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Abstract: This paper presents a novel probabilistic model of random uncertainties for dynam-

ical system in the medium-frequency (MF) range. This approach combines a nonparametric

probabilistic model of random uncertainties for the reduced matrix models in structural dynam-

ics with a reduced matrix model adapted to the MF range. The theory is presented, the random

energy matrix relating to a given MF band, its random trace and its random eigenvalues are

studied. A numerical example is presented allowing convergence properties and stability of

random responses with respect to the bandwith to be analyzed.

INTRODUCTION

In linear structural dynamics, it is known that the higher the eigenfrequency of a structural

mode, the lower its accuracy because the uncertainties in the model increase. The effects of

uncertainties (geometrical parameters; boundary conditions; mass density; mechanical param-

eters of constitutive equations; structural complexity; interface and junction modeling; etc.)

increase with the frequency and it should be kept in mind that the mechanical model and the

¿nite element model of a complex structure tend to be less reliable in predicting the higher

structural modes. This paper is devoted to linear structural dynamics in the medium-frequency

range. A detailed description and a de¿nition of the medium-frequency range are given in the

book (Ohayon & Soize 1998). Consequently, for the medium-frequency dynamics, random

uncertainties in the mechanical model have to be taken into account in order to improve the
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ef¿ciency and the robustness of the medium-frequency ¿nite element models. An important

aspect of the medium-frequency (MF) domain is the construction of an ef¿cient reduced matrix

model of the continuous dynamical system. For the low-frequency (LF) dynamic analysis,

it is known that the reduced matrix models constitute a very ef¿cient tool for constructing the

dynamical response (see for instance Clough& Penzien 1975; Argyris &Mlejnek 1991) . These

techniques correspond to a Ritz-Galerkin reduction of the structural-dynamics model using the

structural modes corresponding to the lowest eigenfrequencies of the associated conservative

dynamical system. Unfortunately, this modal method which is very ef¿cient in the LF domain,

can be dif¿cult to use in the MF domain for general three-dimensional dynamical systems (see

Ohayon & Soize 1998). In this context, for general dissipative dynamical systems, a reduced

matrix model adapted to the MF range, was proposed by (Soize 1998). Such a reduced matrix

model is based on the use of the dominant eigensubspace of the mechanical energy operator (or

the energy matrix for the discretized system) relating to the MF band.

Recently, a parametric approach of random uncertainties in MF dynamics has been proposed

by (Ghanem & Sarkar 2003) using reduced matrix models combined with the stochastic ¿nite

element method (Ghanem & Spanos 1991; Ghanem 1999), consisting in a stochastic reduction

of the random uncertainties utilizing the Karhunen-Loeve expansion (Guikhman & Skorokhod

1979) and solving the reduced random matrix equation with the polynomial chaos expansion

(Ghanem & Spanos 1991; Cameron & Martin 1947).

In this paper, we propose an alternative approach concerning random uncertainties modeling in

MF dynamics, which results from the use of the nonparametric probabilistic model of random

uncertainties for the reduced matrix models in structural dynamics (Soize 2000 & 2001) and

combined with the reduced matrix model method in the MF range developed in (Soize 1998).

In addition, the random eigenvalues and the random trace of the random energy operator of the

stochastic system, relating to the medium-frequency band, are studied. This random energy

matrix is independent of any given load.

In a ¿rst part, the proposed theory for the medium-frequency dynamics of a stochastic system

subjected to a given deterministic load is presented. A convergence analysis criterium and the

con¿dence region of the random accelerations of the stochastic system are introduced. The

second part deals with the random energy matrix (the matrix of the random energy operator of
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the discretized stochastic dynamical system). This random energy matrix is a random matrix

with values in the set of all the positive symmetric square real matrices and is an intrinsic quantity

which is independent of any given load. Consequently, the random eigenvalues of this random

energy matrix are positive-valued random variables and the random trace of this random energy

matrix, which is equal to the sum of its random eigenvalues, is an important scalar quantity

characterizing the stochastic dynamical system. Therefore, the probability distribution of this

random trace is studied. In a last part, a numerical example is presented: (1) The random

MF response of the stochastic system subjected to a given deterministic load is constructed

and a convergence analysis is performed. A sensitivity analysis of this random MF response

is carried out with respect to the dispersion parameters of the nonparametric model of random

uncertainties of the dynamical system. (2) Then, the random eigenvalues and the random trace

of the random energy matrix are analyzed. The probability density function of the random

trace is estimated. A sensitivity analysis of this random trace is carried out with respect to the

dispersion parameters of the nonparametric model. (3) Finally, since the medium-frequency

analysis is performed medium-frequency band by medium-frequency band, the stability of the

random response with respect to the bandwith of the medium-frequency band is presented.

