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Dynamic Substructuring in the

Medium-Frequency Range

by

C. Soize1 and S. Mziou2

Abstract

There are several methods in linear dynamic substructuring for numerical simulation of complex

structures in the low-frequency range, that is to say in the modal range. For instance, the Craig-

Bampton method is a very efficient and popular method. Such a method, based on the use of

the first normal structural modes of each undamped substructure with fixed coupling interface,

leads to small sized reduced matrix models. In the medium-frequency range, i.e. in the

nonmodal range, and for complex structures, a large number of normal structural modes should

be computed with finite element models having a very large number of degrees of freedom.

Such an approach is not really efficient and generally, cannot be carried out. In this paper,

we present a new approach in dynamic substructuring for numerical calculation of complex

structures in the medium-frequency range. This approach is still based on the use of the Craig-

Bampton decomposition of the admissible displacement field but the reduced matrix model of

each substructure with fixed coupling interface is not constructed using the normal structural

modes of each undamped substructure, but using the eigenfunctions associated with the first

highest eigenvalues of the mechanical energy operator relative to the medium-frequency band,

for each damped substructure with fixed coupling interface. The method and numerical example

are presented.
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Nomenclature

Ar(ω) = dynamic stiffness matrix of substructure Ωr with free coupling interface

B, Bα = MF narrow bands

 = MF broad band

! = set of all the complex numbers

Dr(ω) = damping matrix of substructure Ωr with free coupling interface

"
r
B = matrix of the mechanical energy operator relative to MF band B for substructure Ωr

with fixed coupling interface

Fr = vector of the nodal external forces for substructure Ωr

Gr = metric matrix for substructure Ωr with fixed coupling interface

Gr
Σ

= vector of the nodal internal coupling forces for substructure Ωr

Kr(ω) = stiffness matrix of substructure Ωr with free coupling interface

M r = mass matrix of substructure Ωr with free coupling interface

m = number of interface coupling DOFs

Nr = first highest eigenvalues for substructure Ωr with fixed coupling interface

nr = number of DOFs for substructure Ωr with free coupling interface

P r = matrix of the MF energy eigenvectors for substructure Ωr with fixed coupling interface

Pr = MF energy eigenvector for substructure Ωr with fixed coupling interface

qr = vector of the generalized coordinates for substructure Ωr with fixed coupling interface

# = set of all the real numbers

T r
ii(ω) = matrix-valued frequency response function for substructure Ωr

with fixed coupling interface

Ur = vector of the nr DOFs for substructure Ωr

Ur
i = vector of the nr − m internal DOFs for substructure Ωr

Ur
j = vector of the m interface coupling DOFs for substructure Ωr

∆ω = bandwidth of band B

λr = eigenvalue for substructure Ωr with fixed coupling interface
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Φr
ij = static boundary functions of the coupling interface for substructure Ωr

Ω = bounded domain of the entire structure

Ωr, Ω1, Ω2 = domains of substructures r, 1, 2, respectively

ω = angular frequency in rad/s

ωB = central frequency of band B

Σ = coupling interface between Ω1 and Ω2

Introduction

In the low-frequency range, that is to say in the modal range, the dynamic substructuring

methods1−7 are efficient to calculate the linear dynamical response of complex structures

modeled by the finite element method. For instance, the Craig-Bampton method1 is very

efficient and popular. This method is based on the use of the normal structural modes of each

undamped substructure with fixed coupling interface allowing a reduced matrix model to be

constructed. It is known that the computation and the use of the normal structural modes are not

really efficient to construct such a reduced matrix model in the medium-frequency range that

is to say, in the nonmodal range8. Recently, a method9 was proposed to construct a reduced

matrix model in the medium-frequency (MF) range. In this paper, we present a new approach

for dynamic substructuring in the MF range. This approach is similar to the Craig-Bampton

method, but the normal structural modes for each undamped substructure with fixed coupling

interface are replaced by the eigenfunctions associated with the first highest eigenvalues of the

mechanical energy operator relative to the MF band, for each damped substructure with fixed

coupling interface. This paper is mainly devoted to the presentation of a methodology.

