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Abstract: This paper presents a new approach, called a nonparametric approach, for con-

structing a model of random uncertainties in dynamic substructuring in order to predict the

matrix-valued frequency response functions of complex structures. Such an approach allows

nonhomogeneous uncertainties to be modeled with the nonparametric approach. The Craig-

Bampton dynamic substructuring method is used. For each substructure, a nonparametric model

of random uncertainties is introduced. Such a nonparametric model does not require identifying

the uncertain parameters in the reduced matrix model of each substructure as usually done for

the parametric approach. This nonparametric model of random uncertainties is based on the use

of a probability model for symmetric positive-definite real random matrices using the entropy

optimization principle. The theory and a numerical example are presented in the context of

the finite element method. The numerical results obtained show the efficiency of the model

proposed.

INTRODUCTION

Here, we are interested in the low-frequency range where dynamical responses of structures

modeled by finite element method (Zienkiewicz& Taylor, 1989) can be predicted by using
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reduced matrix models constructed with the generalized coordinates of the mode-superposition

method associated with the structural modes corresponding to the lowest eigenfrequencies of

structures (Argyris& Mlejnek 1991, Bathe& Wilson 1976, Cheung& Leung 1992, Clough&

Penzien 1975, Ǵeradin& Rixen 1994, Meirovitch 1980, Ohayon& Soize 1998). In addition,

dynamic substructuring methods are very efficient tools for dynamic analysis of complex struc-

tures (Benfield& Hruda 1971, Hintz 1975, Hurty 1965,MacNeal 1971, Meirovitch& Hale 1981,

Rubin 1975) . The Craig-Bampton method (Craig& Bampton 1968 for discrete case; Morand

& Ohayon 1979 for continous case) is very popular and efficient and is based on the use of the

structural modes of each substructure with fixed coupling interface and the static boundary func-

tions related to the coupling interface. Concerning the role played by uncertainties in structural

dynamics modeling, it is known that the effects of uncertainties increase with the frequency.

Consequently, in linear structural dynamics, numerical predictions with finite element models

can be improved by introducing a model of random uncertainties. Random uncertainties in

linear structural dynamics are usually modeled using parametric models. This means that 1) the

uncertain parameters (scalars, vectors or fields) occurring in the boundary value problem (geo-

metrical parameters; boundary conditions; mass density; mechanical parameters of constitutive

equations; structural complexity, interface and junction modeling, etc.) have to be identified;

2) appropriate probabilistic models of these uncertain parameters have to be constructed, and

3) functions mapping the domains of uncertain parameters into the mass, damping and stiffness

operators have to be constructed. Concerning details related to such a parametric approach, we

refer the reader to (Haug et al 1986, Ibrahim 1987, Iwan& Jensen 1993, Lee& Singh 1994,

Lin & Cai 1995, Soong 1973, Spanos& Zeldin 1994) for general developments, to (Ghanem&

Spanos 1991,Kleiber et al 1992, Liu et al 1986, Shinozuka& Deodatis 1988, Spanos& Ghanem

1989, Vanmarcke& Grigoriu 1983) for general aspects related to stochastic finite elements and

to (Ibrahim 1985, Kree& Soize 1986, Roberts& Spanos 1990, Soize 1994) for other aspects

related to this kind of parametric models of random uncertainties in the context of developments

written in stochastic dynamics and parametric stochastic excitations.

In this paper we present a new approach, that we will call a nonparametric approach, for

constructing a model of random uncertainties in dynamic substructuring in order to predict the

matrix-valued frequency response functions of complex structures. Such an approach allows
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nonhomogeneous uncertainties to be modeled with the nonparametric approach. The use of

dynamic substructuring allows a nonparametric approach of random uncertainties to be used

when uncertainties are not homogeneous through the dynamic systems, that is to say, when the

level of uncertainties differs from a part of the structure to another one. This nonparametric

model of random uncertainties does not require identifying the uncertain local parameters in

the reduced matrix model of each substructure as described above for the parametric approach

but is based on the use of recent research (Soize 1999, 2000, 2001) in which the construction

of a probability model for symmetric positive-definite real random matrices using the entropy

optimization principle (Jaynes 1957,Kapur&Kesavan 1992) has been introduced and developed.

These results allow the direct construction of a probabilistic model of the reduced matrix model

of each substructure, for which the only information used in this construction is the available

information constituted of the mean reduced matrix model of the substructure, the existence of

second-order moments of inverses of certain random matrices and some algebraic properties

relative to the positive-definiteness of these random matrices. It should be noted that these

properties have to be taken into account in order to obtain a mechanical system with random

uncertainties, which models a dynamic system. For instance if there are uncertainties on the

reduced mass matrix, the probability distribution has to be such that this random reduced mass

matrix be positive definite. If not, the probability model would be wrong because the reduced

mass matrix of any substructure has to be positive definite.