RANDOM MEDIUM-FREQUENCY RESPONSE OF A STOCHASTIC SYSTEM SUB-

JECTED TO A PRESCRIBED EXTERNAL DETERMINISTIC LOAD

Mean model of the dynamical system and its mean ¿nite element model

In the medium-frequency band B = [ωmin , ωmax] with ωmin ≫ ωmax − ωmin > 0, the mean ¿nite

element model of linear vibrations of a viscoelastic bounded structure (¿xed or free) around a

position of static equilibrium taken as reference con¿guration without prestresses is written as

(

−ω2 [ ] + iω [!(ω)] + ["(ω)]
)

y(ω) = f(ω) , ω ∈ B , (1)

in which y(ω) = (y
1
(ω), . . . , y

m
(ω)) is the #m-vector of the m DOFs (displacements and/or

rotations) and f(ω) = (f
1
(ω), . . . , f

m
(ω)) is the #m-vector of the m inputs (forces and/or

moments). Themeanmassmatrix [ ] is a positive-de¿nite symmetric (m×m) real matrix. The

mean damping and stiffness matrices [!(ω)] and ["(ω)] are symmetric (m × m) real matrices,

depend onω (viscoelastic structure), are such that [!(−ω)] = [!(ω)] and ["(−ω)] = ["(ω)], and
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are either positive de¿nite (¿xed structure) or positive semide¿nite (free structure). In the case

of a free structure, for all ω inB, (1) matrices [ (ω)] and [!(ω)] have the same null space having

a dimension mrig such that 0 < mrig ≤ 6 and spanned by the rigid body modes {y1, . . . , ymrig
}

and (2) given deterministic load vector f(ω) is in equilibrium, i.e. is such that< f(ω) , yα >= 0

for allα in {1, . . . , mrig}, in which, for all u and v in"m,<u , v>= u1 v1+ . . .+um vm. For all

ω in B, Eq. (1) has a unique solution y(ω) = [#(ω)] f(ω) in which [#(ω)] is the matrix-valued

FRF (frequency response function) de¿ned by [#(ω)] = [$(ω)]−1 where [$(ω)] is the dynamic

stiffnessmatrix such that [$(ω)] = −ω2 [% ]+iω [ (ω)]+[!(ω)]. For a ¿xed or a free structure,

and for every ω ¿xed in B, the sparse complex matrix [$(ω)] is invertible.

Mean reduced matrix model adapted to an MF band

In MF band B, the energy matrix [&B ] (twice the kinetic energy) of the mean FEM is the

positive-de¿nite symmetric (m × m) real matrix which is written (see Soize 1998) as

[&B] =
1

π

∫

B

ω2 ℜe {[#(ω)]∗[% ][#(ω)]} dω , (2)

where ℜe is the real part of complex number and where [#(ω)]∗ = [#(ω)]
T
is the adjoint

matrix. It should be noted that [&B ] depends on MF band B, but does not depend on the

given load vector. For energy matrix [&B ], the eigenvalue problem is written as [&B ] P =

λ P. The normalization condition of the real eigenvectors is chosen as ‖P‖2 =< P , P >=

1. The dominant eigensubspace of dimension n << m is spanned by the real eigenvectors

P1, P2, . . . , Pn associated with the n highest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Introducing

the rectangular (m × n) real matrix [P B
n ] = [P1 . . . , Pn] whose columns are constituted of

eigenvectors P1, . . . , Pn and introducing the diagonal square (n × n) real matrix [Λn ] whose

diagonal entries are λ1, . . . , λn, the eigenvalue problem allowing the dominant eigenspace of

energy matrix [&B ] to be constructed is written as

[&B] [PB
n ] = [PB

n ] [Λn] , [PB
n ]T [PB

n ] = [In] , (3)

where [In] is the (n × n) identity matrix. Matrix [P B
n ] is calculated by solving Eq. (3). For

the computation, matrix [&B ] is not directly calculated by Eq. (2) using a direct calculation of

matrix-valued frequency response function {[#(ω)], ω ∈ B}. An indirect procedure based on
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the subspace iteration method coupled with a solution method in the time domain (see Soize

1998) is used. Such a procedure does not use the knowledge of complex matrix [ (ω)] which is

generally full.