It should be noted that the set of the eigenfunctions of the mechanical energy operator relative

to an MF band of a damped structure does not coincide with the set of the normal structural

modes of the associated undamped structure. From Ref. 9, it can easily be verified that these

two sets coincide only (1) if the mass density of the substructure is a constant (homogeneous

in mass) (generally, this property is never verified for a complex dynamical system) and (2) if

the damping operator is diagonalized by the structural modes (generally, this property is not
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verified for a complex dynamical system in the MF range due to the viscoelasticity behavior of

the materials). If either of these two conditions is not satisfied, then this particular property does

not hold: generally, these conditions are not satisfied for complex structures in the MF range

and consequently, these two sets are very different (this statement which is deduced from the

theory has been numerically confirmed; see for instance Ref. 10). The damping operator plays

a fundamental role in the MF range due to the overlap of the normal structural modes and by

their coupling by damping. The set of the eigenfunctions (which are real-valued functions) of

the mechanical energy operator relative to the MF band take into account the damping operator

while the set of the normal structural modes does not. Consequently, the first set is much better

adapted to the MF range than the second set.

Concerning the use of the second set (normal structural modes of the associated undamped

structure) in the MF range, there are two main methods.

(1) The first one consists in utilizing the normal structural modes associated with the Nnsm

lowest eigenfrequencies. Since the MF range is considered, then Nnsm can be very large

(several hundreds or several thousands). In this case, the strategy for analyzing the convergence

is clear and consists in increasing the value of Nnsm. Unfortunately, such an approach can be

very difficult to perform in the MF range for complex dynamical systems because Nnsm is very

large at convergence and numerical difficulties arise. In addition, the dimension of the reduced

matrix model is then large and not small.

(2) The second method consists in computing normal structural modes associated with the

Mnsm = Nnsm − N0
nsm eigenfrequencies belonging to the MF band in which 1 ≪ N 0

nsm <

Nnsm and where N0
nsm is the number of normal structural modes whose eigenfrequencies are

lower than the MF limited band. Generally, in the MF range, the modal density can be locally

high, and numerical difficulties can arise related to the convergence of any iterative algorithm

used to compute the Mnsm normal modes. In this case, Mnsm is not too large, but the strategy

for analyzing the convergence is not clear at all: there are two parameters for studying the

convergence which are N0
nsm and Mnsm and the convergence is not monotonic with respect to
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the couple of parameters (N0
nsm, Mnsm). Such an approach is relatively complicate and tricky

for dynamic substructuring in the medium-frequency range particularly when the number of

substructures is large.

Concerning the use of the first set (eigenfunctions of the mechanical energy operator of the

damped structure relative to the MF band), the eigenfunctions associated with the Neig highest

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λNeig
≥ . . . → 0 of the mechanical energy operator have to

be computed. Since the trace of this mechanical energy operator is equal to
∑

j≥1
λj < +∞,

the dominant eigensubspace can be computed using a clear and straightforward strategy for

choosing (a priori) the order Neig of the reduced matrix model adaped to the MF range9 of each

substructure (based on the use of a simple criterion) and the convergence analysis with respect to

Neig is straightforward. The convergence of the iterative algorithm (subspace iteration method)

used to compute the Neig eigenfunctions is very fast (a few iterations). At convergence, for a

given MF narrow band, dimension Neig of the reduced matrix model is small. Such a set of

eigenfunctions is very well adapted to the construction of the reduced matrix model in dynamic

substructuring for MF range.

In order to simplify the presentation, the proposed method of dynamic substructuring in the MF

range is presented utilizing the finite element discretization of the dynamical system and are

deduced from the continuum formulation in viscoelastodynamics11.

The first section deals with the new dynamic substructuring method adapted to the medium-

frequency range for a structure constitued of viscoelastic materials (therefore, the damping

and stiffness operators depend on the frequency). This new approach consists in utilizing two

known results: the Craig-Bampton decomposition1 of the admissible displacement vector space

for each substructure and the construction of a reduced matrix model in the MF range introduced

in Ref. 9. In the second section, the construction of the eigenfunctions of the mechanical energy

operator relative to an MF band for each damped substructure with fixed coupling interface is

presented. This section is mainly constituted of a short summary of a previous work9. Finally,

in the last section, a numerical example is presented. A convergence analysis of the response
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is analyzed with respect to the order of the reduced matrix model of each substructure. The

validation of the dynamic substructuring method in the MF range proposed in this paper is

obtained in comparing the MF dynamic substructuring results with the reference solution. The

example presented has been chosen as a simple system allowing a reference solution to be

constructed and allowing the presented results to be reproduced (a more complex industrial

mechanical system is analyzed in Ref. 11). However, this simple system contains the required

specificities: the structure in not homogeneous in mass and in stiffness and there is a significant

number of normal structural modes (141 normal modes) below the MF limited broad band of

analysis which itself contains a significant number of normal structural modes (108 normal

modes).

