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PHYSICAL SYSTEMS WITH RANDOM UNCERTAINTIES: CHAOS

REPRESENTATIONS WITH ARBITRARY PROBABILITY

MEASURE∗

CHRISTIAN SOIZE† AND ROGER GHANEM‡

Abstract. The basic random variables on which random uncertainties can in a given model
depend can be viewed as defining a measure space with respect to which the solution to the mathe-
matical problem can be defined. This measure space is defined on a product measure associated with
the collection of basic random variables. This paper clarifies the mathematical structure of this space
and its relationship to the underlying spaces associated with each of the random variables. Cases of
both dependent and independent basic random variables are addressed. Bases on the product space
are developed that can be viewed as generalizations of the standard polynomial chaos approximation.
Moreover, two numerical constructions of approximations in this space are presented along with the
associated convergence analysis.
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1. Introduction. Characterizing the membership of a mathematical function
in the most suitable functional space is a critical step toward analyzing it and iden-
tifying sequences of efficient approximants to it. In most cases encountered in scien-
tific computing, many of the relevant functional spaces are associated with the same
Lebesgue measure which is often omitted from the analysis. However, in the context
of modeling physical systems that exhibit uncertainty either in their behavior or in
their environment, probability theory is often used as a framework for modeling the
uncertainty [14, 10, 20, 21]. In these cases, the functional spaces over which the var-
ious quantities of interest are defined are associated with different measures. These
are typically mixtures of probability measures, each tagging the probabilistic content
of some related function [3]. This paper describes the most general mathematical
setting for characterizing such problems in the case where random uncertainties are
defined by a finite number of basic vector-valued random variables with arbitrary
probability distributions. This arbitrariness is manifested by the possibility of a mul-
tidimensional, non-Gaussian probability measure for each basic vector-valued random
variable, whose components are a set of generally dependent random variables.

In the paper, a general stochastic physical system is thought of as a nonlinear
transformation of a finite set of basic random variables defined over a suitable product
space. For clarity of presentation, and without loss of generality, the paper deals with
transformations taking values in a finite-dimensional vector space. The extension
to transformations with values in a Hilbert space can be readily obtained, with the
present case being a finite-dimensional approximation, such as obtained via finite
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element formalisms.

Clearly, the finite-dimensional assumption on the basic random variables corre-
sponds to the situation where the uncertainty in the problem is inherently associated
with a finite number of random variables. This assumption can also be justified for
situations where the uncertainty derives from infinite-dimensional stochastic processes
or fields that have been reduced through adapted techniques such as the Karhunen–
Loeve expansion or the polynomial chaos decomposition [22, 17, 10].

The finite-dimensional character of the basic random variables permits the natu-
ral extension of the standard Wiener chaos decomposition, well defined for Gaussian
basic random variables, to the case of second-order random variables with arbitrary
probability measure. The Hilbert space to which the random solution of the math-
ematical problem belongs can be constructed as a tensor product of Hilbert spaces
associated with the basic variables. Each of these spaces is itself written as a tensor
product of Hilbert spaces.

In this paper, the finite-dimensional chaos decomposition is constructed as a
Hilbertian basis of the Hilbert space of the solution, taking into consideration the
tensorized structure of this vector space. This Hilbertian basis is thus obtained as the
tensor product of Hilbertian bases associated with the basic random variables. This
construction differs from two standard constructions. The first one deals with the case
of Gaussian infinite-dimensional basic variables for which mathematical methods used
for the construction of Fock spaces are applicable [12, 19, 11]. The second standard
method deals with multidimensional polynomial approximations over product vector
spaces. The standard approach to this problem coincides with the stochastic problem
in the case where each basic random variable consists of mutually independent com-
ponents. The present work, therefore, can be viewed as an extension of the second
construction to relax the independence assumption.

It should be noted that the mathematical tools used in this paper consist of
standard results in Hilbert spaces, specifically, the Hilbertian basis theorem and the
orthogonal projection theorem [13]. It is shown that these simple tools can be used
to construct a complete mathematical framework in which efficient solutions can be
developed to physical systems with general random uncertainties modeled by basic
vector-valued random variables which are not necessarily Gaussian, and for which the
components are not necessarily independent. The resulting mathematical framework
is very well suited for the analysis, within a computational context, of these systems.
Chaos decomposition techniques have indeed been recently applied to a wide range
of problems in scientific computing relating to uncertain systems [8, 9, 7, 18, 6, 5,
2, 16, 4, 23]. Attempts at developing chaos decompositions that are adapted to non-
Gaussian basic variables have also been presented in the literature [23], and the present
work can be viewed as delineating the correct mathematical framework in which these
extensions to these efforts should be described.