The mean reduced matrix model is obtained in projecting the mean ¿nite element model de¿ned

by Eq. (1) on the dominant eigensubspace of energy matrix [!B ]. The approximation yn(ω) of

y(ω) is then written as

yn(ω) = [PB
n ] qn(ω) , (4)

in which, for all ω ¿xed in B, the "n-vector qn(ω) of the generalized coordinates is the unique

solution of the mean reduced matrix equation,

(

−ω2 [ Mn ] + iω [Dn(ω)] + [Kn(ω)]
)

qn(ω) = Fn(ω) , ω ∈ B , (5)

with Fn(ω) = [PB
n ]T f(ω) ∈ "n and where the mean generalized mass, damping and stiffness

matrices are the positive-de¿nite symmetric (n × n) real full matrices such that [ M n ] =

[PB
n ]T [# ] [PB

n ], [Dn(ω)] = [PB
n ]T [$(ω)] [PB

n ] and [Kn(ω)] = [PB
n ]T [%(ω)] [PB

n ].

Nonparametric model of random uncertainties in the MF band

Using the idea of the nonparametric model of random uncertainties introduced by (Soize 2000),

the principle of construction of the nonparametric model of random uncertainties in the MF

band consists in modeling the generalized mass, damping and stiffness matrices of the mean

reduced model de¿ned by Eqs. (4) and (5) by random matrices [M n], [Dn(ω)] and [Kn(ω)]

whose probability model has to be de¿ned. In theMF band, the nonparametric model of random

uncertainties is then written as

Yn(ω) = [PB
n ] Qn(ω) , (6)

in which, for all ω ¿xed inB, the "n-valued random variableQn(ω) of the random generalized

coordinates is the unique solution of the random reduced matrix equation,

(

−ω2 [Mn] + iω [Dn(ω)] + [Kn(ω)]
)

Qn(ω) = Fn(ω) , ω ∈ B . (7)

The probability model of these random matrices is de¿ned (see Soize 2000 & 2001) as

[Mn] = [LMn
]T [GMn

] [LMn
] , (8)

[Dn(ω)] = [LDn
(ω)]T [GDn

] [LDn
(ω)] , (9)

[Kn(ω)] = [LKn
(ω)]T [GKn

] [LKn
(ω)] , (10)
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in which the upper triangular (n× n) real matrices [LMn
], [LDn

(ω)] and [LKn
(ω)] correspond

to the Chowlesky factorization [ Mn ] = [LMn
]T [LMn

], [Dn(ω)] = [LDn
(ω)]T [LDn

(ω)] and

[Kn(ω)] = [LKn
(ω)]T [LKn

(ω)] of positive-de¿nite symmetric (n × n) real matrices [ M n ],

[Dn(ω)] and [Kn(ω)] respectively. From the theory developed, it is deduced that random

matrices [GMn
], [GDn

] and [GKn
] are independent and that their dispersions are controlled

by the positive real parameters δM , δD and δK which are independent of dimension n and

do not depend on frequency ω. The independence property is due to the use of the maximum

entropy principle forwhich no information concerning the correlation tensor between the random

matrices is available. If An represents Mn, Dn or Kn, then random matrix [GAn
], with

dispersion parameter δA, is such that [GAn
] = [LAn

]T [LAn
]. The matrix [LAn

] is an upper

triangular random (n × n) real matrix such that the random variables {[LAn
]jj′ , j ≤ j′} are

independent and such that

(1) for j < j′, real-valued random variable [LAn
]jj′ is written as [LAn

]jj′ = σnUjj′ in which

σn = δA(n+ 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean

and variance equal to 1;

(2) for j = j′, positive-valued random variable [LAn
]jj is written as [LAn

]jj = σn

√

2Vj in

which σn is de¿ned above and where V j is a positive-valued gamma random variable whose

probability density function pVj
(v) with respect to dv is written as

pVj
(v) =   +(v){Γ(

n + 1

2δ2
A

+
1 − j

2
)}−1 v

n+1

2δ2
A

−
1+j
2

e−v . (11)

It should be noted that the probability model of random matrix [GAn
] is mathematically well

de¿ned, in particular when dimension n goes to in¿nity (see Soize 2001).

Convergence analysis of the random medium-frequency response

For every ω ∈ B, the random response Yn(ω) of the stochastic system subjected to the given

deterministic load is the !n-valued second-order random variable which is the solution of

Eqs. (6) and (7). The norm of the !n-valued second-order stochastic process {Yn(ω), ω ∈ B}

is de¿ned by |||Yn||| =
(

E{
∫

B
‖Yn(ω)‖2 dω}

)1/2
. From Eqs. (3) and (6), it can be deduced

that |||Yn||| = |||Qn|||. Consequently, the mean-square convergence with respect to n of the

sequence of stochastic processes {Yn(ω), ω ∈ B}n can be studied considering the mapping

n 7→ |||Qn|||.
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Con¿dence region of the random acceleration for the stochastic system subjected to the

given deterministic load

LetYn(ω) = (Y n
1 (ω), . . . , Y n

m(ω)) be the random response of the stochastic system constructed

with the nonparametric model of random uncertainties and subjected to the given deterministic

load vector f(ω). Let S(ω) = | − ω2Y n
j (ω)| be the random response corresponding to the

acceleration of DOF j. Let dB(ω) be the random variable de¿ned by dB(ω) = log10(S(ω)).