Dynamic Substructuring Construction in the Medium-Frequency Range

In this paper, the formulation is written in the frequency domain ω and is presented with the finite

element model12,13 which is deduced from the countinuous formulation for three-dimensional

viscoelastic media11. It is assumed that the structure is constituted of two substructures (gener-

alization to a number of substructures greater than 2 is straightforward).

Structure and Frequency Band of Analysis

We consider linear vibrations of a three-dimensional structure around a static equilibrium con-

figuration considered as a natural state (without prestresses). At static equilibrium, the structure

occupies a bounded domain Ω of  3 and is made of viscoelastic material8,13,14. We are inter-

ested in the construction of the matrix-valued frequency response function of the structure in an

MF narrow band B defined by B = [ωB −∆ω/2 , ωB +∆ω/2] ⊂ ]0 , +∞[, in which ωB is the

central frequency and where ∆ω is the bandwidth. If the response has to be constructed for ω

belonging to an MF broad band !, then broad band ! is written as a finite union ! = ∪α Bα of

the MF narrow bands Bα. The approach used for the construction of the dynamic substructuring

response over MF broad band ! consists in constructing the response over each MF narrow band

Bα using only the eigenfunctions of the mechanical energy operator relative to MF narrow band
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Bα. Then, a concatenation of responses over bands Bα is carried out for obtaining the response

on MF broad band  . Below, the theory is then presented for an MF narrow band B.

Reduced Matrix Model for each Substructure and for the Structure

Structure Ω is decomposed into two substructures Ω1 and Ω2 whose coupling interface is Σ.

The analysis is performed in MF narrow band B. We consider finite element meshes of Ω1

and Ω2 which are assumed to be compatible on coupling interface Σ. For ω ∈ B and for each

substructure Ωr with r ∈ {1, 2}, we introduce the !nr -valued vectorsUr(ω), Fr(ω) andGr
Σ
(ω)

constitued of the nr DOFs of substructure Ωr with free coupling interface Σ, the discretized

forces induced by external body and surface forces, and the discretized internal coupling forces

applied to coupling interface Σ, respectively. The matrix equation for substructure Ωr with free

coupling interface Σ is then written as

[Ar(ω)]Ur(ω) = Fr(ω) +Gr
Σ(ω) , (1)

in which symmetric (nr × nr) complex matrix [Ar(ω)] is the dynamic stiffness matrix of

substructure Ωr with free coupling interface Σ, defined by

[Ar(ω)] = −ω2[M r] + iω[Dr(ω)] + [Kr(ω)] , (2)

where [Mr], [Dr(ω)] and [Kr(ω)] are symmetric (nr×nr) real matrices. It should be noted that

the damping and stiffness matrices depend on frequency ω due to the presence of viscoelastic

materials. It is recalled that the Craig-Bampton method1 introduced for finite element models

is based on the following property relative to the continuous case. The admissible displacement

vector space Vr for substructure Ωr with free coupling interface Σ can be expressed as the

direct sum Vr = V Σ
r ⊕ V 0

r of the vector space V Σ
r of the static boundary functions relative

to coupling interface Σ with the admissible displacement vector space V 0
r for substructure

Ωr with fixed coupling interface Σ. We then propose the following approach for dynamic

substructuring in the MF range. For damped substructure Ωr with fixed coupling interface Σ, it

can be proved9 that the set of all the eigenfunctions of the mechanical energy operator relative
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to MF band B is a complete family in admissible displacement vector space V 0
r . Consequently,

the construction proposed consists in substituting the normal structural modes associated with

the first lowest eigenfrequencies of undamped substructure Ωr with fixed coupling interface Σ

by the eigenfunctions associated with the first highest eigenvalues of the mechanical energy

operator relative to MF band B for damped substructure Ωr with fixed coupling interface Σ.

