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Abstract. In this paper, we address the problem of domain adaptation for binary classification.
This problem arises when the distributions generating the source learning data and target test
data are somewhat different. From a theoretical standpoint, a classifier has better generalization
guarantees when the two domain marginal distributions of the input space are close. Classical
approaches try mainly to build new projection spaces or to reweight the source data with the ob-
jective of moving closer the two distributions. We study an original direction based on a recent
framework introduced by Balcan et al. enabling one to learn linear classifiers in an explicit pro-
jection space based on a similarity function, not necessarily symmetric nor positive semi-definite.
We propose a well founded general method for learning a low-error classifier on target data which
is effective with the help of an iterative procedure compatible with Balcan et al.’s framework. A
reweighting scheme of the similarity function is then introduced in order to move closer the distri-
butions in a new projection space. The hyperparameters and the reweighting quality are controlled
by a reverse validation procedure. Our approach is based on a linear programming formulation
and shows good adaptation performances with very sparse models. We first consider the challeng-
ing unsupervised case where no target label is accessible, which can be helpful when no manual
annotation is possible. We also propose a generalisation to the semi-supervised case allowing us
to consider some few target labels when available. Finally, we evaluate our method on a synthetic
problem and on a real image annotation task.

Keywords: Machine Learning, Transfer Learning, Domain Adaptation, Good Similarity Func-
tions.

1. Introduction

In applications requiring automatic classification of new data, a usual method is to
learn a classifier by using some machine learning technique. In general, most of the
approaches for learning classifiers are built under the assumption that the learning data
are representative of the test data. In other words, all train and test data are supposed
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to be drawn from the same (usually unknown) distribution. While this assumption can
be relevant for some tasks, it is not always true in every applications. For example, in
spam filtering problems, the training data associated to one user can be very different
from emails received by another target user (Junejo and Karim, 2012). A similar issue
can also happen in some image annotation tasks where training data can be restricted
to particular instances (due to the tricky and costly manual labeling of examples) like
images crawled from particular web sites. Such training data are not representative of
future test data that can come from images extracted from movies or videos. To over-
come this drawback, some transfer learning methods (Bahadori et al., 2011; Guerra
et al., 2011; Junejo and Karim, 2012; Pan and Yang, 2010; Wang et al., 2012) have been
proposed to adapt a model from a source domain to a target domain. In this paper, we ad-
dress a particular transfer learning task named domain adaptation (DA) where test data
are supposed to be drawn according to a distribution - the target domain - different from
the one used for generating learning data - the source domain - (Jiang, 2008; Quionero-
Candela et al., 2009). DA is thus an important issue for the efficient application of ma-
chine learning methods leading to the development of many approaches in the literature.

Under the assumption that the two domains are somehow related, theoretical DA re-
sults state that if the source and the target marginal distributions over the input space are
relatively close, then a classifier only learned from the labeled source data can perform
well on the target domain (Ben-David et al., 2007; Ben-David et al., 2010a; Mansour
et al., 2009). This suggests a natural approach for a successful DA: Moving closer the
source and the target distributions while keeping a low-error classifier on the source
domain. In this context, Ben-David et al. (2007; 2010a) have theoretically analyzed the
importance of data representation for DA tasks by deriving a generalization bound of
the target error for binary classifiers. Mansour et al. (2009) have extended this approach
to real valued classifiers with more general results and other generalization bounds.

In a DA scenario, two settings are generally considered (see Figure 1): One where
labeled data are only available in the source learning sample. This setting is often called
unsupervised domain adaptation as it works in an unsupervised way over the target
domain. In the second, a few labeled data are also available in the target sample that
corresponds to the semi-supervised domain adaptation setting. In this context, it is gen-
erally assumed that the number of target labeled data is significantly smaller than that of
source labeled instances and not sufficiently large enough to learn a performing model
only from the target labeled examples.

The unsupervised case is clearly more challenging. Some methods, based on differ-
ent hypotheses or discrepancy measures, have been explored for reweighting the learn-
ing source data in order to move them closer to target data (Huang et al., 2006; Jiang
and Zhai, 2007; Mansour et al., 2009; Sugiyama et al., 2007). In another context,
Bruzzone and Marconcini (2010) have designed a SVM-based procedure that itera-
tively replaces source labeled instances by self-labeled target points in the learning
sample. Another idea consists in finding a common relevant feature space where the
two distributions are close (Bahadori et al., 2011; Ben-David et al., 2007; Ben-David
et al., 2010a; Blitzer et al., 2011; Xue et al., 2008), but this often relies on ad hoc
heuristics specific to particular tasks. We can also cite some approaches based on co-
training (Chen et al., 2011) or regression (Cortes and Mohri, 2011) that can enter in
this unsupervised setting. In general, all these previous methods have some natural
extensions to the semi-supervised case in order to exploit target labeled information
for improving the classifier induction. In this latter setting, some specific approaches
have been proposed for statistical classifiers by using an extended linear projection
space (Daumé III, 2007; Daumé III et al., 2010). Some other techniques, using a com-
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(a) Usual supervised learning: The test data and learn-
ing data are generating from the same distribution.
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(b) Domain adaptation: The learning data are decom-
posed into two samples, the source (labeled) one and
the target one. In the unsupervised DA, the target sam-
ple is provided without any label, while in the semi-
supervised DA it includes some labels.

Fig. 1. The intuition behind the difference between a classical machine learning setting and a classical domain
adaptation setting. PS is the distribution generating the source data, PT is the distribution generating the
target data. Note that to simplify the presentation, we use an abuse of notation for distributions generating the
samples: unlabeled data of the test and target samples are not exactly drawn from the same distribution used
to generate the labeled learning data, see Section 2 for a more formal description.

bination of source and target labeled instances, have also been studied according to
various frameworks (Ben-David et al., 2010a; Bergamo and Torresani, 2010; Daumé III
et al., 2010; Schweikert et al., 2008).

Many of the previously cited methods are often based on either heuristics, a source
reweighting scheme only, the presence target labels or kernel methods requiring the use
of symmetric and positive semi-definite (PSD) similarity functions.

In this article, we propose a new domain adaptation approach based on the novel the-
ory introduced in (Balcan et al., 2008a; Balcan et al., 2008b) for binary classification.
This framework allows one to learn in an explicit projection space defined by a good
similarity function that may be not symmetric nor PSD. In other words, it generalizes
kernel functions of SVM-based methods and is thus more flexible in some sense. The
authors show that it is possible to learn a low-error linear classifier in that space, defined
by similarities to some relevant landmark examples. We claim that these landmarks of-
fer a natural set of features to transfer. Our idea consists in automatically modifying
this projection space for moving closer source and target points. For this purpose, we
propose a general method based on the optimization of a regularized convex objective
function where the regularization term plays a crucial role. Indeed, this term focuses on
landmark points close to both source and target examples. Our optimization problem
is in fact formulated in a 1-norm regularized linear program leading naturally to very
sparse models. We also propose an iterative process, based on a reweighting of simi-
larities, to improve the tractability of the method. The key point of our approach relies
on the use of general similarities (i.e. neither symmetric nor PSD) to find a relevant
projection space for domain adaptation allowing us to move closer source and target
distributions. This explains, why we propose to stand in the framework of Balcan et al’s
to design our DA method.

Our contribution is twofold. First, we define a method for the challenging unsuper-
vised case where no target label is available. It provides then a solution to compensate
the lack of target labeled data when manual labeling is impossible. It can also be use-
ful, for example, to design a “cold start” strategy in an active learning process to label
the very first examples (Ayache and Quénot, 2008). In this unsupervised setting, a cru-
cial point is to find a reliable method for assessing the various hyperparameters of our
approach. To solve this problem, we propose to make use of approaches based on the
notion of reverse validation (Bruzzone and Marconcini, 2010; Zhong et al., 2010). We
exploit this notion to propose a stopping criterion for our iterative procedure. We also
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present a theoretical analysis of our models in terms of sparsity and generalization guar-
antees. We derive a new error bound based on the notion of algorithmic robustness (Xu
and Mannor, 2010). Our second contribution takes the form of a generalization of our
first approach to the semi-supervised case in order to take into account some existing
target labels. It is inspired by Ben-David et al. (2010a) and based on the optimiza-
tion of a linear combination of the source and target empirical errors. We also provide
some theoretical justifications specific to this semi-supervised case. Our two methods
are evaluated on a synthetic problem and on real image annotation corpora.

The paper is organized as follows. Section 2 introduces the domain adaptation
framework of (Ben-David et al., 2010a). Section 3 deals with the theory of learning
with good similarity functions (Balcan et al., 2008a). Our unsupervised approach is
presented in Section 4 and its iterative enhancement in Section 5. Our semi-supervised
method using a few target labels is formulated in Section 6. The different approaches
are experimentally evaluated in Section 7. Finally, we conclude and discuss some future
work in Section 8.