For a given probability level Pc (for instance Pc = 0.95), the con¿dence region of the stochastic

process {dB(ω), ω ∈ B} is de¿ned by

Proba{dB−(ω) < dB(ω) ≤ dB+(ω)} ≥ Pc , (12)

in which the lower and upper envelopes dB−(ω) and dB+(ω) are de¿ned by

dB+(ω) = log10

(

E{S(ω)}+ σ(ω)/
√

1 − Pc

)

, dB−(ω) = 2 dB0(ω) − dB+(ω) , (13)

in which dB0(ω) = log10(E{S(ω)}) and where σ(ω) is the standard deviation of S(ω). The

standard deviations are usually estimated by using the Monte Carlo numerical simulation.

RANDOM ENERGY MATRIX RELATED TO A MEDIUM-FREQUENCY BAND AND

ITS RANDOM EIGENVALUES

Random energy matrix

It is interesting to introduce the approximation [ n
B] of order n of the random energy matrix

relating to MF band B, which is independent of any given load. This is a random positive-

semide¿nite symmetric (m × m) real matrix de¿ned (see Eq. (2)) by

[ n
B] = [PB

n ] [En] [PB
n ]T , [En] =

1

π

∫

B

ω2 ℜe {[Tn(ω)]∗[Mn][Tn(ω)]} dω , (14)

where [Tn(ω)] is the random symmetric (n × n) complex matrix de¿ned by

[Tn(ω)] =
(

−ω2 [Mn] + iω [Dn(ω)] + [Kn(ω)]
)−1

, (15)

and where [En] is a random positive-de¿nite symmetric (n × n) real matrix.
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Random eigenvalues of the random energy matrix and the random trace

The random eigenvalue problem associated with random energy matrix [En] is written as

[En] [ n] = [ n] [!] , [ n]T [ n] = [ n] [ n]T = [In] a.s. , (16)

in which a.s. means almost surely, where [In] is the (n × n) identity matrix, where [!] is

the diagonal (n × n) matrix of the random eigenvalues and where[ n] is the (n × n) matrix

constituted of the random eigenvectors. Since [En] is a random positive-de¿nite symmetric

(n × n) real matrix, (1) the random eigenvalues are positive-valued random variables and the

order statistics Λ1 ≥ . . . ≥ Λn > 0 is then introduced, (2) the associated random eigenvectors

is an orthonormal systems of random vectors for the Euclidean inner product. We then have

[En] = [ n] [!] [ n]T . (17)

Let En be the trace of random energy matrix [ n
B]. From Eqs. (3),(14) and (16), it can be deduced

that En is a positive-valued random variable which is such that

En = tr{[ n
B]} = tr{[En]} =

n
∑

α=1

Λα . (18)

The probability density function of positive-valued random variable En is the mapping e 7→

pEn
(e) de¿ned in !+ with values in !+. In the next Section, the convergence with respect to n

of the sequence of probability density functions {e 7→ pEn
(e)}n is studied. The moments of the

random eigenvalues Λ1, . . . , Λn and the probability density function pEn
are usually estimated

by using the Monte Carlo numerical simulation. It should be noted that, even if the system

is lightly damped, then random eigenvectors [ n] differ from the random normal modes (see

Soize 1998). In addition, we are interested in investigating the random total energy En of the

system and not in investigating the individual random eigenvalues Λ1, Λ2, . . ., which have no

real physical meaning in the medium-frequency range.

NUMERICAL EXAMPLE

Mean model of the dynamical system and its mean ¿nite element model

Themeanmodel of the nonhomogeneous dynamical system is constituted of a thin plate with two

attached pointmasses and two springs. The thin plate is rectangular, homogeneous, isotropic and
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located in the plane (Ox1, Ox2) of a Cartesian coordinate system (Ox1x2x3), in bending mode

(the outplane displacement is x3), with constant thickness 0.001 m, width alongOx2 is 0.40 m,

length along Ox1 is 0.50 m, mass density 7800 kg/m3, Young’s modulus 2.1 × 1011 N/m2

and Poisson ratio 0.29 . This plate is simply supported on 3 edges and free on the fourth edge

corresponding to x2 = 0 (see Figure 1). There are two point masses having a mass 10 kg and

6 kg located at points (0.15, 0.15, 0) and (0.31, 0.20, 0) respectively, and two springs having

a stiffness coef¿cient k = 1.2090 × 109 N/m and k = 7.0893 × 108 N/m located at points

(0.15, 0.15, 0) and (0.31, 0.20, 0) respectively.