For a fixed MF narrow band B with central frequency ωB , the static boundary functions relative

to coupling interface Σ are calculated with stiffness matrix [Kr(ωB)] at central frequency

ωB . Let us consider the finite element model. We introduce subscript j for the m coupling

DOFs and subscript i for the nr − m internal DOFs. For all ω in MF band B, we then have

Ur
i (ω) = [P r] qr(ω) + [Φr

ij(ωB)]Ur
j(ω) in which [Φr

ij(ωB)] is the (nr − m, m) real matrix

defined by [Φr
ij(ωB)] = −[Kr

ii(ωB)]−1 [Kr
ij(ωB)]. The matrix [P r] is the (nr − m, Nr)

real matrix whose columns are the eigenvectors associated with the Nr highest eigenvalues

of a generalized eigenvalue problem [ r
B]Pr = λr [Gr] Pr with positive-definite symmetric

real matrices [ r
B] and [Gr] corresponding to the finite element discretization of the eigenvalue

problemEr
Bp

r = λ∞,rpr for the mechanical energy operator relative to band B. Linear operator

Er
B is a positive-definite symmetric real trace operator9 which means that the positive real

eigenvalues of Er
B constitute a sequence λ∞,r

1
≥ λ∞,r

2
≥ . . . → 0 such that

∑

j≥1
λ∞,r

j < +∞

and the eigenfunctions {pr
j , j ≥ 1} constitute a complete family in V 0

r . The reduced matrix

model is obtained in taking Nr << nr − m. The vectors of [P r] will be called the MF energy

eigenvectors and are constructed in the next section. The vector qr(ω) is the !Nr -valued vector

of the generalized coordinates. Consequently, for all ω in B, vectorUr(ω) of the physical DOFs

can be written with respect to {qr(ω), Ur
j(ω)} as

[

Ur
i (ω)

Ur
j(ω)

]

=

[

[P r] [Φr
ij(ωB)]

[ 0 ] [Im]

] [

qr(ω)
Ur

j(ω)

]

, (3)

in which [Im] is the (m, m) unity matrix. The (nr, Nr + m) real matrix on the right-hand side

of Eq. (3) is denoted by [Hr]. The reduced matrix model associated with Eq. (1) is then defined

by

[Ar(ω)]

[

qr(ω)
Ur

j(ω)

]

= F
r(ω) + G

r
Σ(ω) , ∀ω ∈ B , (4)
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in which [Ar(ω)] = [Hr]T [Ar(ω)] [Hr], Fr(ω) = [Hr]TFr(ω) and Gr
Σ
(ω) = [Hr]TGr

Σ
(ω).

The reduced matrix model for the structure is usually obtainted by assemblage of the substruc-

tures.

Construction of the MF Energy Eigenvectors

For a given MF narrow band B, we then have to construct the dominant eigensubspace of the

generalized eigenvalue problem

[ r
B]Pr = λr [Gr] Pr , (5)

in which matrix [ r
B] of the finite element discretization of the mechanical energy operator

relative to band B is the positive-definite symmetric (nr −m, nr −m) real matrix defined by9

[ r
B] = [Gr] [Er

B] [Gr] with

[Er
B] =

1

π

∫

B

ω2 ℜe {[T r
ii(ω)]∗ [M r

ii] [T
r
ii(ω)]} dω , (6)

where ℜe is the real part of complex number, [T r
ii(ω)]∗ = [T r

ii(ω)]
T

is the adjoint matrix and

[T r
ii(ω)] = [Ar

ii(ω)]−1 exists for all ω in B. It should be noted that [ r
B] depends on MF band

B, but does not depend on the external excitation. The matrix [Gr] is the positive-definite

symmetric (nr − m, nr − m) real matrix corresponding to the finite element discretization of

the bilinear form (u, v) 7→
∫

Ωr
u(x) ·v(x) dx and the MF energy eigenvector Pr ∈ !nr−m is the

eigenvector associated with the positive real eigenvalue λr. The columns of (nr − m, Nr) real

matrix [P r] introduced in the previous section are the eigenvectors Pr
1, . . . ,P

r
Nr

associated with

the Nr highest eigenvalues λr
1 ≥ λr

2 ≥ . . . ≥ λr
Nr

> 0 of the generalized eigenvalue problem.

Since B is an MF narrow band, it is proved9 that there is a strong decrease of eigenvalues

λr
1 ≥ λr

2 ≥ . . . when the order of the eigenvalues is greater than a small value Nr (one dozen

or a few dozens). Consequently, there exists a possibility of constructing an efficient reduced

matrix model independant of the spatial excitation of the dynamical system but depending on

the structural damping, that is necessary in the MF frequency range.
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The construction of the dominant eigenspace of this generalized eigenvalue problem with positive

matrices is performed by using the subspace iteration method12 in which matrix [Er
B] is not

explicitly calculated. An indirect procedure9 is used.