2. Domain Adaptation

Let X ⊆ Rd be the input space of dimension d and Y = {−1,+1} the label set. A
domain is defined as a probability distribution over X×Y . In a DA framework (Ben-
David et al., 2010a; Mansour et al., 2009), we have a source domain represented by a
distribution PS over X × Y and a target domain represented by a somewhat different
distribution PT , DS and DT being the respective marginal distributions over X .

In the unsupervised case, a learning algorithm is provided with a Labeled Source
sample LS={(xi, yi)}dli=1 drawn i.i.d. from PS and an unlabeled Target Sample TS=

{xi′}dti′=1 drawn i.i.d. from DT . We also denote by LS|X = {(xi)/(xi, yi) ∈ LS}dli=1
the sample constituted of all the instances of LS without their label. Let h : X→Y be
an hypothesis function in the form of a binary classifier. The expected errors of h over
the source domain PS and the target domain PT are the probabilities that h commits an
error on PS and PT respectively,

errS(h)=E(x,y)∼PS L01

(
h, (x, y)

)
, errT (h)=E(x,y)∼PT L01

(
h, (x, y)

)
,

where L01(h, (x, y)) = 1 if h(x) 6= y and zero otherwise, corresponding to the 0-1
loss function. We denote by êrrS(h) and êrrT (h) the respective empirical errors. A
hypothesis class H is a set of hypotheses from X to Y . For a DA task, the objective is
then to learn a classifier h ∈ H with a low generalization error errT (h) over the target
domain (see Figure 1(b)).

We now review the theoretical framework1 of DA based on (Ben-David et al.,
2010a), where the authors give an upper bound for errT (h).

Theorem 1 (Ben-David et al. (2010a)). LetH be a hypothesis class, ∀h ∈ H,

errT (h) ≤ errS(h) +
1

2
dH∆H(DS , DT ) + ν,

where dH∆H(DS , DT ) = 2 sup
h,h′∈H∆H

|PrDS(h(x) 6= h′(x))− PrDT(h(x) 6= h′(x))| is

1 Note that surveys can be found in (Jiang, 2008; Quionero-Candela et al., 2009).
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(b) A small distance between the marginal
distributions: The classifier learned from the
source domain performs well on both do-
mains.

Fig. 2. The intuition behind Theorem 1. The source domain points are in (dark) green (pos.+, neg.−), the
target domain points are in (light) orange.

the H∆H-distance between DS and DT with H∆H = {h(x) ⊕ h′(x) : h, h′ ∈ H} the
symmetric difference hypothesis space of H and ν = errS(h∗) + errT (h∗) is the error
of the ideal joint hypothesis with h∗ = argminh∈H(errS(h) + errT (h)).

This bound depends on three terms:

(A) The source domain expected error errS(h) which can be minimized by a learning
algorithm based on the ERM principle.

(B) The H∆H-distance between the two marginal distributions which is related to H
by measuring a maximum variation divergence over the set of points on which an
hypothesis can commit errors.

(C) The last term ν is related to the ideal joint hypothesis h∗ over the domains and can
be seen as a quality measure ofH for the considered DA task. If h∗ performs poorly,
then it seems to be hard to find a low-error hypothesis on the target domain.

Theorem 1 suggests that if theH∆H-distance is low, i.e. if the two marginal distributions
are close, then a low-error classifier over the source domain might be a good model
over the target one. The intuition behind this idea is given on Figure 2. An interesting
point, described by the following Lemma, is that when the VC-dimension ofH is finite
(measuring the capacity ofH), dH∆H(DS , DT ) can be estimated from finite samples.

Lemma 1 (Ben-David et al. (2010a)). Let H be an hypothesis class with finite VC-
dimension v. Let S and T be unlabeled samples of size m i.i.d. from DS and DT

respectively. Let d̂H∆H(S, T ) be the empirical H∆H-distance. Then for any δ > 0 with
probability at least 1− δ,

dH∆H(DS , DT ) ≤ d̂H∆H(S, T ) + 4

√
2v log(2m) + log 2

δ

m
.

Lemma 1 means that the empirical distance d̂H∆H(S, T ) converges thus to the real one
dH∆H(DS , DT ) with the size m of the samples. Consider a labeled sample made of
S ∪ T where each instance of S is labeled as positive and each one of T as negative,
we can directly estimate d̂H∆H(S, T ) (∈ [0, 2]) by looking for the best classifier able to
separate S from T ,

d̂H∆H(S, T ) = 2

(
1− min

h∈H∆H
êrrS∪T (h)

)
, (1)
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with êrrS∪T (h)=
1

m

 ∑
x∈S∪T :

h(x)=−1

1x∈S +
∑

x∈S∪T :

h(x)=1

1x∈T

 , where 1x∈A=

{
1 if x ∈ A,
0 otherwise.

Finding the optimal hyperplane is an NP-hard problem in general. However, an estima-
tion of d̂H∆H(S, T ), and thus of dH∆H(DS , DT ), allows us to have an insight of the
distribution distance and thus of the difficulty of the DA task for the class H. Note that
Mansour et al. (2009) have extended the H∆H-distance to real valued functions and
have provided Rademacher generalization bounds.

Following Theorem 1, one solution for a DA algorithm is to look for a data projec-
tion space where both theH∆H-distance (B) and the source domain expected error of a
classifier (A) are low (see Figure 2). According to (Ben-David et al., 2010b), minimizing
these two terms is necessary to ensure a good adaptation in general.

As a consequence, we need to define a projection space to work on in order to move
closer the two distributions. Rather than working in the original input space, we propose
to consider a projection space defined by similarity scores to particular points where a
good predictor exists. This brings us to the framework of Balcan et al. making use of a
notion of good similarity function and introduced in the next section.

3. Learning with Good Similarity Functions

In this section, we present the framework of similarity-based binary linear classifiers in-
troduced by (Balcan et al., 2008a; Balcan et al., 2008b). Recall that a similarity function
over X is any pairwise function K : X ×X → [−1, 1]. Many algorithms use similarity
functions, like support vector machines where the similarity needs to be a kernel (i.e.
symmetric and positive semi-definite (PSD)) to ensure learning and convergence in an
implicit high dimensional Hilbert space. However, due to the PSD requirement, consid-
ering kernels can be a strong limitation and defining a relevant kernel is a tricky task in
general (see (Abbasnejad et al., 2011) for a survey on kernel learning).

The recent learning framework proposed by Balcan et al. (2008a) considers a rather
intuitive definition of a good similarity function that overcomes some of these limita-
tions.

Definition 1 (Balcan et al. (2008a)). A similarity function K is an (ε,γ,τ )-good sim-
ilarity function for a learning problem P if there exists a (random) indicator function
R(x) defining a (probabilistic) set of reasonable points such that the following condi-
tions hold:

(i) A 1− ε probability mass of examples (x, y) satisfy

E(x′,y′)∼P
[
yy′K(x,x′)|R(x′) = 1

]
≥ γ,

(ii) Prx′ [R(x′) = 1] ≥ τ .

This definition means that a large proportion of examples must be on average γ more
similar to the reasonable points of the same class than to the reasonable points of the
opposite class (condition (i)). Moreover, at least a proportion τ of the examples should
be reasonable (condition (ii)). Definition 1 includes all valid kernels as well as some
non-PSD similarity functions and is thus quite general (Balcan et al., 2008a; Balcan
et al., 2008b). The reasonable points are usually unknown a priori. Therefore, in the
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Fig. 3. A set of positive (red crosses) and negative (blue circles) points.

following, we denote by R = {x′j}
du
j=1 a set of potential reasonable points called land-

marks. Given K an (ε,γ,τ )-good similarity function, the conditions of Balcan et al.
(2008a) are sufficient to learn a good linear classifier in a φR-space defined by the map-
ping function φR, which projects a point in the explicit space of the similarities to the
landmarks such that,

φR :

{
X → Rdu
x 7→ 〈K(x,x′1), . . . ,K(x,x′du)〉. (2)

The following theorem justifies the existence of a good linear classifier in the φR-space.

Theorem 2 (Balcan et al. (2008a)). LetK be an (ε,γ,τ )-good similarity function for
a learning problem P . Let R = {x′1, . . . ,x′du} be a (potentially unlabeled) sample of

landmarks drawn i.i.d. from P such that du = 2
τ

(
log(2/δ) + 8 log(2/δ)

γ2

)
. Consider the

mapping φR defined in Equation (2). Then, with probability at least 1 − δ over the
random sample R, the induced distribution φR(P ) in Rdu has a separator of error at
most ε+ δ to L1-margin at least γ/2.

Thus, given an (ε,γ,τ )-good similarity function for a learning problem and - enough -
landmarks, there exists with high probability a low-error linear separator in the explicit
φR-space.

We now provide a little toy example in order to illustrate the notion of (ε,γ,τ )-good
similarity function introduced by Definition 1. We consider a problem with only height
labeled examples in [0, 1]×[0, 1] represented on Figure 3(a): xA=

(
(.05, .35),+1

)
, xB=(

(.10, .35),+1
)
, xC =

(
(.05, .10),+1

)
, xD =

(
(.15, .10),+1

)
, xE =

(
(.10, .10),−1

)
,

xF =
(
(.10, .05),−1

)
, xG =

(
(.15, .05),−1

)
and xH =

(
(.10, .00),−1

)
. We can note

here that because of xE , there exists no linear classifier that can achieve a null classifi-
cation error in this original instance space.