The mean ¿nite element model of the plate is composed of a regular rectangular mesh with a

constant step size of 0.01 m in x1 and x2 (41 nodes in the width, 51 nodes in the length), each

¿nite element being a 4-node square plate element. There are 2000 ¿nite elements andm = 6009

degrees of freedom (x3-translations and x1- and x2-rotations). The two ¿rst eigenfrequencies

of the mean undamped dynamical system, calculated with the mean ¿nite element model, are

27.73 Hz and 57.35 Hz. There are 82 eigenfrequencies in the frequency band [0 , 1400] Hz

and respectively, 13, 20 and 11 eigenfrequencies in the frequency bands [1400 , 1600] Hz,

[1600 , 1900] Hz and [1900 , 2100] Hz. The medium-frequency band of analysis is de¿ned as

B = 2π × [1600 , 1900] rad/s. In the frequency domain, for all ω ∈ B, the given deterministic

load vector f(ω) ∈  m is written as f(ω) = Z in which the spatial partZ = (Z1, . . . , Zm) ∈ !m

is independent of ω and is such that Zj = 0 for all j in {1, . . . , m} except for the nine DOFs

in x3-translations corresponding to the nodes whose (x1, x2) coordinates are (0.21, 0.23),

(0.21, 0.24), (0.21, 0.25), (0.22, 0.23), (0.22, 0.24), (0.22, 0.25), (0.23, 0.23), (0.23, 0.24) and

(0.23, 0.25), for which Zj = 1. Damping matrix ["(ω)] of the mean ¿nite element model

depends on the frequency and is written as ["(ω)] = 2 ξ ω [# ] in which ξ = 0.002. In the

system, the observations are the three DOF numbers jobs1, jobs2 and jobs3 corresponding to

the x3-translation of the mesh node located at points of coordinates (0.22, 0.24, 0) (excitation

point), (0.31, 0, 0) (free edge point) and (0.37, 0.15, 0) (inside point) respectively.

Reference solution for the mean model on a broad frequency band

For the mean model, the reference solution is obtained by solving Eq. (1) with the direct

frequency-by-frequency method with 2100 sample points in the frequency band [0 , 2100]Hertz.

Figure 2 shows the graph of the function ω 7→ log10(‖−ω2y(ω)‖). In this ¿gure, it can be seen
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that frequency band B = 2π × [1600 , 1900] rad/s belongs to the medium-frequency range.

Mean reduced matrix model on MF band B

The dominant eigensubspace of energy matrix [ B ] relating to the MF band [1600 , 1900] Hz is

calculated by solving the symmetric eigenvalue problem de¿ned by Eq. (3) as explained above.

Figure 3 shows the graph of the function α 7→ λα in which λ1 > . . . > λ50 are the 50 highest

eigenvalues of [ B ]. It can be seen the strong decrease of eigenvalues when the order of the

eigenvalues is greater than 20 allowing the construction of a mean reduced matrix model having

a small dimension.

Convergence analysis of the stochastic system

We consider the stochastic dynamical system inMF bandB for which the dispersion parameters

which control the mass, damping and stiffness uncertainties are such that δM = δD = δK =

0.02. The Monte Carlo numerical simulation is carried out with ns realizations denoted by

θ1, . . . , θns
. For the random response of the stochastic system subjected to given deterministic

load vector f(ω) over MF band B, the norm |||Yn||| = |||Qn||| is estimated by Conv(ns, n) =
{

1

ns

∑ns

k=1

∫

B
‖Qn(ω, θk)‖

2 dω
}1/2

. For the random trace En = tr{[ n
B]} of random energy

matrix [ n
B] relating to MF band B, which is independent of any given load, the probability

density function e 7→ pEn
(e) of random variable En is estimated by the usual mathematical

statistics.

Figures 4 and 5 concern the convergence of |||Yn|||with respect to dimensionn of the stochastic

reduced matrix model and to the number ns of realizations used in the Monte Carlo numerical

simulation. For n = 35, Figure 4 displays the graph of the function ns 7→ log10{Conv(ns, n)}.

For ns = 10000, Figure 5 shows the graph of the function n 7→ log10{Conv(ns, n)}. It can be

seen that mean square convergence is reached for n ≥ 35 and ns ≥ 5000.