The paper is self-contained in that quantities are defined when they first appear
and enough detail is provided to assist the reader in implementing the framework. In
the first part of the paper (sections 2–5), the mathematical construction is carried
out for the finite-dimensional chaos representation for vector-valued random variables
with arbitrary probability measure. In the second part (section 6), the implementation
of the chaos decomposition is demonstrated through its application to the model of
a physical system with random uncertainties. Construction and convergence issues
are also addressed. Finally, in the third part (the appendix), data is provided for the
construction of orthogonal polynomials with respect to the most common probability
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measures.

2. Defining vector-valued random variables. Consider a physical system
featuring random uncertainties in some of the parameters of its mathematical model.
The random uncertainties are identified with the p basic vector-valued random vari-
ables Z1, . . . ,Zp. The solution describing the behavior of the physical system is a
vector-valued random variable Y = f̃(Z1, . . . ,Zp) in which f̃ is a nonlinear mapping.

Consider an Rmj -valued random variable Zj defined on a probability space
(A, T , P ) with mean mZj and a positive-definite covariance matrix CZj admitting
the Cholesky factorization

(1) CZj = LT
ZjLZj .

Then, Zj can be normalized:

(2) Zj = mZj +LT
ZjX

j ,

where Xj is an Rmj -valued random variable with mean zero and covariance matrix
equal to the identity. Consequently, random variable Y = f̃ (Z1, . . . ,Zp) can be
rewritten as Y = f(X1, . . . ,Xp) in which the nonlinear mapping f is such that

f(X1, . . . ,Xp) = f̃ (mZ1 + LT
Z1X

1, . . . ,mZp + LT
ZpXp). Thus, without any loss of

generality, the subsequent analysis will be carried out for normalized random vectors.
Next, consider the measurable function (x1, . . . ,xp) �→ f(x1, . . . ,xp) from Rm1 ×
· · ·×Rmp into Cm. Moreover, let PX1,...,Xp(dx1, . . . , dxp) be the probability measure
of the random variable (X1, . . . ,Xp) with values in Rm1 × · · · × Rmp and let Y =
f(X1, . . . ,Xp) be a Cm-valued random variable. Furthermore, assume that Y is a
second-order random variable, that is,

(3) E
{
‖f(X1, . . . ,Xp)‖2

}
< +∞,

in which E{.} denotes the mathematical expectation, and where ‖.‖ denotes the
Hermitian norm in Cm associated with the inner product 〈f , g〉Cm =

∑m
j=1 fj ḡj , in

which an overbar denotes complex conjugation. This inner product reduces in an
obvious manner to the real case. It is assumed that the random vectors X1, . . . ,Xp

are mutually independent, resulting in

(4) PX1,...,Xp = PX1 ⊗ · · · ⊗ PXp ,

where PXj is the probability distribution of random variable Xj . Let L2
µ(F,G) de-

note the space of µ-square-integrable functions from topological vector space F into
topological vector space G, in which µ is a probability measure on F equipped with
its Borel field.

3. Hilbert spaces for finite-dimensional chaos representations. A math-
ematical structure appropriate for the construction of the finite-dimensional chaos
representation requires the characterization of the complex Hilbert space H(m) to
which (x1, . . . ,xp) �→ f(x1, . . . ,xp) belongs. Given the multiparameter dependence
of Y = f(X1, . . . ,Xp) and the multidimensional nature of each of these param-
eters, real Hilbert spaces Hj and H, associated with the measures PXj (dxj) and
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PX1,...,Xp(dx1, . . . , dxp), must also be characterized:

Hj = L2
P

Xj
(Rmj ,R),(5)

H
(m) = L2

P
X1,...,Xp

(Rm1 × · · · × R
mp ,Cm)

≃
(
L2
P

X1,...,Xp
(Rm1 × · · · × R

mp ,R)
)
⊗ C

m

=
(
⊗p

j=1Hj

)
⊗ C

m.(6)

We can then write H(m) as

(7) H
(m) = H⊗ C

m,

in which H is a real Hilbert space defined by

(8) H = ⊗p
j=1Hj.

Throughout this paper, the tensor product H1 ⊗ H2 of two real Hilbert spaces
H1 and H2 is defined with respect to the universal property of the tensor product.
In addition, in order to simplify the notation, the tensor product H1 ⊗H2 has to be
understood as the completion H1⊗̂H2 of the space H1 ⊗H2.