We then propose an extension of the nonparametric model of random uncertainties to the

Craig-Bampton substructuring method. The method presented could be used if the Craig-

Bampton method was replaced by another substructuring techniques. Such an approach allows

nonhomogeneous random uncertainties in a structure to be modeled by using the nonparametric

approach. In a first section, we introduce the construction of the mean reduced dynamic

stiffness matrix for a substructure using Craig& Bampton dynamic substructuring. The second

section is devoted to the construction of the random reduced dynamic stiffness matrix for a

substructure using the nonparametric model of random uncertainties. In the next section, we

give a summary of the main results established in (Soize 2000, 2001) concerning the probability

model for symmetric positive-definite real random matrices. The two next sections deal with the

nonparametric model of random uncertainties of the reduced matrix model of each substructure
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and the random reduced matrix model for the complete structure. Finally, a numerical example

is presented.

CONSTRUCTION OF THE MEAN REDUCED DYNAMIC STIFFNESS MATRIX FOR

A SUBSTRUCTURE USING DYNAMIC SUBSTRUCTURING

Mean finite element model for a substructure

Let us consider linear vibrations of a damped fixed structure� submitted to external forces.

We are interested in predicting the frequency response functions of structure� in the frequency

band of analysisB = [ωmin , ωmax]. In order to simplify the presentation, we limit the number

of substructures to2 and consequently, we assume that structure� is decomposed into 2

substructures�r with r = 1 or 2 (the extension to a number of substructures greater than2

is straightforward). LetΣ be the coupling interface between substructures�1 and�2. Let Γr

be the boundary of substructure�r (we then haveΣ ⊂ Γr). Each substructure�r is assumed

to be free onΓr\Σ (case of afree substructure) or fixed on a part ofΓr\Σ (case of afixed

substructure). In this paper, the basic finite element model of structure� is identified as the

mean finite element model. In order to simplify the mathematical notations, exponentr related

to substructure�r is canceled when no confusion is possible. For allω in bandB and for

substructure�r, the mean matrix equation is written as

[�(ω)] U(ω) = F(ω) , (1)

in which U(ω) is the�µ-valued vector constituted of theµ DOFs, F(ω) is the�µ-valued

external force vector (due to load vector and coupling force vector) and[�(ω)] is the mean

dynamic stiffness matrix which is written as

[�(ω)] = −ω2[�] + iω[�] + [�] , (2)

where[�], [�] and[�] are the mean mass, damping and stiffness matrices. Mean mass matrix

[�] is symmetric and positive definite. (1) For a fixed substructure, mean damping and stiffness

matrices[�] and [�] are symmetric and positive definite (the substructure with free coupling

interfaceΣ does not have rigid body modes). (2) For a free substructure, mean damping

and stiffness matrices[�] and[�] are symmetric but are only semi-positive definite due to the
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presence of rigid body modes (the substructure with free coupling interfaceΣ has rigid body

modes); in this case, it is assumed that[�] and[�] have the same null space spanned by theµ rig

rigid body modes with1 ≤ µrig ≤ 6. We introduce the usual decomposition ofU(ω) andF(ω)

with respect to theµi internal DOFs and theµΣ = µ − µi coupling DOFs. We then write

U(ω) =

[
Ui(ω)
UΣ(ω)

]
, F(ω) =

[
Fi(ω)

FΣ(ω) + F coup
Σ (ω)

]
. (3)

In Eq. (3),FΣ(ω) is induced by the external prescribed load vector of the mean model on coupling

interfaceΣ (for instance, due to the finite element discretization of an external prescribed body

force field applied to the 3D domain of substructure�r) andF coup
Σ (ω) is the coupling force

vector of the mean model on coupling interfaceΣ. The corresponding block decomposition of

the matrices are

[�] =

[
[�i] [�c]

[�c]
T [�Σ]

]
, [�] =

[
[�i] [�c]

[�c]
T [�Σ]

]
, [�] =

[
[�i] [�c]

[�c]
T [�Σ]

]
, (4)

in which [B ]T denotes the transpose of matrix[B ].

Mean reduced dynamic stiffness matrix for a substructure using Craig-Bampton method

The Craig-Bampton method (Craig & Bampton 1968) is used withN structural modes with

fixed coupling interfaceΣ in order to construct the mean reduced dynamic stiffness matrix for

substructure�r. We then obtain the following mean reduced matrix model for substructure�r,

[
Ui(ω)
UΣ(ω)

]
= [H]

[
q(ω)

UΣ(ω)

]
with [H] =

[
[Φ] [S]
[0] [ I ]

]
, (5)

in which q(ω) is the�N -valued vector of the generalized coordinates,[Φ] is the(µi × N) real

matrix whose columns are the structural modes of the mean model with fixed coupling interface,

[S] is the(µi × µΣ) real matrix defined by[S] = −[�i]
−1[�c], related to the static boundary

functions and[I ] is the(µΣ × µΣ) unity matrix. From Eqs. (1), (3) and (5), we deduced that

[A(ω)]

[
q(ω)

UΣ(ω)

]
=

[
F(ω)

�Σ(ω) + F coup
Σ (ω)

]
, (6)

in which [A(ω)] is the mean reduced dynamic stiffness matrix such that

[A(ω)] = −ω2[M ] + iω[D] + [K] , (7)
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where reduced mass, damping and stiffness matrices are(m×m) real symmetric matrices, with

m = N + µΣ, such that

[M ] = [H]T [�][H] , [D] = [H]T [�][H] , [K] = [H]T [�][H] . (8)