We now consider a similarity functionK(x,x′) = 1−2‖x−x′‖2 with ‖x−x′‖2 the
classical Euclidean distance. We take the opposite of the distance to obtain a similarity
and the renormalization ensures that K(x,x′) ∈ [−1, 1]. We suppose that three out of
the height examples are reasonable points: xA, xB and xE ; τ can thus be estimated as
3
8 . We can then evaluate the goodness of K according to these reasonable points from
the formula given in Definition 1. The corresponding values are shown in Table 1. If
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Table 1. Example of the goodness of a similarity function. The table provides for each example the similarity
scores to every reasonable points and its associated goodness.

K(·,xA) K(·,xB) K(·,xE)
Goodness

(
(x, y)

)
=

E[yy′K(x,x′)|R(x′) = 1]

xA 1 0.90 0.68 0.410

xB 0.90 1 0.70 0.400

xC 0.50 0.49 0.90 0.030

xD 0.46 0.49 0.90 0.017

xE 0.49 0.50 1 0.003

xF 0.39 0.40 0.90 0.037

xG 0.37 0.39 0.86 0.033

xH 0.29 0.30 0.8 0.070

we take a margin γ = 0.002, we can remark that the goodness of each example is
larger than γ which makes the similarity (0, 0.002, 3/8)-good. Now, with γ = 0.02, the
similarity is (0.25, 0.02, 3/8)-good since two examples out of the height do not achieve
a goodness larger than 0.02.

Finally, in the explicit projection space defined by the similarities to the three rea-
sonable points φR(·) =< K(·,xA),K(·,xB),K(·,xE) > there exists a linear clas-
sifier sign

(
g(·)
)

that has a null error, where g is of the form g(·) = αAK(·,xA) +
αBK(·,xB) +αCK(·,xE) (see Figure 3(b), a possible admissible solution is obtained
with αA = αB = 1 and αE = −1).

The criterion given by Definition 1 requires to minimize the number of margin vi-
olations which is a NP-hard problem generally difficult to approximate. To overcome
this problem, the authors have then proposed to consider an adaptation of Definition 1
with the hinge loss formalized as follows.

Definition 2 (Balcan et al. (2008a)). A similarity function K is an (ε,γ,τ )-good sim-
ilarity function in hinge loss for a learning problem P if there exists a (random) in-
dicator function R(x) defining a (probabilistic) set of reasonable points such that the
following conditions hold:

(i) E(x,y)∼P

[
[1−yg(x)/γ]+

]
≤ ε, where g(x) = E(x′,y′)∼P [y′K(x,x′)|R(x′)] and

[1− z]+ = max(0, 1− z) is the hinge loss,
(ii) Prx′ [R(x′)] ≥ τ .

Using the same φR-space than Theorem 2, the authors have proved a similar theorem
for this definition with the hinge loss.

Theorem 3 (Balcan et al. (2008a)). Let K be an (ε,γ,τ )-good similarity function in
hinge-loss for a learning problem P . For any ε1 > 0 and 0 < δ < γε1

4 , let R =

{x′1, . . . ,x′du} be a sample of du = 2
τ

(
log(2/δ) + 16 log(2/δ)

(γε1)2

)
landmarks drawn i.i.d.

from P . Consider the mapping φR defined in Equation (2). Then, with probability at
least 1 − δ over the random sample R, the induced distribution φR(P ) in Rdu has a
separator achieving hinge loss of error at most of ε+ ε1 at margin γ.

Finally, given LS a set of dl labeled points, and du landmark examples, one can effi-
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ciently find a separator α ∈ Rdu by solving a linear program where the objective is to
minimize the number of margin violations with the hinge loss. We give here an equiv-
alent formulation of the L1-constrained problem presented by Balcan et al. (2008a),
called SFopt, which is based on the hinge loss.

min
α

1

dl

dl∑
i=1

L
(
g, (xi, yi)

)
+ λ‖α‖1,

with L
(
g, (xi, yi)

)
=
[
1−yig(xi)

]
+

and g(xi) =

du∑
j=1

αjK(xi,x
′
j),

(SFopt)

where g(.) is the learned model. The L1-regularization over α produces an automatic
selection of the reasonable points from the landmarks because of the sparsity property
of the L1-norm. This leads to a natural two steps algorithm for learning the classifier:
(1) Select a random set of potential landmarks and then (2) learn a binary classifier
h(x)=sign[g(x)], in the space induced by the selected landmarks, i.e. those with αj 6=
0. In practise, the landmarks are chosen from the learning sample.

Note that once a φR-space (of dimension d′) has been defined after this learning step,
then the classHφR of linear classifiers learnable in this space has a finite VC-dimension
(d′ + 1). Thus, according to Lemma 1, we can assess the distribution divergence in the
φR-space by the empirical estimate d̂HφR∆HφR (DS , DT ).

In the following, a linear classifier learned in this framework by solving (SFopt) is
called a SF-classifier. For sake of simplicity, we will denoteHφR byH.

Finally, by considering the minimization of the DA bound of Theorem 1, we remark
that (SFopt) can be seen both as an empirical minimization of the error on the source
domain PS = P and as a method for building a relevant φR-space. Our idea for DA is
then to constrain the φR-space to minimize theH∆H-distance.

4. Unsupervised Domain Adaptation with Similarity Functions

We now present our unsupervised DA method which consists in learning a classifier
from (ε,γ,τ )-good similarity functions. Recall that following Theorem 1, the expected
target domain error is bounded by three terms: (A) the source domain error, (B) the
divergence between the marginal distributions and (C) the smallest joint error over the
domains. Our idea is to minimize the expected target error by decreasing this bound.

According to (Balcan et al., 2008a; Balcan et al., 2008b), solving Problem (SFopt),
only on the source domain, involves to learn a relevant linear classifier in the explicit
φR-space (Equation (2)) of similarities to a landmark set. Then, it implies a natural de-
creasing of (A). For minimizing (B), we want to induce a new projection space allowing
one to move closer the two domain marginal distributions by selecting landmarks that
are both similar to the source and target examples. To achieve this goal, we propose
to learn a classifier thanks to an additional regularization term on the weights α. Due
to the lack of information on the target domain, the last term (C) is hard to decrease.
However, we propose to use a reverse validation approach to try to control it.
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4.1. Optimization Problem

By solving Problem (SFopt) for learning SF-classifiers, we not only minimize the ex-
pected source error but we also define a relevant projection space for the source domain.
Indeed, irrelevant landmarks, i.e. those associated with a null weight in the solution α,
will not be considered. According to the notion of H∆H-distance (Equation (1)), we
propose a new additional regularizer that forces the model to provide similar outputs for
pairs of source and target points. This will tend to decrease the H∆H-distance between
the marginal distributions. To define our regularizer, we have investigated the frame-
work of algorithmic robustness proposed by Xu and Mannor (2010) (see Definition 3
in Section 4.2). Their underlying idea is based on the fact that “if a testing sample is
similar to a training sample then the testing error is close to the training error”. To
ensure generalization guarantees, this framework requires that for a test point close to
a training point of the same label, the deviation between the losses of each point has
to be low. Note that this result assumes the test and training data to be generated from
the same distribution, that is thus not valid in a DA scenario. Despite this drawback,
we propose to follow this principle by defining an heuristic to move closer source and
target samples. By considering the hinge loss of the Problem (SFopt), for any learned
model g and any pair (xs,xt) of source and target examples of class y we have,

∣∣∣L(g, (xs, y)
)
− L

(
g, (xt, y)

)∣∣∣
=

∣∣∣∣∣[1− y
du∑
j=1

αjK(xs,x
′
j)
]

+
−
[
1− y

du∑
j=1

αjK(xt,x
′
j)
]

+

∣∣∣∣∣.
The hinge loss is 1-lipschitz (|[X]+ − [Y ]+| ≤ |X − Y |) then,

∣∣∣L(g, (xs, y)
)
− L

(
g, (xt, y)

)∣∣∣ ≤ ∣∣∣∣∣
du∑
j=1

αj
(
K(xs,x

′
j)−K(xs,x

′
j)
)∣∣∣∣∣

≤
du∑
j=1

∣∣∣αj(K(xs,x
′
j)−K(xt,x

′
j)
)∣∣∣

≤
∥∥∥(tφR(xs)− tφR(xt)) diag(α)

∥∥∥
1
, (3)

where tφR(·) is the transposed vector of φR(·) and diag(α) is the diagonal matrix with
α as main diagonal.

Minimizing the term of line (3) amounts to reducing the deviation between source
and target instances xs and xt of the same class. This would lead to select landmarks
that move closer xs and xt and consequently reducing the domain divergence.