Real Hilbert space Hj and complex Hilbert space H(m) are equipped with the
following inner products:

〈u, v〉Hj
=

∫

R
mj

u(xj)v(xj)PXj (dxj)

= E
{
u(Xj)v(Xj)

}
(9)

and

〈f , g〉
H(m) =

∫

Rm1

· · ·
∫

R
mp

〈
f(x1, . . . ,xp), g(x1, . . . ,xp)

〉
Cm PX1,...,Xp(dx1, . . . , dxp)

= E
{〈

f(X1, . . . ,Xp), g(X1, . . . ,Xp)
〉
Cm

}
.(10)

4. Finite-dimensional chaos representation. The chaos representation of
random variable Y = f(X1, . . . ,Xp) is obtained by representing (x1, . . . ,xp) �→
f(x1, . . . ,xp) on a Hilbertian basis (complete orthonormal family of functions) of
H(m). SinceX =(X1, . . . ,Xp) is a random variable with values in a finite-dimensional
vector space, the associated chaos representation of Y is said to be finite-dimensional.

4.1. Hilbertian basis for Hj. Consider a Hilbertian basis of real Hilbert space

Hj given by
{
φj
αj ,α

j = (αj
1, . . . , α

j
mj

) ∈ Nmj

}
; thus

〈φj
αj , φ

j
βj 〉Hj

= E{φj
αj (X

j) φj
βj (X

j)}
= δαjβj .(11)

Therefore any function h ∈ Hj can be expanded as

(12) h(xj) =
∑

αj∈N
mj

hαj
φj
αj (x

j),
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in which

hαj
= 〈h, φj

αj 〉Hj

= E{h(Xj) φj
αj (X

j)}.(13)

Since the real constants belong to Hj, if the Hilbertian basis is chosen such that

(14) E{φj
αj} = 0 ∀αj �= 0,

then

(15) φ0 = 1.

It should be noted that polynomial bases in general satisfy this condition.

4.2. Hilbertian basis for H(m). Let
{
b1, . . . , bm

}
be the canonical basis of

Rm, which is then also a basis for Cm. Then a Hilbertian basis of complex Hilbert
space H(m) is given by

(16)
{(

φ1
α1 ⊗ · · · ⊗ φp

αp

)
⊗ bj , α1 ∈ N

m1 , . . . ,αp ∈ N
mp , j = 1, . . . ,m

}
.

4.3. Representation of f in H(m). By (3), mapping (x1, . . . ,xp) �→ f(x1, . . . ,xp)
from Rm1 × · · · × Rmp into Cm belongs to H(m) and can then be written as

(17) f(x1, . . . ,xp) =
∑

α1∈Nm1

· · ·
∑

αp∈N
mp

m∑

j=1

fj,α1···αp φ1
α1 (x1)× · · · × φp

αp(xp) bj ,

in which

fj,α1···αp =
〈
f ,
(
φ1
α1 ⊗ · · · ⊗ φp

αp

)
⊗ bj

〉
H(m)(18)

=

∫

Rm1

· · ·
∫

R
mp

〈
f(x1, . . . ,xp), bj

〉
Cm

×φ1
α1(x1)× · · · × φp

αp(xp) PX1,...,Xp(dx1, . . . , dxp).

Let

(19) fj(x
1, . . . ,xp) =

〈
f(x1, . . . ,xp), bj

〉
Cm

denote the projection of f(x1, . . . ,xp) on bj . Therefore (17) can be rewritten as

(20) f(x1, . . . ,xp) =
∑

α1∈Nm1

· · ·
∑

αp∈N
mp

fα1···αp φ1
α1 (x1)× · · · × φp

αp(xp),

where

fα1···αp = 〈f , φ1
α1 ⊗ · · · ⊗ φp

αp〉H(m)×H

=

∫

Rm1

· · ·
∫

R
mp

f(x1, . . . ,xp)

×φ1
α1(x1)× · · · × φp

αp(xp) PX1,...,Xp(dx1, . . . , dxp),

= E
{
f(X1, . . . ,Xp) φ1

α1(X1)× · · · × φp
αp(Xp)

}
(21)

and where 〈., .〉H(m)×H is the bilinear form on H(m)×H defined by the right-hand side
of the second equation (21).
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4.4. Chaos representation of random variable Y . Consequently, the chaos
representation of random variable Y = f(X1, . . . ,Xp) is

(22) Y =
∑

α1∈Nm1

· · ·
∑

αp∈N
mp

fα1···αp φ1
α1(X1)× · · · × φp

αp(Xp).

5. Construction of a Hilbertian basis for Hj. For a fixed j, the Rmj -valued
random normalized variable Xj has probability distribution PXj (dxj) which is repre-
sented by a probability density function pXj (xj) with respect to the Lebesgue measure
dxj . While in general the mj components of Xj are mutually dependent, the case of
independent components is of particular interest. Therefore, after treating the general
case, the case of mutually independent components is treated separately.