Since for a free or a fixed substructure, the null space of matrix[H] is reduced to{0}, from the

previous properties, it can be deduced that reduced mass matrix[M ] is symmetric and positive

definite and, (1) for a fixed substructure, reduced damping and stiffness matrices[D] and[K]

are symmetric and positive definite, (2) for a free substructure, reduced damping and stiffness

matrices[D] and[K] are symmetric but are only semi-positive definite and[D] and[K] have

the same null space spanned by theµrig rigid body modes with1 ≤ µrig ≤ 6. In Eq. (6), the

�
N -valued vectorF(ω) and the�µΣ -valued vector�Σ(ω) are defined by

F(ω) = [Φ]T Fi(ω) , (9)

�Σ(ω) = [S]T Fi(ω) + FΣ(ω) . (10)

CONSTRUCTION OF THE RANDOM REDUCED DYNAMIC STIFFNESS MATRIX

FOR A SUBSTRUCTURE USING A NONPARAMETRIC PROBABILISTIC MODEL

OF RANDOM UNCERTAINTIES

In this section, we consider substructure�r with random uncertainties. We construct the

probability model for the reduced dynamic stiffness matrix of this substructure using the principle

introduced in the second section. This construction is fundamentally based on the use of the

mean reduced dynamic stiffness matrix of substructure�r introduced in the previous section.

In the following, we need notation relative to the following sets of matrices. Let�n(�),�S
n(�),

�+0
n (�) and�+

n (�) be the set of all the(n×n) real, real symmetric, real symmetric semi-positive

definite and real symmetric positive-definite matrices, respectively. We then have

�
+
n (�) ⊂ �

+0
n (�) ⊂ �

S
n(�) ⊂ �n(�) . (11)

Let �µ,n(�) be the set of all the(µ×n) real rectangular matrices. We then have�n(�) =

�n,n(�).
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Factorization of the mean reduced matrices for a substructure

For the construction of the nonparametric probabilistic model of random uncertainties, we need

the factorization of the mean reduced mass, damping and stiffness matrices for each substructure

�
r. Since[M ] belongs to�+

m(�), then the Cholesky factorization of matrix[M ] yields

[M ] = [LM ]T [LM ] , (12)

in which [LM ] is an upper triangular sparse matrix in�m,m(�).

(1) For a fixed substructure, since reduced damping and stiffness matrices[D] and[K] belong

to�+
m(�), then the Cholesky factorization of matrices[D] and[K] yield

[D] = [LD]T [LD] , (13)

[K] = [LK ]T [LK ] , (14)

in which [LD] and[LK ] are upper triangular sparse matrices in�n,m(�) with

n = m . (15)

(2) For a free substructure, reduced damping and stiffness matrices[D] and [K] belong to

�+0
m (�) and have the same null space spanned byµrig vectors deduced from theµrig rigid body

modes of substructure�r with free coupling interfaceΣ. It can easily be proved that Eqs. (13)-

(14) hold but[LD] and [LK ] are rectangular(n×m) real sparse matrices (which are almost

upper triangular) in which

n = m − µrig . (16)

The computation of such a factorization is usual and will not be explained here.

Construction of a nonparametric model of random uncertainties for the reduced dynamic

stiffness matrix of a substructure

Let us assume that random uncertainties exist in substructure�r. Then its reduced dynamic

stiffness matrix is a random matrix. As explained in the second section, the nonparametric

probabilistic model of substructure�r consists in writing the random reduced dynamic stiffness

matrix (see Eq. (7)) as

[A(ω)] = −ω2[M ] + iω[D] + [K ] , (17)
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in which [M ], [D] and[K ] are(m×m) real random matrices which are defined below. Conse-

quently, the mean reduced matrix equations for substructure�
r, defined by Eqs. (5)-(10), are

replaced by the following random equations. Equation (5) is replaced by

[
Ui(ω)
UΣ(ω)

]
= [H]

[
q(ω)

UΣ(ω)

]
, (18)

in whichUi(ω) andUΣ(ω) are the�µi− and�µΣ−random vectors constituted of theµi internal

DOFs andµΣ coupling DOFs, where[H] is the matrix defined by Eq. (5) and whereq(ω) is

the�N -valued random vector constituted of theN generalized coordinates. Equation (6) is

replaced by the following. For allω fixed in B, random vectorsq(ω) andUΣ(ω) verify the

random reduced matrix equation

[A(ω)]

[
q(ω)

UΣ(ω)

]
=

[
F(ω)

�Σ(ω) + F coup
Σ (ω)

]
, (19)

in whichF(ω) is defined by Eq. (9) and vector�Σ(ω) by Eq. (10), that is to say,

�Σ(ω) = [S]T Fi(ω) + FΣ(ω) , (20)

whereF coup
Σ (ω) is the random coupling force vector on coupling interfaceΣ. Finally, we have

to define the available information concerning the random reduced mass, damping and stiffness

matrices appearing in Eq. (17):

(a) Reduced mass matrix[M ] is a random matrix with values in�+
m(�) and, (1) for a fixed

substructure,[D] and[K ] are random matrices with values in�+
m(�), (2) for a free substructure,

[D] and[K ] are random matrices with values in�+0
m (�) and it is assumed that random matrices

[D] and[K ] have the same deterministic null space of dimensionµrig, spanned by theµrig constant

vectors deduced from theµrig rigid body modes of the mean finite element model; this assumption

is automatically satisfied when the finite element model under consideration corresponds to the

finite element discretization of a boundary value problem related to elastodynamics of a bounded

continuum.