Numerical Example, Convergence Analysis and Validation

Defining the Dynamical System

We consider a rectangular thin plate located in the plane (0X, 0Y ) of a cartesian coordinate

system (0XY Z), in bending mode (the outplane displacement is Z). This plate is homogeneous,

isotropic , simply supported, with a constant thickness 0.4×10−3 m, width 0.5 m, length 1.0 m,

mass density 7800 kg/m3, Young’s modulus 2.1 × 1011 N/m2 and Poisson’s ratio 0.29. Two

point masses of 3 kg and 4 kg are located at points (0.2, 0.4, 0) and (0.35, 0.75, 0), and three

springs having the same stiffness coefficient 2.388 × 107 N/m are attached normally to the

plate and located at points (0.22, 0.28, 0), (0.33, 0.54, 0) and (0.44, 0.83, 0). Consequently, the

structure defined above is not homogeneous. This structure has 141 normal structural modes

in the [0, 400] Hz frequency band and has 108 normal structural modes in the [400 , 700] Hz

frequency band. This structure is decomposed into two substructures Ω1 and Ω2 (see Fig. 1).

The finite element model is constructed using 4-nodes bending plate elements. The mesh size

is 0.01 m× 0.01 m. We have m = 149, n1 = 8989 and n2 = 6009. The total number of DOFs

of the structure is n = (n1 − m) + (n2 − m) + m = 14849. For each substructure Ωr and

for a fixed narrow band B, damping matrix [Dr(ω)] is written as [Dr(ω)] = θB [Kr], in which

θB = 2ξ/ωB with ξ = 0.01.

Defining the Medium-Frequency Band and the reference solution

The reference solution of the problem is calculated over the [0 , 800] Hz broad frequency

band by using the direct frequency-by-frequency method and without using the MF dynamic

substructuring approach. Let e(ω) = tr{[ (ω)][ (ω)]∗} in which [ (ω)] = [T (ω)] [!] is the

matrix-valued frequency response function corresponding to the input DOFs defined by the

(n × 50) real matrix [!] constituted of 0 and 1 (outplane displacements at 50 nodes uniformly
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distributed in space over the structure). Figure 2 displays the graph of the function ν 7→

10 log
10

e(2πν) calculated over the [0 , 800] Hz broad frequency band. This figure clearly

defined the medium-frequency range ([80, 800] Hz) and the low-frequency range ([0, 80] Hz).

MF Dynamic Substructuring

We are interested in the prediction of the response of the structure over the MF broad band

 = [400 , 700] Hz by using the MF dynamic substructuring method. The validation is obtained

by comparing results with the reference solution. The MF broad frequency band is written as

 = ∪6
α=1 Bα, each narrow band Bα having 50 Hz bandwidth. For these comparisons,

we consider (1) function ν 7→ 10 log
10

e(2πν) introduced in the previous subsection, (2) the

frequency response function at the driven point (node 9155) of coordinates (0.31, 0.29, 0), (3)

the cross-frequency response function at a point (node 3235) of coordinates (0.11, 0.49, 0)

located in substructure Ω1 and (4) the cross-frequency response function at a point (node 9305)

of coordinates (0.31, 0.79, 0) located in substructure Ω2 (see Fig. 3).

Figures 4 and 5 correspond to the results obtained by the MF dynamic substructuring for the

[500 , 550] Hz MF narrow frequency band. For each substructure Ωr with fixed coupling

interface, Fig. 4 displays the distribution of highest eigenvalues λr
1 ≥ λr

2 ≥ . . . ≥ λr
50 of the

generalized eigenvalue problem defined by Eq. (5). For each substructure, there is a strong

decrease in the eigenvalues which means there exists a possibility of constructing an efficient

reduced model for each substructure in this MF narrow band. It can be seen that N1 = 30

and N2 = 25 are acceptable values. For substructures Ω1 and Ω2, dimensions N1 and N2 of

the reduced matrix models are written as N1 = 5 + N and N2 = N . Figure 5 displays the

graph of the function N 7→ 10 log10 {
∫

B
e(ω) dω} which allows convergence of the response

to be analyzed when the MF dynamic substructuring method is used. This graph confirms that

N1 = 5 + 25 = 30 and N2 = 25 are reasonable values for reaching convergence.