5.1. Mutually dependent components of Xj. Let Xj =
(
Xj

1 , . . . , X
j
mj

)
be

the Rmj -valued random variable with probability distribution

(23) PXj (dxj) = pXj (xj) dxj .

Let pXj
1
(xj

1), . . . , pXj
mj

(xj
mj

) be the marginal probability density functions of order 1

given by
(24)

pXj

k
(xj

k) =

∫

R
mj−1

pXj (xj
1, . . . , x

j
k−1, x

j
k, x

j
k+1, . . . , x

j
mj

) dxj
1 · · · dxj

k−1dx
j
k+1 · · · dxj

mj
.

The support Smj
of pXj is such that

(25) pXj (xj) = 0 if xj /∈ Smj
.

It should be noted that Smj
can be R

mj or any bounded or compact subset thereof.

For later use, the support sk of density pXj

k
(xj

k) is such that

(26) pXj

k

(xj
k) = 0 if xj

k /∈ sk.

It is noted here also that sk can be R or any bounded or compact subset thereof, and
that, in general, Smj

�= s1 × · · · × smj
.

5.1.1. Hilbert spaces Hj,k and Kj. The real Hilbert space associated with

marginal distribution pXj

k
(xj

k) dx
j
k is now introduced. Let

(27) Hj,k = L2
P
X

j
k

(R,R)

be the Hilbert space associated with the probability measure PXj

k

(dxj
k) = pXj

k

(xj
k)dx

j
k,

equipped with the inner product

(28) 〈r, s〉
Hj,k

=

∫

R

r(q) s(q) pXj

k

(q) dq = E
{
r(Xj

k) s(X
j
k)
}
.

Let
{
ψk
ℓ , ℓ ∈ N

}
be a Hilbertian basis of real Hilbert space Hj,k which is such that

(29)
〈
ψk
ℓ , ψ

k
ℓ′
〉
Hj,k

= δℓℓ′ .
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Let Kj be the real Hilbert space defined by

(30) Kj = ⊗mj

k=1Hj,k

equipped with the inner product

〈u, v〉Kj
=

∫

R

· · ·
∫

R

u(q1, . . . , qmj
) v(q1, . . . , qmj

)

× pXj
1
(q1)× · · · × pXj

mj

(qmj
) dq1 · · · dqmj

.(31)

It should be noted that 〈u, v〉Kj
is different from E

{
u(Xj)v(Xj)

}
which is equal to

〈u, v〉Hj
. From (30), the following Hilbertian basis for Kj is deduced:

(32)
{
ψ1
ℓ1 ⊗ · · · ⊗ ψ

mj

ℓmj
, ℓ1 ∈ N, . . . , ℓmj

∈ N

}
.

5.1.2. Hilbertian basis for Hj.

Lemma 1. For all xj = (xj
1, . . . , x

j
mj

) belonging to the support Smj
of pXj (xj),

Hilbertian basis {φj
αj , αj ∈ Nmj} of real Hilbert space Hj is given by

(33) φj
αj (x

j) =

⎛
⎝
pXj

1
(xj

1)× · · · × pXj
mj

(xj
mj

)

pXj (xj)

⎞
⎠

1/2

ψ1
αj

1

(xj
1)× · · · × ψ

mj

αj
mj

(xj
mj

),

where {ψk
αj

k

(xj
k)}αj

k
is a Hilbertian basis of real Hilbert space Hj,k and αj = (αj

1, . . . , α
j
mj

).

Proof. In a first step, (33) is established. Let h ∈ Hj, and let xj �→ g(xj) be the
function such that

g(xj) = h(xj)

⎛
⎝ pXj (xj)

pXj
1
(xj

1)× · · · × pXj
mj

(xj
mj )

⎞
⎠

1/2

.

¿From (31), we deduce that ‖g‖2
Kj

= ‖h‖2
Hj

and since h ∈ Hj , we deduce that g ∈ Kj .
Therefore, this function can be expanded as

h(xj)

⎛
⎝ pXj (xj)

pXj
1
(xj

1)× · · · × pXj
mj

(xj
mj )

⎞
⎠

1/2

=
∑

αj
1∈N

· · ·
∑

αj
mj

∈N

hαj
1···α

j
mj

ψ1
αj

1

(xj
1)

× · · · × ψ
mj

αj
mj

(xj
mj

).(34)

Equation (34) can be rewritten as

h(xj) =
∑

αj
1∈N

· · ·
∑

αj
mj

∈N

hαj
1···α

j
mj

⎛
⎝
pXj

1
(xj

1)× · · · × pXj
mj

(xj
mj

)

pXj (xj)

⎞
⎠

1/2

×ψ1
αj

1

(xj
1)× · · · × ψ

mj

αj
mj

(xj
mj

).(35)

Since h belongs to Hj, use of (12) yields (33).
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The second step in the proof consists in verifying that the family defined by (33)
is an orthonormal system in Hj. A simple calculation yields the following equation:

(36)
〈
φj
αj , φ

j
βj

〉
Hj

=

mj∏

k=1

{〈
ψk
αj

k

, ψk
βj

k

〉
Hj,k

}
.