At this point, we assume that the pairs (xs,xt) are known and let CST ⊂ LS|X×TS
be the pair set. We propose to add the new regularization term of line (3) for each
pair of CST , weighted by a regularization parameter β to tune. Let R be a set of du
candidate landmarks and LS a source sample of dl source labeled examples. Our global
optimization Problem (DASFopt) corresponds to Problem (SFopt) with the addition of
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our regularizer and can be easily formulated as a linear program.

min
α

F (α) =
1

dl

dl∑
i=1

L
(
g, (xi, yi)

)
+ λ‖α‖1

+β
∑

(xs,xt)∈CST

∥∥∥(tφR(xs)− tφR(xt)
)

diag(α)
∥∥∥

1
,

with L
(
g, (xi, yi)

)
=
[
1−yig(xi)

]
+

and g(xi) =

du∑
j=1

αjK(xi,x
′
j).

(DASFopt)

This linear problem is a convex program. It can be solved by using dl slack variables
for expressing the hinge loss that leads to a program with O(dl + du) variables with
O(dl × du) constraints.

4.2. Theoretical Aspects

In this section, we provide a theoretical sparsity analysis of our optimization Problem
(DASFopt) and derive a generalization error bound.

We first need the following hypothesis about the pair set CST . Concretely, since
our additional regularizer is based on CST and contributes to find a relevant projection
space, CST has to contain relevant information. We thus suppose a restriction on the
coordinates in the φR-space of the points of CST ,

∀x′j ∈ R, max
(xs,xt)∈CST

∣∣K(xs,x
′
j)−K(xt,x

′
j)
∣∣ > 0. (4)

This means that for each coordinate x′j in the φR-space, there is at least one pair of
points that brings some diversity with different coordinate values. This is actually not a
too strong restriction, since if the two domains are far from each other, then the assump-
tion (4) occurs with high probability.

4.2.1. Sparsity Analysis

As said before, in Balcan et al.’s Problem (SFopt), the 1-norm regularizer ‖α‖1 on
the learned vector α implies a natural sparsity of the induced SF-classifier. Our Prob-
lem (DASFopt) keeps this feature but analyzing its sparsity requires to also consider
the additional regularization term over α. We provide here an analysis of the sparsity
according to all the different hyperparameters.

Lemma 2. For any hyperparameters λ > 0 and β > 0, and for any set of pairs CST , let
BR = min

x′j∈R

{
max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
}

. If α∗ denotes the optimal solution

of our Problem (DASFopt), then we have, ‖α∗‖1 ≤
1

βBR + λ
.
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Proof. Recall F (.) refers to Problem (DASFopt). For any solution α,∑
(xs,xt)∈CST

‖(tφR(xs)− tφR(xt)) diag(α)‖1

=
∑

(xs,xt)∈CST

du∑
j=1

∣∣αj (K(xs,x
′
j)−K(xt,x

′
j)
)∣∣

=

du∑
j=1

|αj |
 ∑

(xs,xt)∈CST

|K(xs,x
′
j)−K(xt,x

′
j)|


≥

du∑
j=1

[
|αj | max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
]
.

From Hypothesis (4) and the definition of BR we have,

BR = min
x′j∈R

{
max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
}
> 0.

Thus,
∑

(xs,xt)∈CST

‖(tφR(xs)− tφR(xt)) diag(α)‖1 ≥ ‖α‖1BR.

Then, ‖α∗‖1(λ+ βBR) +
1

dl

dl∑
i=1

1− yi
du∑
j=1

α∗jK(xi,x
′
j)


+

≤ F (α∗).

Since α∗ is optimal, we have F (α∗) ≤ F (0) = 1, where 0 is the null vector.

Finally, we directly obtain ‖α∗‖1 ≤
1

βBR + λ
.

According to this lemma, the sparsity of the model depends on the hyperparameters λ,
β and on the quantity BR. This last term is in fact related to the distance between the
points in the pair set CST . In the projection space, it is the minimum of the maximum
deviation between the coordinates of the pair’s points belonging to CST . Thus, when the
two marginal distributions are far from each other, i.e. the DA task is potentially hard,
BR tends to be high that can imply an increase of the sparsity. Indeed, with sparser
models, the projection space defined is smaller (i.e. with less features) that tends to
make closer source and target instances more easily with less constraints to take into
account.

4.2.2. Generalization Ability

Algorithmic Robustness
We recall now the definition of robustness and its associated theorem about the gener-

alization ability of robust algorithms (proposed by Xu and Mannor (2010)). Considering
this framework for our method reveals two advantages. On the one hand, it allows us
to take into account the regularizers in the generalization bound. On the other hand, the
algorithmic robustness tolerates to handle non-standard learning setups like DA.
We begin with the definition of a robust algorithm which stands in a standard setup
where the learning sample and the test sample are drawn from the same distribution P .

Definition 3 (Xu and Mannor (2010)). Given a Learning Sample LS of dl examples
drawn i.i.d from a distribution P , an algorithm A is (M, ε(LS)) robust on P, for
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M ∈ N and ε(.) : (X × Y )dl 7→ R, if X × Y can be partitioned into M disjoint sets,
denoted as {Ci}Mi=1, such that for every example s belonging to LS,

s,u ∈ Ci ⇒
∣∣L(ALS , s)− L(ALS ,u)

∣∣ ≤ ε(LS), (5)

with ALS the model learned from LS with A and L(·, ·) the loss function of A.

Given a learning sample LS, the robustness of an algorithm, measured by the values of
M and ε(LS), depends thus on the learning sample. Note that this definition has to be
verified for every learning example. The authors have nevertheless relaxed it with the
property of pseudo-robustness, where the condition is only required for a subset of the
learning sample (Xu and Mannor, 2010).

From Definition 3, the authors have proved the following generalization bound over
the expected error on the distribution P .

Theorem 4 (Xu and Mannor (2010)). If a learning sample LS = {(xi, yi)}dli=1 is
drawn i.i.d. from a distribution P and if an algorithm A is (M, ε(LS)) robust, then
for any δ > 0, with probability at least 1− δ,

errP (ALS) ≤ êrrP (ALS) + ε(LS) + LUP

√
2M ln 2 + 2 ln 1

δ

dl
,

where errP (ALS) and êrrP (ALS) are respectively the generalization and the empirical
errors over P of the modelALS learned from LS, L(·, ·) being upper bounded by LUP .

This bound is not proved in a DA scenario but the authors have argued that such a bound
could be defined by adding a term depending on a domain divergence measure.

Generalization Bound
Following the previous idea, we propose to derive a bound for the target domain using

theH∆H-distance which is appropriate to the context our approach. First, we prove that
our optimization problem (DASFopt) is robust on the source domain and then deduce
a generalization bound for the target domain.

Theorem 5. Suppose that (X, ρ) is a compact metric space and K is a good similarity
function continuous in its first argument. If the source Learning Sample LS is drawn
i.i.d. from the source domain PS , then given the hyperparameters β > 0, λ > 0, the
landmark set R and a fixed pair set CST with BR > 0, our Problem (DASFopt) is(
2Mη,

Nη

βBR+λ

)
robust on the source domain PS, where η > 0, Mη being the η-

covering number2 of X and Nη = max
xa,xb∼DS
ρ(xa,xb)≤η

‖tφR(xa)− tφR(xb)‖∞.

Proof. Let (X, ρ) a compact metric space. Let η > 0, since X is compact, by the
definition of the covering number, we can partition X in Mη subsets (Mη finite), such
that for x1,x2 belonging to the same subset we have ρ(x1,x2) ≤ η. With Y divided in
2 subsets

{
{−1}, {+1}

}
and following the proof principle of (Xu and Mannor, 2010),

we can partition X × Y in 2Mη subsets such that the points belonging to the same
subset are of the same class. Given a good similarity function K continuous in its first
argument, a source learning set LS = {(xi, yi)}dli=1 drawn i.i.d. from PS , a landmark

2 Meaning thatX can be partitioned intoMη subsets,Mη finite, cf (Xu and Mannor, 2010) for more details.
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set R = {x′j}
du
j=1, the hyperparameters λ > 0, β > 0 and a fixed pair set CST , let

α∗ be the optimal solution of Problem (DASFopt). For any s1 = (x1, y1) ∈ LS,
any s2 = (x2, y2) such that s1 and s2 belong to the same subset, thus y1 = y2 and
ρ(x1,x2) ≤ η. Then,∣∣L (g, (x1, y))−L (g, (x2, y))

∣∣
=

∣∣∣∣∣[1− y1

du∑
j=1

α∗jK(x1,x
′
j)
]

+
−
[
1− y1

du∑
j=1

α∗jK(x2,x
′
j)
]

+

∣∣∣∣∣.
By the 1-lipschitz property of the hinge loss, the successive application of Holder in-
equality3 and Lemma 2, we obtain,∣∣L (g, (x1, y))− L (g, (x2, y))

∣∣ ≤ ‖α∗‖1‖tφR(x1)− tφR(x2)‖∞
≤ ‖α∗‖1 max

xa,xb∼DS
ρ(xa,xb)≤η

{
‖tφR(xa)− tφR(xb)‖∞

}
≤ Nη

βBR + λ
,

with Nη = max
xa,xb∼DS
ρ(xa,xb)≤η

{
‖tφR(xa)− tφR(xb)‖∞

}
which is finite by the continuity of

K in its first argument and the definition of covering number. Then, the algorithm asso-
ciated with Problem (DASFopt) is

(
2Mη,

Nη
βBR+λ

)
robust on PS .