(b) The mean values of random reduced matrices[M ], [D] and[K ] are given by the mean reduced

matrix model,

E{[M ]} = [ M ] , E{[D]} = [ D ] , E{[K ]} = [ K ] , (21)
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in whichE is the mathematical expectation.

(c) An additional available information will be introduced hereinafter concerning the existence

of certain second-order moments of the random matrices introduced in the probabilistic model.

From Eqs. (12)-(16) and (21), we deduce that random reduced matrices[M ], [D] and[K ] can be

written as

[M ] = [LM ]T [GM ] [LM ] , (22)

[D] = [LD]T [GD] [LD] , (23)

[K ] = [LK ]T [GK ] [LK ] , (24)

in which the available information for the random matrices[GM ], [GD] and[GK ] is the follow-

ing:

(a) Matrix [GM ] is a random matrix with values in�+
m(�), matrices[GD] and[GK ] are random

matrices with values in�+
n (�) with n = m for a fixed substructure andn = m− µrig for a free

substructure.

(b) The mean values of random matrices[GM ], [GD] and[GK ] are

E{[GM ]} = [ Im] , E{[GD]} = [ In] , E{[GK ]} = [ In] , (25)

in which [ Im] and[ In] are the(m×m) and(n×n) unity matrices respectively.

(c) Since[GM ] is a random matrix with values in�+
m(�), [GD] and[GK ] are random matrices

with values in�+
n (�), these matrices are invertible almost surely. As explained in (Soize 2000),

this property does not imply that the second-order moment of their inverse exist and this kind

of property is required. Consequently, we introduce the following constraint,

E{‖[GM ]−1‖2
F < +∞ , E{‖[GD]−1‖2

F < +∞ , E{‖[GK]−1‖2
F < +∞ , (26)

in which‖ [B ] ‖F =
(
tr{[B ] [B ]T}

)1/2
is the Frobenius norm of matrix[B ] where tr is the trace

of the matrices. The last step concerns the construction of the probability model for symmetric

positive-definite real random matrices[GM ], [GD] and [GK ] with the available information

defined by Eqs. (25) and (26).
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PROBABILITY MODEL FOR SYMMETRIC POSITIVE-DEFINITE REAL RANDOM

MATRICES

We then need to construct a probability model for symmetric positive-definite real random

matrices[GM ], [GD] and[GK ] using the available information defined by Eqs. (25) and (26).

Let [G] be any one of these three matrices. In this section, we recall the main results established

in (Soize 2000,2001) concerning the construction of such a probability model for a random

matrix [G] with values in�+
n (�) using the entropy optimization principle which allows the

available information to be only used. It should be noted that the results obtained and presented

below differ from the known results concerning the Gaussian Orthogonal Ensemble (GOE)

which has been extensively studied in the literature (see for instance (Mehta 1991)).

Probability density function on the space of positive-definite symmetric real matrices and

characteristic function

Let [G] be a random matrix with values in�+
n (�) whose probability distributionP[G] =

p[G]([G ]) d̃G is defined by a probability density function[G ] �→ p[G]([G ]) from �+
n (�) into

�+ = [0 , +∞[ with respect to the measure (volume element)d̃G on�S
n(�) defined byd̃G =

2n(n−1)/4Π1≤i≤j≤n dGij . This probability density function is such that
∫
�

+
n (�)

p[G]([G ]) d̃G =

1. For all [Θ] in �S
n(�), the characteristic function of random matrix[G] is defined by

Φ[G]([Θ]) = E
{
exp(i ≪ [Θ] , [G] ≫)

}
=

∫
�

+
n (�)

exp( i ≪ [Θ] , [G ] ≫) p[G]([G ]) d̃G in

which≪ [Θ] , [G]≫= tr{[Θ] [G]T} = tr{[Θ] [G]}.

Available information for construction of the probability model

We are interested in the construction of the probability distribution of a second-order random

variable [G] with values in�+
n (�) for which the available information is the mean value

[G] = E{[G]} = [ In] (in which[ In] is the unity matrix in�+
n (�)) and the constraint defined by

E{ln(det[G])} = v with |v| < +∞. It is proved (Soize 2000 and 2001) that this constraint yields

E{‖[G]−1‖2
F } < +∞. Consequently, the available information which is used to construct the

probability model of random matrix[G] with values in�+
n (�) is defined by the following

constraints
∫

�
+
n (�)

p[G]([G ]) d̃G = 1 , (27)
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∫

�
+
n (�)

[G ] p[G]([G ]) d̃G = [ In] ∈ �
+
n (�) , (28)

∫

�
+
n (�)

ln(det[G]) p[G]([G ]) d̃G = v , |v| < +∞ . (29)

It should be noted that, in the proposed theory, the covariance tensor of random matrix[G] is

not considered as an available information.