Using (29) results in

(37)
〈
φj
αj , φ

j
βj

〉
Hj

=

mj∏

k=1

δαj

k
βj

k
= δαjβj .

The final step in the proof consists in verifying that the family of functions defined
by (33) is complete in Hj, which is straightforward considering the completeness of

Hilbertian basis ψj
αj in Hj,k.

5.2. Mutually independent components of Xj . Under the assumption of
independence of the components of Rmj -valued random variables Xj , the following
equation holds:

(38) pXj (xj) = pXj
1
(xj

1)× · · · × pXj
mj

(xj
mj

).

¿From Lemma 1, it is deduced that the Hilbertian basis {φj
αj , αj ∈ N

mj} of the real
Hilbert space Hj is given by

(39) φj
αj (x

j) = ψ1
αj

1

(xj
1)× · · · × ψ

mj

αj
mj

(xj
mj

),

where xj = (xj
1, . . . , x

j
mj

) andαj = (αj
1, . . . , α

j
mj

). In this case, it should be noted that
real Hilbert space Kj coincides with real Hilbert space Hj. Moreover, it should noted
in this case that the support Smj

becomes the product of the supports s1, . . . , smj
,

(40) Smj
= s1 × · · · × smj

.

5.3. Classical orthogonal polynomials as bases for Hj,k. A close connec-
tion exists between classical orthogonal polynomials and chaos decompositions. In-
deed, to each of the classical polynomials is associated a weight function that can
be construed as a density of a measure on an appropriate space. In the terminol-
ogy used in this paper, the orthogonal polynomials refer to the Hilbertian basis
{ψk

αj

k

(xj
k)} of the real Hilbert space Hj,k associated with the probability measure

PXj

k
(dxj

k) = pXj

k
(xj

k) dxj
k (see sections 5.1.1 and 5.1.2). For notational convenience,

{ψk
αj

k

} is rewritten as ψℓ(q), pXj

k
(xj

k) as w(q), and the support sk is denoted by s.

With this notation, the inner product in Hj,k is rewritten as

〈ψℓ, ψℓ′〉Hjk
=

∫

R

ψℓ(q)ψℓ′(q)w(q) dq

=

∫

s

ψℓ(q)ψℓ′(q)w(q) dq

= δℓℓ′ .(41)

Table 1 (see appendix) shows the weights w(q), the support, and the expressions of
ψℓ(q) for a number of classical orthogonal polynomials. Recurrence expressions for
the construction of the orthogonal polynomials are given in Table 2.
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6. Physical system with random uncertainties. This section demonstrates
the implementation of the chaos decomposition through an example from dynamics.

6.1. Definition of the physical system. Consider a physical system modeled
as an elliptic linear boundary-value problem over a bounded domain B of Rd, with d a
finite positive integer. Let the associated operator depend on p1 stochastic processes,
W 1(ζ), . . . ,W p1(ζ), and p2 vector-valued random variables (p = p1 + p2), represent-
ing the uncertain behavior of the underlying physical system. Each of the p1 random
processes can itself be discretized in terms of a countable set of random variables via
the Karhunen–Loeve expansion [17]. The number of terms retained in this expan-
sion for each process depends on the correlation length of its random fluctuations,
increasing as this length decreases. Each of the processes W j(ζ) is thus replaced
by an Rmj -valued random variable Zj , where mj is the number of terms retained in
the Karhunen–Loeve expansion of the jth process. The operator associated with the
boundary-value problem can thus be expressed as explicitly dependent on p random
variables Zj , which can be transformed into a set of orthogonal random variables X
as described in (2).

6.2. Joint probability density function of the Karhunen–Loeve random

variables. The representation of a stochastic process through the Karhunen–Loeve
expansion results in a countable set of random variables the probability measure of
which is a function of the probability measure of the process. In the case where the
latter is a Gaussian process, the random variables form an orthonormal Gaussian se-
quence. The theoretical development presented in this paper relies on the availability
of the joint probability distribution of the basic random variables on which the solu-
tion, being represented in its chaos decomposition, depends. In this section, the joint
probability density function of the Karhunen–Loeve random variables is developed
in terms of the probability measure of the associated process, thus permitting the
integration of the Karhunen–Loeve representation into the foregoing analysis.