Figures 6, 7 and 8 are relating to convergence of the stochastic dynamical system with respect

to dimension n of the stochastic reduced matrix model, in terms of random variable En which is

intrinsic and independent of any given load. The calculations are carried out with ns = 10000.

Figure 6 displays two curves: (1) for the mean dynamical system, the graph of the function

n 7→ En (triangle symbols) of the trace En of energy matrix [ n
B ] relating to MF bandB, (2) for
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the stochastic dynamical system, the graph of the mean function n 7→ E{En} (circle symbols)

of random variable En. For the stochastic dynamical system, Figure 7 shows the graph of the

standard deviation function n 7→ σEn
(circle symbols) of random variable En. Figure 8 displays

the graphs of the probability density functions {e 7→ pEn
(e)}n of random variable En for n =

5,15,20,25,35 (thin solid lines) and for n = 45 (thick solid line). Figures 6 to 8 show that

convergence is effectively reach for n ≥ 35, independently of any given load.

Random response of the stochastic system subjected to a given deterministic load

We consider the random response of the stochastic dynamical system with δM = δD = δK =

0.02 and subjected to given deterministic load vector f(ω) over MF band B. The calculations

are carried out for n = 35 and ns = 10000. Figures 9-a to 9-c are relating to DOF numbers

jobs1 (excitation point), jobs2 (free edge point) and jobs3 (inside point), respectively. Each ¿gure

displays the graphs relating to the con¿dence region of the random acceleration dB(ω) for the

probability level 0.95 and over MF band B.

Random energy matrix relating to an MF band and its random eigenvalues

The stochastic dynamical system with δM = δD = δK = 0.02 is considered again and we are

interested in the randomeigenvaluesΛα of randomenergymatrix [ n
B] relating toMFbandB and

in the random trace En of [ 
n
B ]. The calculations are carried out with n = 35 and ns = 10000.

Figure 10 displays the graph of the mean function α 7→ E{Λα} of random eigenvalues Λα. It

should be noted that this graph looks like to the graph shows in Figure 3, that is coherent with

Figure 6 because En = tr{[ n
B]} =

∑

α≥1
λα and En = tr{[ n

B]} = tr{[En
B]} =

∑

α≥1
Λα.

Figure 11 shows the graph of the standard deviation function α 7→ log10(σΛα
) of random

eigenvalues Λα. It should be noted that the standard deviation is maximum for the random

eigenvalues whose mean values correspond to the strong decrease in Figure 10. Figure 12

displays the graph of the probability density function e 7→ pEn
(e) of positive-valued random

variable En which is not Gaussian and which is (almost) unimodal.

Sensitivity analysis of the random energy matrix relating to an MF band with respect to

the dispersion parameters
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We consider the random trace En of random energy matrix [ n
B] relating to MF band B for the

stochastic dynamical system whose dispersion parameters which control the mass, damping and

stiffness uncertainties are δM , δD and δK . The calculations are performed with n = 35 and

ns = 5000. Figure 13 displays the graphs of the normalized mean functions δM 7→ E{En}/En

with δD = δK = 0 (plus symbol), δD 7→ E{En}/En with δM = δK = 0 (triangle symbol)

and δK 7→ E{En}/En with δM = δD = 0 (circle symbol). Figure 14 shows the graphs of

the normalized standard deviation functions δM 7→ σEn
/En with δD = δK = 0 (plus symbol),

δD 7→ σEn
/En with δM = δK = 0 (triangle symbol) and δK 7→ σEn

/En with δM = δD = 0

(circle symbol). Figure 13 and 14 show that the effects of damping uncertainties are less that the

effects of stiffness or mass uncertainties and, in addition, that the effects of stiffness uncertainties

are equivalent to the effects of mass uncertainties.

Sensitivity analysis of the random response of stochastic system subjected to a given

deterministic load with respect to the dispersion parameters

We consider the stochastic dynamical system subjected to given deterministic load vector f(ω)

overMF bandB. The calculations are performed forn = 35 andns = 5000. Figures 15-a to 15-

f are relating to the stochastic response for DOF number jobs3 (inside point) as a function of

dispersion parameters δM , δD and δK . Each ¿gure displays the graphs relating to the con¿dence

region of the random acceleration dB(ω) for the probability level 0.95 and over MF band B.

Figures 15-a to 15-d show that the effects of stiffness uncertainties are equivalent to the effects

of mass uncertainties. Figures 15-e and 15-f show that the effects of damping uncertainties are

relatively small and are less that the effects of stiffness or mass uncertainties. These results are

coherent with those obtained in Figures 13 and 14. The conclusions are the same for the other

DOF numbers jobs2 (free edge point) and jobs3 (inside point).