In our case, the hinge loss
[
1− y

∑du
j=1αjK(.,x′j)

]
+

is upper bounded by a constant

LUP and to lighten the notations we suppose LUP = 1 (which is not true in general but
can be easily obtained by a normalization step). Then, we directly derive the following
generalization bound over the expected source error from Theorem 4.

Theorem 6. With the same notations of Theorem 5, for every h in the hypothesis class
H of SF-classifiers and for any δ > 0, with probability at least 1− δ,

errS(h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
.

Proof. From Theorem 5, Problem (DASFopt) is
(

2Mη,
Nη

βBR+λ

)
robust on the source

domain PS , the result is then obtained from Theorem 4.

From this result, we can now derive a generalization bound for our unsupervised domain
adaptation approach based on good similarity functions.

Theorem 7. If LS={(xi, yi)}dli=1 is drawn i.i.d. from the source domain PS , for every
h in the hypothesis classH of SF-classifiers, for any δ>0, with probability at least 1−δ,

errT (h) ≤ êrrS(h) +
Nη

βBR + λ
+

√
4Mη ln 2 + 2 ln 1

δ

dl
+

1

2
dH∆H(DS , DT ) + ν,

3 Holder inequality: ‖uv‖1 ≤ ‖u‖p‖v‖q , with 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1.
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where ν is the joint error over the domains, dH∆H(DS , DT ) is the H∆H-distance be-
tween the marginal distributions.

Proof. It comes directly from the application of Theorems 1 and 6.

In this bound, dH∆H measures the domain divergence and ν the adaptation capability
of the hypothesis class. The constant Nη

βBR+λ clearly depends on the regularizers and on
the value Nη that can be as small as wished, by choosing a small η and by continuity
of the similarity function K(., .) in its first argument, implying then an increase of Mη .
The term with Mη converges in O(1/

√
dl) and êrrS is the empirical error over the

source sample. We can remark that with small values for β and λ, or BR (indicating far
domains), the process will need more examples to be reliable. In our method, the terms
dH∆H and êrrS are actually decreased by solving our Problem (DASFopt). In the next
part, we present how to select the regularization parameters to keep these two terms low
and we also introduce an heuristic aiming at decreasing an estimate of ν.

4.3. Reverse Classifier and Validation

A crucial point is the choice of the different hyperparameters λ, β, CST of our method.
In a transfer learning context, Zhong et al. (2010) have proposed a Transfer Cross-
Validation method for selecting the best parameters. This principle uses a reverse vali-
dation approach based on a so-called reverse classifier evaluated on the source domain.
We propose to follow a similar reverse validation procedure.

Given k-folds on the source labeled sample and a learning algorithm, k − 1 labeled
folds are used as labeled examples for learning a classifier h′. Then, using the same
algorithm, a reverse classifier h′r is learned from a sample constituted by the union of
the target sample {(x, h′(x))}x∈TS self-labeled by h′ and a given target labeled set.
Finally, the reverse classifier h′r is evaluated on the last kth fold of the source labeled
sample. Note that in its original definition, this method relies on a projection space
defined by a kernel and uses some few target labels.

Since, we may consider non-PSD, non-symmetric similarity functions and no label
on the target domain, we then make a little adaptation: We perform the reverse valida-
tion directly in the projection space φR and we learn the reverse classifier only with the
self-labeled target sample (see Figure 4). The justification of this choice comes from the
fact that if the domains are sufficiently close and related, then such a reverse classifier
must be also efficient for the source task (Bruzzone and Marconcini, 2010). In other
words, in the projection space, it is possible to pass from one problem to another. Recall
that we do not have any information on the target labels. We then define our reverse
classifier hr as the best SF-classifier learned with SFopt - in the current φR-space -
from the target sample {(x, h(x))}x∈TS , self-labeled by the classifier h learned with
our Problem (DASFopt).

In summary, given k-folds on the source labeled sample (LS = ∪ki=1LSi), a clas-
sifier h is learned from k − 1 labeled folds and the unlabeled target sample by solving
Problem (DASFopt) and we evaluate the associated reverse classifier hr on the last kth
fold. Its empirical source error corresponds to the mean of the error over the k-folds,

êrrS(hr) =
1

k

k∑
i=1

êrrLSi(h
r).

In Section 2, Theorem 1 suggests that one solution for DA is to minimize the three terms
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Fig. 4. The reverse validation process in the φR-space. Step 1: Learn the classifier h with the Problem
(DASFopt). Step 2: Auto-label the target sample with h. Step 3: Learn the reverse classifier hr on the auto-
labeled target sample with the Problem (SFopt). Step 4: Evaluate hr on the source sample (with a k-folds
process).

of the DA bound4, which are also present in our generalization bound in Theorem 7. Our
Problem (DASFopt) aims at minimizing the first two terms but does not consider at the
moment the last term ν corresponding to the ideal joint classifier error and defined by
ν = errS(h∗) + errT (h∗) with h∗= argminh∈H(errS(h) + errT (h)). This hypothesis,
unknown in general, measures the adaptation ability of the classifier. We propose then
to use an estimation of ν for selecting the relevant hyperparameters. However, due to
the absence of target labels, we are not able to compute or estimate this ideal hypothe-
sis. Since h∗ is clearly related to the capability to pass from one domain to another, we
estimate it by the reverse classifier hr. For this purpose, at each cross-validation step,
we divide the self-labeled target sample {(x, h(x))}x∈TS into two parts: one is used to
learn hr and then hr is evaluated on the second to give an estimate of the target error,
the evaluation of hr on the current source fold giving an estimation of the source error.
Then, êrrS(hr) (resp. êrrT (hr)) corresponds to the mean over the k-folds of the esti-
mation of the source error (resp. the target error) of hr. We then consider the empirical
estimation of ν defined by,

ν̂ = êrrS(hr) + êrrT (hr), (6)

where êrrT (hr) is evaluated over the self-labeled target sample. Motivated by the min-
imization of the DA bound, we finally select the parameters leading to the minimal ν̂.

5. An Iterative Reweighting: a Way to Lighten the Search of the
Projection Space

The constitution of the set CST is difficult a priori since we have no information on the
target labels. Moreover, the set of relevant pairs allowing a good adaptation is generally

4 The DA bound: ∀h ∈ H, errT (h) ≤ errS(h) +
1
2
dH∆H(DS , DT ) + ν.
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dependent on the task at hand and testing all the possible pair sets is clearly intractable5.
In order to tackle this problem, we present an iterative approach based both on a selec-
tion of a limited number of pairs and on a reweighting scheme of the similarities keeping
the distributions close. We finally present a stopping criterion using the empirical esti-
mation of the ideal joint error.

5.1. Selecting the Pairs of CST

We propose to construct pairs from two subsets of the two samples provided to the
algorithm US⊆LS|X and UT ⊆TS of equal size. We select them, at a given iteration l,
according to the reverse model grl−1 associated with the reverse classifier hrl−1 computed
in the previous iteration. They correspond to the examples on which this model is highly
or weakly confident on the labels. Let δHS , δ

H
T , δ

L
S , δ

L
T be a set of positive parameters,

US and UT are defined as follows such that |US |= |UT |≤N ,{
US =

{
x ∈ LS|X : |grl (x)| > δHS OR |grl (x)| < δLS

}
,

UT =
{
x ∈ TS : |grl (x)| > δHT OR |grl (x)| < δLT

}
.

In practice, we use these two sets for building the matching CST ⊂US×UT from US
and UT . We look for a bipartite matching minimizing the Euclidean distance in the new
projection φRl -space associated with an iteration l in the iterative process (described in
the next Section 5.2). This can be done by solving the following problem. Note that in
the particular case of bipartite matching, it can be achieved in polynomial time by linear
programming for example.

min
χst

1≤s≤|US |
1≤t≤|UT |

∑
(xs,xt)∈US×UT

χst‖φRl (xs)− φRl (xt)‖22

s.t.: ∀(xs,xt) ∈ US × UT , χst ∈ [0, 1],

∀xs ∈ US ,
∑

xt∈UT

χst = 1,

∀xt ∈ UT ,
∑

xs∈US

χst ≤ 1.

(7)

Then CST corresponds to the pairs of US × UT such that χst = 1.
In our experiments, we limit the size of the subsets US and UT to small6 N to build

efficiently this bipartite matching, since it has to be done many times according to the
different iterations and cross-validation. This is not a too restrictive heuristic since the
notion of pseudo-robustness of Xu and Mannor (2010) does not require to consider all
the points. In this case, the values δHS , δ

H
T , δ

L
S , δ

L
T correspond to the ones allowing us to

select the first N elements of each type.