Let {Z(ζ), ζ ∈ B} be a second-order centered stochastic process indexed by a
bounded set B of Rd with values in Rν . The matrix-valued correlation function of Z
is thus given by

(42) RZ(ζ, ζ
′) = E

{
Z(ζ)Z(ζ′)T

}

and is assumed to be such that

(43)

∫

B

∫

B

‖RZ(ζ, ζ
′)‖2HS dζ′ dζ < ∞,

where ‖.‖HS is the Hilbert–Schmidt norm. For instance, since B is a bounded set
of Rd, the condition defined by (43) is satisfied if Z is a mean-square continuous
stochastic process on B. Then let V = L2

dζ(B,Rν) be the Hilbert space of Rν-valued
square-integrable functions on B equipped with the inner product

(44) 〈u,v〉V =

∫

B

〈u(ζ),v(ζ)〉
Rν dζ.

Due to (43), the linear operator RZ defined by the following bilinear form on V×V,

(45) 〈RZu,v〉V =

∫

B

∫

B

〈RZ(ζ, ζ
′)u(ζ′),v(ζ)〉

Rν dζ′ dζ,
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is a Hilbert–Schmidt operator [13]. Consequently, the eigenvalue problem

(46) RZφ = λ φ

has a sequence of real positive eigenvalues λ1 ≥ λ2 ≥ · · · → 0 such that
∑∞

j=1 λ
2
j <

∞. The associated eigenfunctions form a Hilbertian basis of V. In this case, the
Karhunen–Loeve decomposition of stochastic process (Z(ζ), ζ ∈ B) can be written as

(47) Z(ζ) =

∞∑

j=1

√
λj ξj φj(ζ)

with

(48) ξj =
1√
λj

〈Z,φ〉V,

where the sequence of random variables {ξj} is such that

E{ξj} = 0,

E{ξiξj} = δij .(49)

Truncating the KL expansion at the µth term defines the approximation Zµ(ζ)
as

(50) Zµ(ζ) =

µ∑

j=1

√
λj ξj φj(ζ).

It is noted that

(51) E
{
‖Z −Zµ‖2V

}
=

∞∑

µ+1

λj .

For all θµ = (θµ1 , . . . , θ
µ
µ) in Rµ, the characteristic function of the Rµ-valued random

variable ξµ = (ξµ1 , . . . , ξ
µ
µ) is defined by

(52) Φξµ(θµ) = E {exp {i〈ξµ, θµ〉Rµ}}

and can be rewritten as

Φξµ(θµ) = E

⎧
⎨
⎩exp

⎛
⎝i

µ∑

j=1

θµj√
λj

〈Z,φj〉V

⎞
⎠
⎫
⎬
⎭

= E {exp (i 〈Z,vµ〉V)} ,(53)

where

(54) vµ(ζ) =

µ∑

j=1

θµj√
λj

φj(ζ).

Introducing the characteristic functional, ΦZ(v) of stochastic process Z, defined
for suitable function v, the following equation results:

Φξµ(θµ) = E{exp (i〈Z,vµ〉V)}
= ΦZ(v

µ).(55)
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Thus given the characteristic functional of stochastic processZ and the eigenfunctions
of its correlation operator, (54) and (55) can be used to obtain the characteristic
function of ξµ, its truncated Karhunen–Loeve representation.

In this paper, the Karhunen–Loeve expansion is used as a means to project
stochastic processes onto finite-dimensional representations. While no convergence
analysis regarding the effect of these finite representations on the accuracy of the
chaos decompositions is carried out, existing results [15] present an equivalence, as
the number of terms in the Karhunen–Loeve expansion increases, between conver-
gence with respect to various norms, as well as between convergence with respect to
the underlying measure.

6.3. Construction of the chaos representation of the random solution

and convergence analysis. The projection of the weak formulation of the elliptic
boundary value problem with random uncertainties onto an m-dimensional subspace
can be achieved through any one of a number of procedures, such as the finite element
method (FEM), resulting in a random linear algebraic problem of the form

(56) A(X1, . . . ,Xp) Y = F ,

where F is a given element of Cm, andA is a randomm×m complex matrix depending
on the basic vector-valued random variables X1, . . . ,Xp. It is moreover assumed that
the Cm-valued solution Y of (56) exists almost surely. Consequently, random matrix
A(X1, . . . ,Xp)−1 exists almost surely, defining a nonlinear mapping f such that

(57) Y = f(X1, . . . ,Xp).