Probability model using the maximum entropy principle

Introducing the measure of entropy (Shannon 1948) and the maximum entropy principle (Jaynes

1957) to construct the probability model of random matrix[G] with values in�+
n (�) based only

on the use of the available information defined by Eqs. (27)-(29), it is proved (Soize 2000) that,

for [Θ] ∈ �S
n(�), probability density functionp[G]([G ]) and characteristic functionΦ[G]([Θ])

of positive-definite random matrix[G] are written as

p[G]([G ]) = 	
�

+
n (�)([G ])×cG×

(
det[G ]

)λG−1
× exp

(
−

(n−1+2λG)

2
tr{[G ]}

)
, (30)

Φ[G]([Θ])=
{

det
(
[ In] −

2i

(n − 1 + 2λG)
[Θ]

)}−(n−1+2λG)/2

, (31)

in which λG > 0 is a parameter depending onn and defined below, where det denotes the

determinant of matrices and where	
�

+
n (�)([G ]) is equal to 1 if[G ] ∈ �+

n (�) and is equal to

zero if [G ] /∈ �
+
n (�). WhenλG is an integer, the probability distribution defined by Eq. (30)

or (31) coincides with a Wishart distribution (Anderson 1958). IfλG is not an integer, then the

probability distribution defined by Eq. (30) or (31) is not a Wishart distribution. In Eq. (30),

positive constantcG is written as

cG =
(2π)−n(n−1)/4

(
n−1+2λG

2

)n(n−1+2λG)/2

{
Πn

ℓ=1Γ
(

n−ℓ+2λG

2

)} , (32)

where, forℜe z > 0, Γ(z) is the gamma function defined byΓ(z) =
∫ +∞

0
tz−1 e−t dt. Let δG

be the positive real number defined by

δG =

{
E{‖[G]− [G]‖2

F }

‖[G]‖2
F

}1/2

, (33)

in which [G] = [ In] and‖[G]‖2
F = n. ParameterλG(n) is defined by

λG(n) =
1 − δ2

G

2δ2
G

n +
1 + δ2

G

2δ2
G

, (34)
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in which δG has to be chosen independent ofn and such that

0 < δG <

√
n0 + 1

n0 + 5
, (35)

wheren0 is a fixed positive integer such thatn0 ≥ 1. Equations (33) to (35) are used as follows.

The lower boundn0 of positive integern is fixed. Then, the dispersion of the probability model

is fixed by giving parameterδG, independent ofn, a value such that Eq. (35) is satisfied. For

each value of integern ≥ n0, parameterλG(n) is then calculated by using Eq. (34). It can then

be proved (Soize 2000 and 2001) that

E
{
‖[G]−1‖2

F

}
< +∞ , E

{
‖[G]‖η

F

}
< +∞, ∀η > 0 , (36)

and that the covarianceCG
jk,j′k′ = E

{
([G]jk − [G]jk)([G]j′k′ − [G]j′k′)

}
of random variables

[G]jk and[G]j′k′ is written as

CG
jk,j′k′ =

δ2
G

n+1

{
δj′k δjk′ + δjj′ δkk′

}
, (37)

whereδjk = 0 if j �= k andδjj = 1. The varianceV G
jk = CG

jk,jk of random variable[G]jk is

written asV G
jk =

δ2
G

n+1 (1 + δjk).

Representation of random matrix [G]

Generally,λG(n) defined by Eq. (34) is a positive real number. The following algebraic

representation of positive-definite real random matrix[G] allows a procedure for the Monte

Carlo numerical simulation of random matrix[G] to be defined. Random matrix[G] can be

written as

[G] = [LG]T [LG] , (38)

in which [LG] is an upper triangular random matrix with values in�n(�) such that:

(1) random variables{[LG]jj′ , j ≤ j′} are independent;

(2) for j < j′, real-valued random variable[LG]jj′ can be written as[LG]jj′ = σnUjj′ in which

σn = δG(n+1)−1/2 and whereUjj′ is a real-valued Gaussian random variable with zero mean

and variance equal to1;
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(3) for j = j′, positive-valued random variable[L G]jj can be written as[LG]jj = σn

√
2Vj in

which σn is defined above and whereVj is a positive-valued gamma random variable whose

probability density functionpVj
(v) with respect todv is written as

pVj
(v) = 	�+(v)

1

Γ
(

n+1
2δ2

G

+ 1−j
2

) v
n+1

2δ2
G

−
1+j
2

e−v . (39)

Probability model of a set of positive-definite symmetric real random matrices

Let us considerν random matrices[G1], . . . , [Gν] with values in�+
n (�) such that for eachj

in {1, . . . , ν}, the probability density function of random matrix[Gj] satisfies Eqs. (27)-(29).

Applying the maximum entropy principle, it is proved (Soize 2000) that the probability density

function([G1], . . . , [Gν ]) �→ p[G1],...,[Gν ]([G1], . . . , [Gν ]) from�+
n (�) × . . .×�+

n (�) into�+

with respect to the measure (volume element)d̃G1 × . . . × d̃Gν on�S
n(�) × . . . × �S

n(�) is

written as

p[G1],...,[Gν ]([G1], . . . , [Gν ]) = p[G1]([G1]) × . . .× p[Gν ]([Gν ]) , (40)

which means that[G1], . . . , [Gν] are independent random matrices.