Sensitivity analysis of the probability distribution of the trace of the random energy matrix

relating to an MF band with respect to the dispersion parameters

We consider the probability distribution of the random trace En of random energy matrix [ n
B]

relating toMF bandB for the stochastic dynamical systemwhose dispersion parameters are δM ,

δD and δK . The calculations are performed with n = 35 and ns = 20000. Figures 16-a to 16-e

display the graph of the probability density functions e 7→ pEn
(e) of random variable En for

C. Soize - ASCE - Journal of Engineering Mechanics , Submitted 20 November 2002, Revised 4 February 2003 12



several values of δM , δD and δK . For δM = δD = 0, Figures 16-a, 16-b and 16-c correspond

to δK = 0.02, 0.3 and 0.5, respectively. It should be noted that these results are similar to the

results corresponding to δD = δK = 0 and δM = 0.02, 0.3 and 0.5, respectively. These ¿gures

show that the probability density function of random variable En becomes multimodal when the

value of dispersion parameter δK (or δM ) increases. In opposite, Figures 16-d and 16-e show

that the probability density function of random variable En remains unimodal when the value of

dispersion parameter δD increases.

Stability of the stochastic reponse with respect to the bandwidth of the MF band

This section is devoted to the analysis of the proposed nonparametric model of random uncer-

tainties in the medium-frequency range with respect to the bandwidth of the MF band. We then

consider the stochastic dynamical system with δM = δD = δK = 0.02 and subjected to given

deterministic load vector f(ω), over three overlapped MF bandsB = 2π× [1600 , 1900] rad/s,

B′ = 2π× [1400 , 1900] rad/s andB′′ = 2π× [1600 , 2100] rad/s such thatB ⊂ B′,B ⊂ B′′

and B = B′ ∩ B′′. Let {Yn
B(ω), ω ∈ B}, {Yn′

B (ω), ω ∈ B′} and {Yn′′

B (ω), ω ∈ B′′} be the

solutions of the stochastic dynamical system subjected to the given deterministic load de¿ned

on MF bands B, B′ and B′′ respectively. The calculations are performed with ns = 10000

and, with n = 35 for band B and with n′ = n′′ = 58 for bands B′ and B′′. Figures 17-a, 17-b

and 17-c are relating to DOF numbers jobs1 (excitation point), jobs2 (free edge point) and jobs3

(inside point), respectively. Each ¿gure displays the graphs relating to the con¿dence region of

the random acceleration dB(ω) for the probability level 0.95 and over MF bandsB, B ′ and B′′.

These ¿gures show that the con¿dence regions coincide over MF band B with a good accuracy.

CONCLUSIONS

Wehave presented a novel approach formodeling randomuncertainties in themedium-frequency

dynamics. For the mechanical system considered in the numerical example, the major conclu-

sions are the following:

(1) The convergence properties with respect to the dimension of the random reduced matrix

model have been veri¿ed (a) for the random response of the stochastic system subjected to a
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given load and (b) for the probability density function of the random trace of the random energy

matrix which is intrinsic and which is independent of any given load.

(2) For a given medium-frequency band, a sensitivity analysis with respect to the dispersion

parameters has been performed for the random energy matrix of the stochastic system and for the

random response of this stochastic system subjected to a given deterministic load. The results

show that, in the medium-frequency band, (a) the effects of damping uncertainties are less that

the effects of stiffness ormass uncertainties (b) the effects of stiffness uncertainties are equivalent

to the effects of mass uncertainties, (c) the probability density function of random trace of the

random energy matrix is not Gaussian and becomes multimodal when the dispersion-parameter

value of the stiffness (or of the mass) increases; in opposite, the probability density function of

the random trace remains unimodal when the damping dispersion parameter increases.

(3) For the medium-frequency range, the proposed probabilistic modeling of random uncertain-

ties is coherent with respect to the bandwith of the MF band of analysis.
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LEGENDS ACCOMPANYING EACH FIGURE

FIG. 1. De¿nition of the mean dynamical system.

FIG. 2. Graph of function ν 7→ log10(‖− (2πν)2y(2πν)‖) relating to the mean model over the

broad frequency band [0 , 2100] Hertz (horizontal axis).

FIG. 3. Graph of function α 7→ λα for the mean model over the MF band [1600 , 1900] Hz.

FIG. 4. Graph of function ns 7→ log10{Conv(ns, n)} for the stochastic dynamical system with

n = 35 and over the MF band [1600, 1900] Hz.

FIG. 5. Graph of function n 7→ log10{Conv(ns, n)} for the stochastic dynamical system with

ns = 10000 and over the MF band [1600, 1900] Hz.