Finally, it is also assumed that mapping f is such that (3) is verified, and, conse-
quently, Y = f(X1, . . . ,Xp) is the unique second-order random solution of random
matrix (56).

Taking into account (22), a representation of the solution is sought with respect
to the chaos basis of the form

(58) Y =
∑

α1∈Nm1

· · ·
∑

αp∈N
mp

Yα1···αp φ1
α1(X1)× · · · × φp

αp(Xp),

with the Cm-valued coefficient Yα1···αp . With r1, . . . , rp denoting the lengths |α1|, . . . ,
|αp| of multi-indices α1, . . . ,αp, respectively, let

(59) Y r =
∑

α1,|α1|≤r1

· · ·
∑

αp,|αp|≤rp

Yα1···αp φ1
α1(X1)× · · · × φp

αp(Xp),

where |αk| =∑mk

j=1 α
k
j and r = (r1, . . . , rp).

6.3.1. Construction through sampling and convergence analysis. Ac-
cording to the third equation in (21), coefficients Yα1···αp of the chaos development
of Y are given by the following expression:

(60) Yα1···αp = E
{
Y φ1

α1 (X1)× · · · × φp
αp(Xp)

}
.

Equation (60) is well adapted for the evaluation of the coefficients Yα1···αp through
a Monte Carlo numerical simulation of (56). This results in the following estimate of
the chaos coefficients:

(61) Y ns

α1···αp =
1

ns

ns∑

k=1

Y (ak) φ
1
α1(X1(ak)) · · ·φp

αp(Xp(ak)),
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where Y (ak) and Xj(ak) refer, respectively, to the kth realization of Y and Xj ,
where the former is obtained by solving the deterministic equation

(62) A(X1(ak), . . . ,X
p(ak)) Y (ak) = F .

The convergence of the chaos decomposition is analyzed by studying the convergence
of the r-sequence, E{‖Y − Y r‖2

C
}. Although this sequence is indexed only by r,

the estimation of the chaos coefficients of Y r through sampling introduces a new
parameter ns. An appropriate metric for investigating the convergence of the overall
approximation can thus be written as

(63) J (r, ns) =
1

ns

ns∑

k=1

‖Y (ak)− Y r,ns(ak)‖2C,

where
(64)

Y r,ns(ak) =
∑

α1,|α1|≤r1

· · ·
∑

αp,|αp|≤rp

Y ns

α1···αp φ1
α1(X1(ak))× · · · × φp

αp(Xp(ak)).

6.3.2. Construction through Hilbertian projections and convergence

analysis. An alternative construction [10] of the coefficients Yα1···αp consists in sub-
stituting the truncated chaos decomposition of Y , given in (59), into equation (56)
and interpreting the resulting equality in the weak sense using the bilinear form in
H(m) ×H defined in (21). This results in
(65)
E
{
A(X1, . . . ,Xp)Y r φ1

α1(X1) · · · φp
αp(Xp)

}
= E

{
F φ1

α1 (X1)× · · · × φp
αp(Xp)

}

for multi-indices αk such that |αk| ≤ rk. Substituting (58) into the previous equation
and assuming that (15) holds, and since F is a constant vector, yields

(66)
∑

α1,|α1|≤r1

· · ·
∑

αp,|αp|≤rp

Aα1···αpβ1···βpY r
α1···αp = F δ0β1 · · · δ0βp ,

where deterministic matrix A is given by
(67)

Aα1···αpβ1···βp =E
{
A(X1, . . . ,Xp)φ1

α1 (X1) · · · φp
αp(Xp)φ1

β1(X1)× · · · × φp
βp(X

p)
}
.

This finite-dimensional deterministic algebraic system of equations yields the chaos
coefficients of Y r. Unlike the construction via sampling introduced previously, the
computed chaos coefficients now depend on the multi-index r = (r1, . . . , rp) used
in the approximation. In a few special cases, the right-hand side of (67) can be
evaluated analytically. In general, however, the mathematical expectation is estimated
via Monte Carlo sampling resulting in matrix A

ns

α1···αpβ1···βp . The solution of (66)

associated with this approximation is denoted by Y
ns,r
α1···αp . Since in the present case,

realizations Y (ak) of the exact solution are not available, estimation of the r-sequence
E{‖Y − Y r‖2

C
} cannot be directly investigated. Let a new r-sequence be given by

E{‖Y r‖2
C
}. If this sequence is upper bounded by a positive finite constant, then

all of the chaos coefficients of Y r converge to the chaos coefficients of the exact
solution. Indeed, the boundedness of the sequence E{‖Y r‖2

C
} implies the convergence

of each chaos coefficient of Y r to the corresponding chaos coefficients of Y . Thus,
the sequence E{‖Y r‖2