Figures 6 to 9 correspond to the numerical results obtained by using the MF dynamic sub-

structuring over MF broad frequency band  = ∪6
α=1 Bα. Figure 6 displays the graphs of

functions ν 7→ 10 log
10

e(2πν) over [400, 700] Hz broad frequency band corresponding to the
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MF dynamic substructuring (thick solid line) and to the reference solution (thin solid line). The

small discontinuities appearing in the graphs are due to the discontinuity induced by the choice

of the damping model which is constant over each MF narrow band. Figures 7 to 9 correspond

to the graphs of the frequency response functions (modulus in dB and unwrap phase in radian)

for the driven point (node 9155), the observation point in substucture Ω1 (node 3235) and the

observation point in substucture Ω2 (node 9305). In each figure, the graph corresponding to

the MF dynamic substructuring result (thick solid line) is compared with the reference solution

(thin solid line). Figures 6 to 9 show that the method proposed gives a reasonable prediction

over the MF broad frequency band.

Conclusions

We have presented a dynamic substucturing method for general damped structures modeled by

the finite element method in the medium-frequency range. This method is based on the use of

the Craig-Bampton method in which the normal structural modes associated with the first lowest

eigenfrequencies of each undamped substructure with fixed coupling interface, is replaced by a

vector basis adapted to the MF range for each damped substructure with fixed coupling interface.

The reduced matrix model for each substructure is intrinsic and adapted to each MF narrow

band. The method exhibits a clear strategy with respect to the troncature problems in the MF

band. Therefore, all the advantages related to dynamic substructuring methods are preserved

(modifications of a few substructures, response to any deterministic or random excitations, etc).

In addition, the implementation of this method in existing finite element codes is very easy.

The convergence of the method with respect to the main parameters has been studied. The

method is convergent and the quality of the numerical predictions with the use of a reasonnable

numerical cost are satisfying. The extension to others dynamic substructuring methods2−7 is

straightforward because the MF reduced matrix model construction of a substructure can be

applied to any boundary conditions on the coupling interface : free coupling interface, hybrid

coupling interface, etc. In addition, all existing techniques for reducing the number of coupling

degrees of freedom can be used.
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Fig.1 Structure constituted of a simply supported plate in bending mode, with two point

masses (•) and three attached springs (+), decomposed into two substructures.
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Fig. 2 Reference solution: graph of the function ν 7→ 10 log10 e(2πν) for the entire

structure over the [0 , 800] Hz broad frequency band.
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Fig. 3 Driven point (node 9155) and observation points (nodes 3235 and 9305) for the

frequency response function calculations.
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Fig. 4 Graphs of the functions k 7→ λr
k for k = 1, . . . , 50 concerning the distribution of

the eigenvalues of the discretized energy operator relative to the [500, 550] Hz MF narrow

band for substructures Ω1 (figure on the left) and Ω2 (figure on the right).
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Fig. 5 Graph of the function N 7→ 10 log10 {
∫

B
e(ω) dω} showing the convergence with

respect to dimensions N1 = 5 + N and N2 = N for substructures Ω1 and Ω2 over the

[500, 550] Hz MF narrow band.
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Fig. 6 Graphs of the function ν 7→ 10 log10 e(2πν) over [400, 700] Hz for the MF dynamic

substructuring (thick solid line) and for the reference solution (thin solid line).
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Fig. 7 Frequency response function at node 9155 (driven point) in substructure Ω1,

corresponding to the MF dynamic substructuring (thick solid lines) and to the reference

solution (thin solid lines): modulus in dB (top) and unwrap phase in radian (down), as a

function of the frequency in Hz.
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Fig. 8 Cross-frequency response function at node 3235 in substructure Ω1, corresponding

to the MF dynamic substructuring (thick solid lines) and to the reference solution (thin

solid lines): modulus in dB (top) and unwrap phase in radian (down), as a function of the

frequency in Hz.
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Fig. 9 Cross-frequency response function at node 9305 in substructure Ω2, corresponding

to the MF dynamic substructuring (thick solid lines) and to the reference solution (thin

solid lines): modulus in dB (top) and unwrap phase in radian (down), as a function of the

frequency in Hz.
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