5.2. A New Projection Space by Iterative Reweighting

The landmarks selected7 by solving Problem (DASFopt) define a projection space
where the two distributions tend to be close. We propose to re-use their weights αj

5 This intractability has been confirmed empirically: In such a case, none of the experiments have led to a
result in a reasonable amount of time.
6 In our experiments, we take arbitrarily N ≤ 30.
7 i.e. those with a non-null weight αj .
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to force the new projection space to move closer the distributions. Indeed, we reweight
the similarity function according to α. Suppose at a given iteration l, with a similarity
function Kl, we obtain new weights αl. Then, we propose to define Kl+1 by reweight-
ing8 Kl conditionally to each landmark of R such that,

∀x′j ∈ R, Kl+1(x,x′j) = αljKl(x,x
′
j).

It can be seen as a kind of contraction of the space to keep the empiricalH∆H-distance
between the marginal distributions low. Indeed, in this new φRl+1-space defined byKl+1,
the points of each pair of CST are naturally close since, by construction, our regularizer
used at iteration l corresponds exactly to minimize their L1-distance in the φRl+1-space.
Indeed, we have,

∀(xs,xt) ∈ CST , ‖tφRl+1(xs)− tφRl+1(xt)‖1 = ‖t(φRl (xs)− tφRl (xt)) diag(αl)‖1.

An illustration of this procedure is provided on Figure 5. We then iterate the process at
iteration l + 1 in the new φRl+1-space.

The possible reweightings are related to the different hyperparameters δH/LS/T (linked
to CST ) and λ, β of Problem (DASFopt) that are selected according to reverse valida-
tion. Recall that, since we are not interested in using valid kernels, we do not have to
keep any notion of symmetry or positive semi-definiteness for Kl+1.

However, our normalization remains valid only if the new similarity function is still
good on the source domain. We can empirically estimate this goodness by evaluating ε,
γ and τ of Definition 1 on LS. In practice, the empirical τ̂ corresponds to the number of
landmarks selected by the algorithm. Therefore, we evaluate the best empirical (ε̂,γ̂,τ̂)-
guarantee by

γ̂ =

 γmax if argmaxγmax>0

{
∀(xi, yi) ∈ LS,

yi
du

du∑
j=1

K(xi,x
′
j) ≥ γmax

}
exists,

0 otherwise.

ε̂ =


0 if γ̂ > 0,∣∣∣∣∣{(xi, yi) ∈ LS :

yi
du

du∑
j=1

K(xi,x
′
j) < 0

}∣∣∣∣∣
|LS|

otherwise.

In fact, we pay attention to keep only those that offer the best (ε̂,γ̂, τ̂)-guarantee ensur-
ing a sufficiently good similarity. Concretely, the higher γ̂ and the lower ε̂, the better the
guarantee. Note that a bad similarity would lead to a dramatic increase of the expected
source error and thus would not be selected by the reverse validation process.

5.3. Stopping Criterion

We consider here the estimated joint error ν̂ (6) related to the adaptation capability in
the current space. Controlling the decreasing of this term during the iterative process
can provide a nice way to stop the algorithm. Following Section 4.3, at a given iteration

8 Eventually normalized to ensure Kl+1 ∈ [−1, 1].
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Fig. 5. An iteration of DASF. The source points are in (dark) green (pos. +, neg.−), the unlabeled target ones
are (light) orange circles.

l, this term is defined by ν̂l = êrrS(hrl )+êrrT (hrl ), where hrl is the reverse classifier as-
sociated with hl learned at iteration l. An increasing of ν̂l between two iterations means
that the new projection space is no longer relevant and the current one must be preferred.

Then, our process stops at iteration l when the next ν̂l+1 has reached a convergence
point or has increased significantly. This criterion allows us to ensure the algorithm
stops since the joint error is positive and bounded by 0. The global iterative algorithm
(named DASF) is described in Algorithm 1.

Algorithm 1 DASF: Domain Adaptation with Similarity Function
input similarity function K, landmark set R, source sample LS and target sample TS
output classifier hDASF
h0(·)← sign

[
1
|R|
∑|R|
j=1K(·,x′j)

]
K1 ← K
l← 1
while The stopping criterion is not verified do

Select US ⊆ LS|X , UT ⊆ TS with hrl−1
CST ← Solve Problem (7)
αl ← Solve Problem (DASFopt) with Kl and CST
Kl+1 ← Update Kl according to αl

Update R
l + +

end while
return hDASF (·) = sign

[∑
x′j∈R

αljKl(·,x′j)
]

5.4. Complexity

In practice, hyperparameters are selected according to a grid search, which has to be
done at each iteration. It is thus very heavy and it is a clear disadvantage of our method.
The global complexity at each iteration corresponds to solving three different linear
programs: Problem (DASFopt), the building of the pair set CST (Problem (7)) and
computing the reverse classifier (with Problem (SFopt)) for each parameter set. Solving
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a linear program is in general costly ∼ O(n3.5L) (Freund, 1991) (or ∼ O(n3L) with
approximated solutions (Ye, 1991)) for a system with n variables that can be encoded
in L bits. However, the optimization problems we consider are a bit sparse in the sense
that all the constraints do not involve all the variables at the same time that makes the
problem faster to solve. Moreover, it is important to notice that the iteration process
combined with the reverse validation allows us to lighten the search of the parameters.

6. Considering a Few Target Labels: Semi-Supervised DASF

So far, we have not considered any target label data. However, for some real applications
it is reasonable to assume that a few target labels are available, notably in multimedia
indexing tasks. This complimentary information can be very useful for constraining the
search of the classifier as we will see in the experimental section.

We propose to extend our approach to take into account the target labels by follow-
ing the principle proposed in (Ben-David et al., 2010a). It considers a linear combina-
tion of source and target labeled learning data. In this case, the learning Labeled Sample

LS= (LSPS , LSPT ) is composed of a sample LSPS = {(xiS , yiS )}d
S
l

iS=1
of dSl labeled

source examples i.i.d. from PS and a sample LSPT = {(xiT , yiT )}d
T
l

iT=1
of dTl labeled

target instances i.i.d. from PT . Let θ ∈ [0, 1] such that dTl = θdl and dSl = (1 − θ)dl
ensuring LS has dl = dTl + dSl labeled instances. Recall that we aim at minimizing the
target expected error errT with dTl small regarding to dSl , i.e. with few target labels. In
this context, as mentioned in (Ben-David et al., 2010a), minimizing directly the target
empirical error êrrT from LSPT does not seem to be the best solution since this sample
is not sufficiently representative of the target distribution.

Thus, following Ben-David et al. (2010a), we minimize a convex combination of
the source and target empirical errors,

êrrκ(h) = κ êrrT (h) + (1− κ) êrrS(h), (8)

for some κ ∈ [0, 1], errκ(h) = κ errT (h) + (1 − κ) errS(h) being the associated
weighted expected error.

This leads us to an adaption of our previous optimization Problem (DASFopt),
with some target labels. Given LS = (LSPS , LSPT ) a sample of dl instances, CST ⊂
LSPS |X× TS a pair set and κ ∈ [0, 1], we propose the following minimization Prob-
lem (SSDASFopt). The global iterative algorithm (named SSDASF) is described in
Algorithm 2.

min
α

(1− κ)
1

dSl

dSl∑
iS=1

L
(
g, (xiS , yiS )

)
+ κ

1

dTl

dTl∑
iT=1

L
(
g, (xiT , yiT )

)
+ λ‖α‖1

+ (1− κ) β
∑

(xs,xt)∈CST

∥∥∥(tφR(xs)− tφR(xt)
)

diag(α)
∥∥∥

1
,

with L
(
g, (xi, yi)

)
=
[
1−yig(xi)

]
+

and g(xi) =

du∑
j=1

αjK(xi,x
′
j).

(SSDASFopt)
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Algorithm 2 SSDASF: Semi-Supervised Domain Adaptation with Similarity Function
input Similarity functionK, landmark setR, labeled sample LS=(LSPS , LSPT ), tar-

get sample TS
output classifier hSSDASF
h0(·)← sign

[
1
|R|
∑|R|
j=1K(·,x′j)

]
K1 ← K
l← 1
while The stopping criterion is not verified do

Select US ⊆ LSPS |X , UT ⊆ TS with hrl−1
CST ← Solve (7)
αl ← Solve (SSDASFopt) with Kl and CST
Kl+1 ← Update Kl according to αl

Update R
l + +

end while
return hSSDASF (·) = sign

[∑
x′j∈R

αljKl(·,x′j)
]

Whereas our previous Problem (DASFopt) focuses only on the minimization of the
source empirical error, this optimization problem minimizes the convex combination of
the source and target empirical errors (Equation (8)). We can in fact make some con-
nections showing that (SSDASFopt) can be seen as a generalization of some previous
problems. Firstly, when κ = 0, no target labeled data is used and we move back to our
standard DASF algorithm with Problem (DASFopt). Secondly, when κ = 1 we stand in
a usual supervised framework where the learning and test samples are drawn according
to the target domain PT . Then, Theorem 4 of Xu and Mannor (2010) about robustness
can be proved on PT .