NONPARAMETRIC MODEL OF RANDOM UNCERTAINTIES

We apply the results of the previous section to random matrices[M ],[D] and [K ] defined

by Eqs. (22)-(24), for which the available information concerning matrices[GM ], [GD] and

[GK ] is defined by Eqs. (25)-(26). From Eq. (40), we deduce that these random matrices are

independent. The dispersion of each random matrix[M ],[D] or [K ] is controlled by parameter

δM , δD or δK (see Eq. (33)), independent ofm andn, chosen such that Eq. (35) holds,

0 < δM , δD , δK <

√
n0 + 1

n0 + 5
,

and defined by

δB =

{
E{‖[GB] − [GB ]‖2

F }

‖[GB ]‖2
F

}1/2

, (41)

in whichB is M , D or K. With this nonparametric model, the probability distribution of each

random reduced matrix[M ],[D] or [K ] of substructure�r, depends only on two parameters:
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the mean reduced matrix[ M ], [ D ] or [ K ] associated with the mean mechanical model and

corresponding to the design model, and a scalar parameterδM , δD or δK whose values have

to be fixed by the designer in the interval[0 , 1[ in order to give the dispersion level related to

the random reduced matrix of the substructure. ParameterδM , δD or δK can be viewed as a

global parameter. Because the model uncertainties which can be taken into account with the

nonparametric model, cannot be directly quantified in terms of correlation between random

variables, indirect methods have to be imagined in order to estimate parameterδM , δD or δK . A

priori , such a parameter can be estimated (1) by using theoretical condiderations and numerical

experiments, (2) by using measurements of the frequency response functions for a given class

of dynamic systems (that is to say, estimatingδ parameter for that the measured experimental

responses belong to the confidence region constructed with the nonparametric approach) and

(3) from expertise. Concerning the last one, if there is no uncertainty for the reduced stiffness

matrix of a substructure, thenδK = 0. On the other hand, if it is assumed that the global

uncertainty for the reduced stiffness matrix of a substructure is 10%, thenδK has to be0.1.

In order to carry out the Monte Carlo numerical simulation (Cochran 1977, Kalos& Whitlock

1986, Rubinstein 1981) of random dynamical responses of the coupled system�, we use the

adapted algebraic representation of random matrices[GM ], [GD] and[GK ] defined by Eqs. (38)-

(39). We then have,

[M ] = [LM ]T [GM ] [LM ] , [GM ] = [LGM
]T [LGM

] , (42)

[D] = [LD]T [GD] [LD] , [GD] = [LGD
]T [LGD

] , (43)

[K ] = [LK ]T [GK ] [LK ] , [GK ] = [LGK
]T [LGK

] . (44)

RANDOM REDUCED MATRIX MODEL FOR THE COMPLETE STRUCTURE

In order to distinguish substructure�1 (r = 1) from substructure�2 (r = 2), exponentr (with

r = 1 or = 2) is reintroduced. The coupling conditions on coupling interfaceΣ consist in

writing the continuity of the random displacement field which leads to writeU1
Σ = U2

Σ = UΣ

and the equilibrium of coupling random force vectors leading to writeF1, coup
Σ +F2, coup

Σ = 0. The

block decomposition of random reduced dynamic stiffness matrix[A r(ω)] defined by Eq. (17)
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corresponding to Eq. (19) is written as

[Ar(ω)] =

⎡
⎣

[Ar(ω)] [Ar
c(ω)]

[Ar
c(ω)]T [Ar

Σ(ω)]

⎤
⎦ . (45)

Using the coupling conditions on interfaceΣ and Eq. (45) forr = 1 andr = 2, the random

reduced matrix equation for structure� is written as

⎡
⎢⎢⎢⎣

[A1(ω)] [ 0 ] [A1
c(ω)]

[ 0 ] [A2(ω)] [A2
c(ω)]

[A1
c(ω)]T [A2

c(ω)]T [A1
Σ(ω)] + [A2

Σ(ω)]

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

q1(ω)

q2(ω)

UΣ(ω)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

F
1(ω)

F
2(ω)

�Σ(ω)

⎤
⎥⎥⎥⎦ , (46)

in whichF
1(ω) andF

2(ω) are defined by Eq. (9) forr = 1 andr = 2, and where

�Σ(ω) = [S1]T F1
i (ω) + [S2]T F2

i (ω) + F1
Σ(ω) + F2

Σ(ω) , (47)

in whichFr
i (ω) andFr

Σ(ω) are defined by Eqs. (3) forr = 1 andr = 2, and where[Sr] is defined

in Eq. (5) forr = 1 andr = 2. The random responseV(ω), constituted of theν = µ1
i +µ2

i +µΣ

DOFs of structure�, is then calculated by the following matrix equation

V(ω) =

⎡
⎢⎢⎢⎣

U1(ω)

U2(ω)

UΣ(ω)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

[Φ1] [ 0 ] [S1]

