is defined by the upper and
lower envelopes) — dB; (w) andw — dB, (w) of the frequency-response-function modulus
corresponding to a given probability levE}. and is such that the probabili§ { dB; (w) <

dBy,(w) < dB (w)} = P.. By construction, only di(w) is unknown and the lower envelope

is given by dB (w) = 2dB}(w) — dB} (w) with dBY(w) = 10log;o(|E{Vk(w)}?). The

upper envelope d;g(w) is constructed using the Chebychev’s inequality. We can then write
P{|Vi(w) = E{Vi(w)}| > ar(w)} < Var{Vi(w)}/ai(w) in which Va{V;,(w)} is the variance

of random variablé/, (w). We deduce thaP{ dB (w) < dBy(w) < dB} (w)}> P. with

dB; (w) = 20log, o (|E{Vi(w)}| + ar(w)) and P, = 1 — Var{V,(w)}/a2(w).

Figures 4, 5 and 6 show the confidence region defined by the upper and lower envelopes (thick
solid lines) constructed witl?, = 0.95 for excited DOFk = dof; in plate1 and for observed
DOFsk = dof, andk = dofs in platesl and?2 respectively. The graph of — dB,?,(f)

is represented by the thin solid line witfraxis in Hertz. These figures show that the size

of the confidence region increases in the frequency band when frequency is increasing. This
phenomenon is due to the fact that the sensitivity of an eigenmode to random uncertainties

increases with its rank.
Extreme value statistics associated with samples

In addition, we introduce functions — dB"™ (w;0) = max;=1, ., U0Bg(w;6d;) andw —

dBM" (w;0) = minj—;,__,, dBy(w;6;) in which® = (6,...,0,.). Figures 7, 8 and 9 are
related to excited DOE = dof, in platel, to observed DOE = dof, in platel and to observed
DOFk = dof; in plate2. Each figure shows the comparison betwgen dB;"®* (f;0) (upper

thin solid line) andf — dBM" (f;0) (lower thin solid line) with the confidence region defined

by its upper envelopg — dB; (f) (upper thick solid line) and its lower envelope— dB; (f)

(lower thick solid line) corresponding t8. = 0.95, in which f is in Hertz. These three figures
allow us to conclude that the confidence region approach yields a very good approximation of

the extreme value statistics.

CONCLUSION
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We have presented an approach allowing the random uncertainties to be modeled by a nonpara-
metric model for prediction of frequency response functions in linear structural dynamics using
the Craig-Bampton dynamic substructuring method in the low-frequency range. The parametric
approaches existing in literature are very useful when the number of uncertain parameters is
small and when the probabilistic model can be constructed for the set of parameters considered.
The nonparametric approach presented is useful when the number of uncertain parameters is
high or when the probabilistic model is difficult to construct for the set of parameters con-
sidered. In addition, the parametric approaches do not allow the model uncertainties to be
taken into account (because a parametric approach is associated with a fixed model exhibiting
some parameters), whereas the nonparametric approach proposed allows to take into account
the model uncertainties. The main interest of using such a nonparametric approach for random
uncertainties modeling in dynamic substructuring is its capability to model nonhomogeneous
random uncertainties in the global structure. This means that a substructure can be taken
without uncertainties and another one with uncertainties. If random uncertainties is taken into
account in a substructure, the dynamic part (structural modes of the substructure with fixed
interface) and the static part (static boundary functions of the coupling interface) is taken into
account by the nonparametric probabilistic approach. It can be seen that such an approach is
perfectly adapted for modeling random uncertainties in a complex mechanical junction (a sub-
structure with random uncertainties) realizing the attachment of two main substructures without
significant uncertainties.

An explicit construction and representation of the probability model have been obtained and are
very well suited to algebraic calculus and to Monte Carlo numerical simulation. The fundamental
properties related to the convergence of the stochastic solution with respect to the dimension of
the random reduced matrix model of each substructure has been analyzed. This convergence
analysis carried out has allowed the consistency of the theory proposed to be proved and the

parameters of the probability distribution of the random reduced matrices to be clearly defined.
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Geometry of the master structusepoint masses;+ springs, ® input force,o output

normal displacements.
FIG. 2. Graph ofis — 101og;(|||V]]|%) for N = 10, 20, 30 and100.
FIG. 3. Graph ofNV — 101log,,(|||V]||%) for ns = 500.

FIG. 4. For excited DOF: = dof; in plate1, graph of functionf — dB{(f) (thin solid
line) with f in Hertz and confidence region corresponding?o= 0.95, defined by its upper
envelopef — dB; (f) (upper thick solid line) and its lower enveloge— dB, (f) (lower

thick solid line).

FIG. 5. For observed DOE = dof; in plate1, graph of functionf — dB(f) (thin solid
line) with f in Hertz and confidence region corresponding?o= 0.95, defined by its upper
envelopef — dB; (f) (upper thick solid line) and its lower enveloge— dB, (f) (lower

thick solid line).

FIG. 6. For observed DOFE = dof; in plate2, graph of functionf — ng(f) (thin solid
line) with f in Hertz and confidence region corresponding?o= 0.95, defined by its upper
envelopef — dB; (f) (upper thick solid line) and its lower enveloge— dB, (f) (lower
thick solid line).

FIG. 7. For excited DO = dof; in platel, comparison betwee)i — dB;"®(f;0) (upper
thin solid line) andf — dB"" (f;8) (lower thin solid line) with the confidence region defined
by its upper envelopg¢ — dB;(f) (upper thick solid line) and its lower envelope— dB, (f)

(lower thick solid line) corresponding t8. = 0.95, in which f is in Hertz.

FIG. 8. For observed DOF = dof; in platel, comparison betweefi— dB" (f;0) (upper
thin solid line) andf — dBM" (f;0) (lower thin solid line) with the confidence region defined
by its upper envelopg — dB; (f) (upper thick solid line) and its lower envelope— dB; (f)

(lower thick solid line) corresponding t8. = 0.95, in which f is in Hertz.

FIG. 9. For observed DOF = dofs in plate2, comparison betweefi— dB" (f;0) (upper
thin solid line) andf — dB{"" (f;0) (lower thin solid line) with the confidence region defined
by its upper envelopg — dB; (f) (upper thick solid line) and its lower envelope— dB,_ (f)

(lower thick solid line) corresponding t8. = 0.95, in which f is in Hertz.
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