We can also derive for our new Problem (SSDASFopt) a generalization bound.
First, we adapt the preceding result on sparsity analysis.

Lemma 3. For any hyperparameters λ > 0 and β > 0, κ ∈ [0, 1] and for any pair set
CST , letBR = min

x′j∈R

{
max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
}

. If α∗ denotes the optimal

solution of our Problem (SSDASFopt), then we have, ‖α∗‖1 ≤
1

(1− κ)βBR + λ
.

Proof. We use the same proof process as in Lemma 2.

This result suggests that when some additional target labels are used, i.e. (1 − κ) < 1,
the induced model is less sparse than the approach with no target label. From this result,
we can now provide our generalization bound combining source and target labels.

Theorem 8. Let θ ∈ [0, 1], κ ∈ [0, 1], and LS be a labeled learning sample of size dl
constituted of θdl instances i.i.d. from target distribution PT and (1 − θ)dl examples
i.i.d. from source distribution PS . Let η′, η > 0, with M = max(Mη,Mη′) a covering
number forX , β > 0, λ > 0 andBR > 0. For all h ∈ Hminimizing the empirical error
by Problem (SSDASFopt), if h∗ = argminh′∈H{errT (h′)/êrrκ(h) ≤ êrrκ(h′)},
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then with probability at least 1− δ,

errT (h) ≤ errT (h∗) +

√
κ2

θ
+

(1−κ)2

1−θ

√
ln 4

δ

2dl
+
κ(NT

η′ −NS
η ) +NS

η

(1−κ)βBR + λ
+√

2M ln 2 + 2 ln 4
δ

dl

(
κ√
θ

+
1−κ√
1−θ

)
+ 2(1−κ)

(
1

2
dH∆H(DS , DT )+ν

)
, (9)

where BR = min
x′j∈R

{
max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
}

, and

NS
η = max

xa,xb∼DS
ρ(xa,xb)≤η

‖tφR(xa)− tφR(xb)‖∞, NT
η′ = max

xa,xb∼DT
ρ(xa,xb)≤η′

‖tφR(xa)− tφR(xb)‖∞.

Proof. Deferred to “Appendix”.

Note that, when κ = 0, i.e. when we ignore target data, the bound is similar to that
of Theorem 7. On the other hand, when κ = 1, i.e. we do not use source information,
the bound becomes a classical standard learning bound with robustness in a supervised
setting with only target data.

In order to illustrate some properties of that bound, we provide an analysis of its behav-
ior, following the same principle as in (Ben-David et al., 2010a). In its present form,
the bound is a bit difficult to analyze and in order to simplify our study, we make some
little assumptions. First, we assume κ ∈ [0, a], where a is a positive number tending to
1 such that a < 1. This allows us to bound the following term

κ(NT
η′ −NS

η ) +NS
η

(1− κ)βBR + λ
<
κ(NT

η′ −NS
η ) +NS

η

(1− a)βBR + λ
.

Then, we define

A =
1

2
dH∆H(DS , DT ) + ν,

B = (1− a)βBR + λ,

C =

√
2M ln 2 + 2 ln 4

δ

dl

(
1√
θ
− 1√

1− θ

)
+

(NT
η′ −NS

η )

B
− 2A,

and D as the remaining constant terms. The bound (9) can then be rewritten as,

f(κ) =

√
κ2

θ
+

(1− κ)2

1− θ

√
ln 4

δ

2dl
+ Cκ+D.

With dTl = θdl and dSl = (1 − θ)dl, the general form of the highest root r of the
derivative is

r = θ

1 +
1− θ√

2 ln 4
δ

dlC2 − θ(1− θ)

 =
dTl

dSl + dTl

1 +
dSl√

2 ln 4
δ (dSl +dTl )

C2 − dSl dTl

 .

To simplify the analysis, we assumeNT
η′ = NS

η −B
√

2M ln 2+2 ln 4
δ

dl

(
1√
θ
− 1√

1−θ

)
> 0

which can be obtained by choosing appropriate η, η′ with dl sufficiently large and/or by
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considering an upper bound of the function f(κ) verifying this equality, we must then
have dTl <

ln 4
δ

(1−θ)2A2 for r to be valid. Thus the optimal value is defined as follows,

κ =


a if dTl ≥

ln 4
δ

(1− θ)2A2
,

min{a, r} if dTl <
ln 4

δ

(1− θ)2A2
.

An interesting remark is that when A = 0, the bound suggests κ = θ, i.e. when the
two domains are indistinguishable κ has to follow the repartition defined by the training
sample. If we have no target label (i.e. dTl = 0) the bound suggests κ = 0. If we have
only target labels (dSl = 0) or if dTl is large, κ must be chosen as 1, which is consistent
with our framework. When the domains are very different, i.e.A is maximum, the bound
says that κ tends to be 1, i.e. it is better to rely only on target labeled points. With other
values of NT

η′/N
S
η , this tendency is also confirmed with our value BR. Indeed, when

it is high, i.e. domains are far in the current representation, it seems better to put more
weights on labeled target points. We can also see fromB that when our hyperparameters
are small, i.e. when we give a small importance to the decreasing of the distance or when
we allow complex models, we should rather focus on target points with κ high, while
a smaller value of κ can be better in the opposite case. As a conclusion, this analysis is
close to the one provided in (Ben-David et al., 2010a) but has the advantage to take into
account our regularizers for explaining the behavior of the approach.

7. Experiments

In this section, we evaluate our approach DASF, and its semi-supervised extension SS-
DASF, on a synthetic toy problem and on a real image annotation task. We first present
in Section 7.1 the similarity function used. More precisely, we propose an heuristic pro-
cedure to modify a priori the projection space for obtaining a relevant similarity, which
is non-symmetric and non-PSD, for domain adaptation. Then in Section 7.2, we intro-
duce the general setup for all our experiments. The results for the synthetic datasets are
given in Section 7.3 and those for the image classification problems are presented in
Section 7.4.

7.1. Similarity Function

We propose here to introduce an intuitive pre-process to design a similarity function
potentially non-PSD, non-symmetric. According to the theoretical result of DA of Ben-
David et al. (2010a) (Theorem 1) the learned classifier should perform well on the target
domain and also on the source one. Thus, we aim at facilitating the adaptation to the
target domain in order to link the source and target domains by considering information
from both of them. Concretely, we build our new similarity function KST by renormal-
izing a given similarity function K relatively to the unlabeled sample ST =LS|X∪TS.
Our choice is clearly heuristic and our aim is just to evaluate the interest of renormal-
izing a similarity for DA problems. Recall that, from Definition 1, a similarity must
be good relatively to a set of reasonable points R. We actually propose to renormalize
the similarities to these points: We perform a specific normalization for each instance
x′j ∈ R. The idea is to apply a scaling to mean zero and standard deviation one for
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the similarities of the instances of ST to each x′j . Given a similarity function K which
verifies the Definition 1 our normalized similarity function KST is defined by,

∀x′j ∈ R, KST (.,x′j)=



K(.,x′j)− µx′j

σx′j
if −1 ≤

K(.,x′j)− µ̂x′j

σ̂x′j
≤ 1 ,

−1 if
K(.,x′j)− µ̂x′j

σ̂x′j
≤ −1 ,

1 if 1 ≤
K(.,x′j)− µ̂x′j

σ̂x′j
,

(10)

where µ̂x′j
is the empirical mean of similarities to x′j over ST ,

∀x′j ∈ R, µ̂x′j
=

1

|ST |
∑
x∈ST

K(x,x′j),

and σ̂x′j is the empirical unbiased estimate of the standard deviation associated to µ̂x′j
,

∀x′j ∈ R, σ̂x′j =

√
1

|ST | − 1

∑
x∈ST

(
K(x,x′j)− µ̂x′j

)2
.

By construction, the similarity KST is then non-symmetric and non-PSD.

For all experiments, we take as similarity function K a Gaussian kernel,

K(x,x′) = exp

(
−‖x− x′‖22

D2

)
. (11)

However, depending on the samples, the non-symmetric, non-PSD similarity KST does
not always offer better(ε,γ,τ)-good guarantees than the Gaussian kernel. In the follow-
ing, we only indicate the similarity which leads to the best results. Those obtained with
KST are pointed out with a∗, as we will see they correspond generally to harder tasks.

7.2. General Experimental Setup

We compare our algorithm DASF with a classical SVM learned only from the source
domain, the semi-supervised Transductive SVM (Vapnik, 1998) (TSVM) and the DA
method DASVM (Bruzzone and Marconcini, 2010). We take a classical Gaussian kernel
(11) for these three methods to facilitate the comparison. We use the SVM-light library
(Joachims, 1999) with parameters tuned by cross-validation on the source data for SVM
and TSVM. DASVM is implemented with the LibSVM library (Chang and Lin, 2001).
The parameters of DASVM and DASF are tuned according to a grid search by reverse
validation. We also measure the behavior of a SF-classifier trained only from the source
domain. For DASF and SF, the landmarks are taken from the labeled source sample.
Following Equation (1), we assess an estimation of the H∆H-distance d̂H∆H between
the two marginal distributions by learning a SF-classifier to separate source from target
samples: A small value - near 0 - indicates close distributions while a larger value - near
2 - indicates a hard DA task. We also observe the influence of the hyperparameters λ
(with fixed β) and β (with fixed λ) on our method DASF. The tested values for these
parameters are 0, .01, 0.1, .25, .5, .75 and 1.
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Fig. 6. Toy Problem: On the left: a source sample. On the right: a target sample with a 50◦ rotation.