[ 0 ] [Φ2] [S2]

[ 0 ] [ 0 ] [ I ]

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

q1(ω)

q2(ω)

UΣ(ω)

⎤
⎥⎥⎥⎦ . (48)

NUMERICAL EXAMPLE

Definition of the mean model

We consider a mean model constituted of a rectangular, homogeneous, isotropic thin plate,

simply supported, with a constant thickness0.4×10−3 m, width 0.5 m, length1.0 m, mass

density7800 kg/m3, Young’s modulus2.1×1011 N/m2, Poisson’s ratio0.29. Two point

masses of3 kg and4 kg are located at points(0.4, 0.2) and (0.75, 0.35), and three springs

having the same stiffness coefficient2.388×107 N/m are attached normally to the plate and

located at points(0.28, 0.22), (0.54, 0.33) and(0.83, 0.44). Consequently, the master structure

defined above is not homogeneous. This master structure is decomposed into two substructures
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�1 and�2. The first one has a length0.6 m and the second one, a length0.4 m (see Figure 1).

The frequency band of analysis isB = 2π × [1, 100] rad/s. The mean finite element model

of the master structure is constructed using 4-nodes bending plate elements. The mesh size is

0.01 m × 0.01 m. The master structure hasν = 14849 DOFs corresponding toµ1
i = 8840,

µ2
i = 5860 andµΣ = 149. The mean damping matrix of the master structure is constructed

using a Rayleigh model corresponding to a mean damping rateξ = 0.03 for eigenfrequencies

f1 = 2.6Hz and f35 = 106.38Hz of the mean master structure. The master structure is

subjected to an external load vectorη(ω)g in which spatial partg = (g
1
, . . . , g

n
) ∈ �

n is such

that g
j

= 0 for all j ∈ {1, . . . , n} excepted for DOF dof1 corresponding to the node whose

(x, y) coordinates are(0.24, 0.24). Functionω �→ η(ω) is defined byη(ω) = 	B(ω) in which

ω �→ 	B(ω) is such that	B(ω) = 1 if ω ∈ B and	B(ω) = 0 if ω /∈ B. We introduce dof2 and

dof3 as the observed DOFs corresponding to the nodes whose(x, y) coordinates are(0.39, 0.31)

and(0.79, 0.24) respectively.

Dynamic substructuring model with random uncertainties

Concerning the dynamic substructuring model with random uncertainties, the calculations are

carried out withN = N 1 = N2. The dispersion parameters are defined for each substructure

�r (r = 1, 2) by n0 = 4 and δM = δD = δK = 0.1. Random responses of the master

structure modeled by substructuring are obtained by solving Eqs. (46)-(48). A Monte Carlo

numerical simulation is carried out withns = 1000 samples denoted as{θj}
ns

j=1 and for each

θj , ||V(θj)||
2
B =

∫
B
||V(ω; θj)||

2dω is calculated. The mean value|||V|||2B = E{||V||2B} of

random variable||V||2B is then estimated by|||V|||2B ≃ (1/ns)
∑ns

j=1 ||V(θj)||
2
B.

Convergence analysis

Figure 2 shows the graph ofns �→ 10 log10(|||V|||2B) for N = 10, 20, 30 and100. A good

convergence is obtained forns = 500. Figure 3 shows the graph ofN �→ 10 log10(|||V|||2B)

for a number of samples fixed tons = 500. A good convergence is obtained forN = 20.

From Figures 2 and 3, it can be deduced thatns = 500 andN = 20 correspond to a good

approximation. Forω fixed in B, let dBk(ω) be the random variable defined by dBk(ω) =

10 log10(|Vk(ω)|2) with V(ω) =
(
V1(ω), . . . , Vν(ω)

)
.
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Confidence region associated with a given probability level

The construction of the confidence region related to random variable dBk(ω) is carried out

as explained in (Soize& Bjaoui 2000). This confidence region is defined by the upper and

lower envelopesω �→ dB+
k (ω) andω �→ dB−

k (ω) of the frequency-response-function modulus

corresponding to a given probability levelPc and is such that the probabilityP
{

dB−
k (ω) <

dBk(ω) ≤ dB+
k (ω)

}
= Pc. By construction, only dB+k (ω) is unknown and the lower envelope

is given by dB−k (ω) = 2 dB0
k(ω) − dB+

k (ω) with dB0
k(ω) = 10 log10(|E{Vk(ω)}|2). The

upper envelope dB+k (ω) is constructed using the Chebychev’s inequality. We can then write

P
{
|Vk(ω)−E{Vk(ω)}| ≥ ak(ω)

}
≤ Var{Vk(ω)}/a2

k(ω) in which Var{Vk(ω)} is the variance

of random variableVk(ω). We deduce thatP
{

dB−
k (ω) < dBk(ω) < dB+

k (ω)
}
≥ Pc with

dB+
k (ω) = 20 log10(|E{Vk(ω)}| + ak(ω)) andPc = 1 − Var{Vk(ω)}/a2

k(ω).