FIG. 6. Graph of function n 7→ En (triangle symbol) for the mean model and graph of function

n 7→ E{En} (circle symbol) for the stochastic dynamical system over the MF band [1600, 1900]

Hz.

FIG. 7. Graph of function n 7→ σEn
(circle symbol) for the stochastic dynamical system over

the MF band [1600, 1900] Hz.

FIG. 8. Graphs of probability density functions {e 7→ pEn
(e)}n for n = 5,15,20,25,35 (thin

solid lines) and for n = 45 (thick solid line) for the stochastic dynamical system over the MF

band [1600, 1900] Hz.

FIG. 9-a. DOF number jobs1 (excitation point).

FIG. 9-b. DOF number jobs2 (free edge point).

FIG. 9-c. DOF number jobs3 (inside point).

FIG. 9-a-b-c. Con¿dence region of the random acceleration dB (vertical axis) for DOF numbers

jobs1, jobs2 and jobs3 over theMF band [1600, 1900]Hz (horizontal axis): deterministic response

of the mean model (mid irregular thin solid line), mean value of the random response of the

stochastic model (mid regular thin solid line), lower and upper envelopes of the con¿dence

region corresponding to the probability level 0.95 (lower and upper thick solid lines).

FIG. 10. Graph of the mean function α 7→ E{Λα} for the stochastic dynamical system over

the MF band [1600, 1900] Hz.
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FIG. 11. Graph of the standard deviation functionα 7→ log10(σΛα
) for the stochastic dynamical

system over the MF band [1600, 1900] Hz.

FIG. 12. Graph of the probability density function e 7→ pEn
(e) for the stochastic dynamical

system over the MF band [1600, 1900] Hz.

FIG. 13. Graphs of the normalized mean functions δM 7→ E{En}/En with δD = δK = 0

(plus symbol), δD 7→ E{En}/En with δM = δK = 0 (triangle symbol) and δK 7→ E{En}/En

with δM = δD = 0 (circle symbol), for the stochastic dynamical system over the MF band

[1600, 1900] Hz.

FIG. 14. Graphs of the normalized standard deviation functions δM 7→ σEn
/En with δD =

δK = 0 (plus symbol), δD 7→ σEn
/En with δM = δK = 0 (triangle symbol) and δK 7→ σEn

/En

with δM = δD = 0 (circle symbol), for the stochastic dynamical system over the MF band

[1600, 1900] Hz.

FIG. 15-a. δM = 0, δD = 0, δK = 0.02.

FIG. 15-b. δM = 0.02, δD = 0, δK = 0.

FIG. 15-c. δM = 0, δD = 0, δK = 0.5.

FIG. 15-d. δM = 0.5, δD = 0, δK = 0.

FIG. 15-e. δM = 0, δD = 0.02, δK = 0.

FIG. 15-f. δM = 0, δD = 0.5, δK = 0.

FIG. 15-a-b-c-d-e-f. Con¿dence region of the random acceleration dB (vertical axis) for DOF

number jobs3 (inside point) over the MF band [1600, 1900]Hz (horizontal axis) as a function of

δM , δD and δK : deterministic response of the mean model (mid irregular thin solid line), mean

value of the random response of the stochastic model (mid regular thin solid line), lower and

upper envelopes of the con¿dence region corresponding to the probability level 0.95 (lower and

upper thick solid lines).
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FIG. 16-a. δM = 0, δD = 0, δK = 0.02.

FIG. 16-b. δM = 0, δD = 0, δK = 0.3.

FIG. 16-c. δM = 0, δD = 0, δK = 0.5.

FIG. 16-d. δM = 0, δD = 0.3, δK = 0.

FIG. 16-e. δM = 0, δD = 0.5, δK = 0.

FIG. 16-a-b-c-d-e. Graph of the probability density function e 7→ pEn
(e) for the stochastic

dynamical system over the MF band [1600, 1900] Hz as a function of δM , δD and δK .

FIG. 17-a. DOF number jobs1 (excitation point).

FIG. 17-b. DOF number jobs2 (free edge point).

FIG. 17-c. DOF number jobs3 (inside point).

FIG. 17-a-b-c. Con¿dence regions of the random acceleration dB (vertical axis) for DOF

numbers jobs1 (excitation point), jobs2 (free edge point) and jobs3 (inside point) for overlapped

bans B, B′ and B′′: (1) deterministic response of the mean model over broadband MB band

[1400 , 2100]Hz (mid irregular thin solid line), (2) lower and upper envelopes of the con¿dence

regions corresponding to the probability level 0.95: MF bandB ′ (lower and upper thick dashdot

lines), MF band B′′ (lower and upper thick dashed lines), MF band B (lower and upper thick

solid lines).
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