C
} is a well-adapted sequence for monitoring the convergence of

the chaos approximation.
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7. Conclusion. With the steady increase in availability and magnitude of com-
putational resources, error analysis and fidelity in model-based predictions have taken
a central role in modeling and computational sciences. Issues related to uncertainty
quantification, both as far as modeling the uncertainty, propagating it through com-
putational models, and managing its consequences are concerned, are gaining in sig-
nificance. This paper has presented the mathematical foundation for formulating
and resolving the technical issues associated with the probabilistic formulation of un-
certainty quantification, using the polynomial chaos decomposition. The focus has
been on the class of problems involving a finite number of basic random variables,
with the Karhunen–Loeve decomposition permitting the efficient approximation of
the infinite-dimensional case with a sequence of finite-dimensional subspaces.

The representations presented in the paper can be readily implemented into nu-
merical codes, either using existing software via a Monte Carlo sampling scheme, or
using stochastic codes that are adapted to the chaos decompositions. In either case,
procedures for error analysis and convergence studies are presented in the paper. Such
studies are essential for the meaningful combination of errors stemming from the dis-
cretization of the governing partial differential equations with those stemming from
the stochastic discretization.

Finally, the methods presented herein can be extended in a straightforward man-
ner to situations where the Hermitian range space of the transformations is replaced
with more general spaces such as the space of matrices or a Banach space [20, 21].

8. Appendix. This appendix shows data needed to construct the most common
orthogonal polynomials [1]. These in turn are used to construct the bases φℓ(q)
of Hilbert spaces Hj,k. Each of these polynomials is also associated with a one-
dimensional well-known probability density function, which is also indicated. Table 1
displays the polynomial name, its weight, support, associated probability measure,
and the relation to the Hilbertian basis. Table 2 shows, for each polynomial, the
recurrence relation allowing its construction.
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Table 1
Classical orthogonal polynomials, their weights, support, and normalization.

Polynomial Weight: w(q) Support: s Associated proba-
bility measure

Hilbertian basis ψℓ(q)

Hℓ(q): Hermite (2π)−1/2e−q2/2 R Gaussian Hℓ(q)/
√
ℓ!

Pℓ(q): Legendre 1 ]− 1, 1[ uniform Pℓ(q)
√

2ℓ+1
2

La
ℓ (q): Laguerre qae−q

a > −1
]0,+∞[ Gamma La

ℓ (q)
√

ℓ!
Γ(a+ℓ+1)

Tℓ(q): Chebyshev (1− q2)−1/2 ]− 1, 1[ Chebyshev Tℓ(q)
√

2
π(1+δ0ℓ)

P
(a,b)
ℓ : Jacobi (1 − q)a(1 + q)b

a > −1; b > −1
]− 1, 1[ Beta P

(a,b)
ℓ (q)

√

ℓ!(a+b+1+2ℓ)Γ(a+b+ℓ+1)

2a+b+1Γ(a+ℓ+1)Γ(b+ℓ+1)
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Table 2
Recurrence relations for the classical orthogonal polynomials.

Polynomial Recurrence relation
ℓ = 0 ℓ = 1 ℓ ≥ 2

Hℓ(q): Hermite H0(q) = 1 H1(q) = q Hℓ = qHℓ−1 − (ℓ− 1)Hℓ−2

Pℓ(q): Legendre P0(q) = 1 P1(q) = q Pℓ = 1
ℓ
(2ℓ− 1)qPℓ−1 − 1

ℓ
(ℓ− 1)Pℓ−2

La
ℓ (q): Laguerre La

0(q) = 1 La
1(q) = a+ 1− q La

ℓ = 1
ℓ
(2ℓ− 1 + a− q)La

ℓ−1 − 1
ℓ
(ℓ− 1 + a)La

ℓ−2

Tℓ(q): Chebyshev T0(q) = 1 T1(q) = q Tℓ = 2qTℓ−1 − Tℓ−2

P
(a,b)
ℓ : Jacobi P

(a,b)
0 (q) = 1 P

(a,b)
1 (q) = a−b

2
+

(

a+b
2

+ 1
)

q

P
(a,b)
ℓ = Aℓ(q)P

(a,b)
ℓ−1 −BℓP

(a,b)
ℓ−2

Aℓ(q) =
(a+b+2ℓ−1)[(a+b+2ℓ−2)(a+b+2ℓ)q+a2−b2]

2ℓ(a+b+ℓ)(a+b+2ℓ−2)

Bℓ = 2(a+ℓ−1)(b+ℓ−1)(a+b+2ℓ)
2ℓ(a+b+ℓ)(a+b+2ℓ−2)
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