Figures 4, 5 and 6 show the confidence region defined by the upper and lower envelopes (thick

solid lines) constructed withPc = 0.95 for excited DOFk = dof1 in plate1 and for observed

DOFsk = dof2 andk = dof3 in plates1 and2 respectively. The graph off �→ dB0
k(f)

is represented by the thin solid line withf -axis in Hertz. These figures show that the size

of the confidence region increases in the frequency band when frequency is increasing. This

phenomenon is due to the fact that the sensitivity of an eigenmode to random uncertainties

increases with its rank.

Extreme value statistics associated with samples

In addition, we introduce functionsω �→ dBmax
k (ω; �) = maxj=1,...,ns

dBk(ω; θj) andω �→

dBmin
k (ω; �) = minj=1,...,ns

dBk(ω; θj) in which � = (θ1, . . . , θns
). Figures 7, 8 and 9 are

related to excited DOFk = dof1 in plate1, to observed DOFk = dof2 in plate1 and to observed

DOFk = dof3 in plate2. Each figure shows the comparison betweenf �→ dBmax
k (f ; �) (upper

thin solid line) andf �→ dBmin
k (f ; �) (lower thin solid line) with the confidence region defined

by its upper envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f)

(lower thick solid line) corresponding toPc = 0.95, in whichf is in Hertz. These three figures

allow us to conclude that the confidence region approach yields a very good approximation of

the extreme value statistics.

CONCLUSION
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We have presented an approach allowing the random uncertainties to be modeled by a nonpara-

metric model for prediction of frequency response functions in linear structural dynamics using

the Craig-Bampton dynamic substructuring method in the low-frequency range. The parametric

approaches existing in literature are very useful when the number of uncertain parameters is

small and when the probabilistic model can be constructed for the set of parameters considered.

The nonparametric approach presented is useful when the number of uncertain parameters is

high or when the probabilistic model is difficult to construct for the set of parameters con-

sidered. In addition, the parametric approaches do not allow the model uncertainties to be

taken into account (because a parametric approach is associated with a fixed model exhibiting

some parameters), whereas the nonparametric approach proposed allows to take into account

the model uncertainties. The main interest of using such a nonparametric approach for random

uncertainties modeling in dynamic substructuring is its capability to model nonhomogeneous

random uncertainties in the global structure. This means that a substructure can be taken

without uncertainties and another one with uncertainties. If random uncertainties is taken into

account in a substructure, the dynamic part (structural modes of the substructure with fixed

interface) and the static part (static boundary functions of the coupling interface) is taken into

account by the nonparametric probabilistic approach. It can be seen that such an approach is

perfectly adapted for modeling random uncertainties in a complex mechanical junction (a sub-

structure with random uncertainties) realizing the attachment of two main substructures without

significant uncertainties.

An explicit construction and representation of the probability model have been obtained and are

very well suited to algebraic calculus and to Monte Carlo numerical simulation. The fundamental

properties related to the convergence of the stochastic solution with respect to the dimension of

the random reduced matrix model of each substructure has been analyzed. This convergence

analysis carried out has allowed the consistency of the theory proposed to be proved and the

parameters of the probability distribution of the random reduced matrices to be clearly defined.
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. Geometry of the master structure:• point masses,+ springs,⊙ input force,◦ output

normal displacements.

FIG. 2. Graph ofns �→ 10 log10(|||V|||2B) for N = 10, 20, 30 and100.

FIG. 3. Graph ofN �→ 10 log10(|||V|||2B) for ns = 500.

FIG. 4. For excited DOFk = dof1 in plate1, graph of functionf �→ dB0
k(f) (thin solid

line) with f in Hertz and confidence region corresponding toPc = 0.95, defined by its upper

envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f) (lower

thick solid line).

FIG. 5. For observed DOFk = dof2 in plate1, graph of functionf �→ dB0
k(f) (thin solid

line) with f in Hertz and confidence region corresponding toPc = 0.95, defined by its upper

envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f) (lower

thick solid line).

FIG. 6. For observed DOFk = dof3 in plate2, graph of functionf �→ dB0
k(f) (thin solid

line) with f in Hertz and confidence region corresponding toPc = 0.95, defined by its upper

envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f) (lower

thick solid line).

FIG. 7. For excited DOFk = dof1 in plate1, comparison betweenf �→ dBmax
k (f ; �) (upper

thin solid line) andf �→ dBmin
k (f ; �) (lower thin solid line) with the confidence region defined

by its upper envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f)

(lower thick solid line) corresponding toPc = 0.95, in whichf is in Hertz.

FIG. 8. For observed DOFk = dof2 in plate1, comparison betweenf �→ dBmax
k (f ; �) (upper

thin solid line) andf �→ dBmin
k (f ; �) (lower thin solid line) with the confidence region defined

by its upper envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f)

(lower thick solid line) corresponding toPc = 0.95, in whichf is in Hertz.

FIG. 9. For observed DOFk = dof3 in plate2, comparison betweenf �→ dBmax
k (f ; �) (upper

thin solid line) andf �→ dBmin
k (f ; �) (lower thin solid line) with the confidence region defined

by its upper envelopef �→ dB+
k (f) (upper thick solid line) and its lower envelopef �→ dB−

k (f)

(lower thick solid line) corresponding toPc = 0.95, in whichf is in Hertz.
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