Finally, we observe the behavior of the algorithm SSDASF when we combine la-
beled target points and labeled source points in the learning sample. In other words, we
measure the ability of our method to learn a low-error classifier when a part of the learn-
ing sample is drawn according to the target domain. For that purpose, each DA task is
repeated 9 times by using the semi-supervised extension SSDASF with the addition of 9
random sets of 2, 4, 8, 10, 12, 14, 16, 18 and 20 labeled target examples in the learning
sample. For these cases, we compare results with a SF-classifier learned only from the
considered target labeled sample. Additionally, we regard the impact of the parameter
κ of Problem (SSDASFopt). In this case, we fix λ, β and the number of labeled target
data at 10. The tested κ are 0, .01, 0.1, .25, .5, .75, .80, .85, .90, .95, .99 and 1. Note that,
in this context, we add target (both labeled and unlabeled) landmarks in R, while for
DASF R contains only the learning source examples9 . Moreover, in this study we have
not reported the observation of λ and β of Problem (SSDASFopt), since the behavior
of SSDASF for these parameters is the same than for DASF.

Simultaneously, we compute the average time costs of each algorithm with fixed
parameters. Actually, the baseline is the one of learning a SF-classifier. Then, we re-
port the duration of the other methods as the ratio of this baseline10. We also consider
the execution time of the first iteration of our approaches (reported as it1 ). Recall that
considering all the possible pairs is completely intractable and that our iterative method
provides a way to tackle this problem. Within these experiments, we will show that our
iterative procedure leads to a very reasonable and competitive additional cost.

7.3. Synthetic Toy Problem

Setup
As the source domain we consider a classical binary problem with two inter-twinning

moons, each class corresponding to one moon (Figure 6). We then considerate 8 differ-
ent target domains by rotating anticlockwise the source domain according to 8 angles.
The higher the angle, the more difficult the problem becomes. For each domain, we gen-
erate 300 instances (150 of each class). Moreover, to assess the generalization ability
of our approach, we evaluate each algorithm on an independent test set of 1500 points

9 This point is discussed in the conclusion.
10 For example, a cost of 0.5 means that the algorithms need a running time half as long and a cost of 2
means a duration of twice as long.
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(a) For a 20◦ task. (b) For a 30◦ task. (c) For a 40◦ task. (d) For a 50◦ task.

(e) For a 60◦ task. (f) For a 70◦ task. (g) For a 80◦ task. (h) For a 90◦ task.

Fig. 7. Toy Problem: Goodness of the similarities over the target samples: ε (Epsilon), as a function of γ (Gamma).

drawn from the target domain (not provided to the algorithm). Each DA problem is
repeated 10 times and the results will come next.

Choice of the “Best” Similarity Function
Before presenting the results and in order to evaluate if KST is a better similarity on

the target domain, we propose to empirically study the (ε,γ)-guarantees on the target
sample according to Definition 1. For that purpose, given R= {x′j}

du
j=1, we estimate ε

as a function of γ from a labeled target sample {xi′ , yi′}dti′=1 (with true labels but only
for this evaluation). Indeed, for a given γ, ε is the proportion of examples xi′ verifying∑

x′j∈R
yiyi′K(xi′ ,x

′
j)/du < γ. For each similarity function, we compute ε according

to 20 values of γ between 0 and 1. We then obtain a curve representing ε as a function of
γ. By considering each DA problem (each rotation angle), we obtain two curves and the
best similarity function is the one with a lower area under the curve, meaning a lower
error in average. Figure 7 shows the goodness guarantees of the similarity functions
over each problem. We observe for hardest problems (≥ 50◦) an improvement of the
goodness with the normalized similarity KST . For easier tasks, this improvement is
not significant, justifying the fact that the similarity K can be better. Our normalized
similarity thus seems relevant only for hard DA problems.
Note that the ε rate is relatively high because we consider only landmarks from the
source sample to study our adaptation capability.

Results
The average accuracy of each method is reported in Table 2. We also indicate the av-

erage number of support vectors (SV) used by SVM, TSVM and DASVM, the number
of landmarks (LAND.) selected by SF and DASF and an estimation of d̂H∆H(DS , DT )
between the marginal distributions in the initial φR0 -space and the final φRfinal-space.
We can make the following remarks.

– In average, DASF outperforms the other methods. It is significantly better for every
problem with an angle greater than 20◦. While the accuracy of TSVM and DASVM
falls down from 60◦, DASF still remains competitive even when the difficulty in-
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Table 2. Toy Problem: Average accuracy over the 8 toy problems.

Rotation angle 20◦ 30◦ 40◦ 50◦ 60◦∗ 70◦∗ 80◦∗ 90◦∗

SVM 89.68 75.99 68.84 60.00 47.18 26.12 19.22 17.2
±0.78 ±0.92 ±0.85 ±1.08 ±2.82 ±3.12 ±0.28 ±0.37

SV 18
±0.99

SF 92.4 81.81 72.55 57.85 43.93 39.2 35.93 36.73
±3.13 ±4.62 ±7.60 ±4.81 ±4.46 ±9.64 ±10.93 ±10.17

Land. 24 22 20 20 20
±1.72 ±3.57 ±2.06 ±2.82 ±1.51

TSVM 100 78.98 74.66 70.91 64.72 21.28 18.92 17.49
±0.00 ±2.31 ±2.17 ±0.88 ±9.10 ±1.26 ±1.10 ±1.12

SV 28 37 37 37 38 35 37 36
±1.92 ±3.77 ±2.66 ±1.50 ±2.67 ±2.93 ±2.10 ±1.69

DASVM 100 78.41 71.63 66.59 61.57 25.34 21.07 18.06
±0 ±4.56 ±4.16 ±4.01 ±4.15 ±3.28 ±2.33 ±2.66

SV 20 20 26 28 29 34 38 23
±3.13 ±4.42 ±6.80 ±2.81 ±3.62 ±7.58 ±6.20 ±4.95

DASF 99.80 99.55 91.03 81.27 65.23 61.95 60.91 59.75
±0.40 ±1.19 ±3.30 ±4.36 ±6.36 ±4.88 ±2.24 ±2.11

Land. 10 10 9 8 4 4 4 3
±2.32 ±1.59 ±2.21 ±3.27 ±0.99 ±2.16 ±1.84 ±1.06

d̂H∆H in φR0 0.58 1.16 1.31 1.34 1.34 1.32 1.33 1.31
±0.04 ±0.04 ±0.04 ±0.04 ±0.03 ±0.03 ±0.03 ±0.05

d̂H∆H in φRfinal 0.33 0.66 0.82 0.85 0.39 0.40 0.49 0.45

±0.12 ±0.11 ±0.13 ±0.11 ±0.15 ±0.05 ±0.12 ±0.09

creases. As we have shown on Figure 7, we have the confirmation that the normalized
similarity (∗) is preferred in these cases.

– The number of landmarks (LAND.) is significantly lower than the number of support
vectors SV, which confirms that DASF produces very sparse models with good per-
formances. The gain ratio is between 3 to 12. The DASF-classifiers are also sparser
than the SF-ones which use a L1-regularization too. Finally, they tend to be sparser
for difficult problems as suggested by Lemma 2.

– The empirical H∆H-distance between the domains is lower at the last iteration -
between 1 and 9 - showing our iterative process is effectively able to quickly move
closer the distributions. As evoked before, DASF tends to build a small projection
space for hard tasks, probably to have sufficiently close domains, but it may imply a
loss of expressiveness.

Figure 8 shows two DASF runs on two DA problems. For both cases, the empir-
ical H∆H-distance decreases significantly in comparison with the first iteration. The
algorithm stops when the joint error reaches a minimum after decreasing continuously.
Note that the final projection space is not always the one with the lowest distance. This
is because we need to find a good compromise between the minimization of the H∆H-
distance and the one of the source error. Thanks to the iterative procedure, DASF is then
able to slightly auto-correct the projection space when it allows a better adaptation. For
the 30◦ example, DASF finds a null error classifier on the target test sample. For the
more difficult 50◦ example, DASF performs better than the SF-classifier learned only
on the source data. Note that the source error increases, that is expected since we aim at
being performing on the target domain.
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Fig. 8. Toy Problem: Two DASF runs. On the left for a 30◦ rotation, on the right for a 50◦ rotation. On the
left y-axis is the error rate, on the right y-axis is the divergence measure. We provide the error rates of the
classifiers hl built at each iteration on the source and target test samples, the divergence d̂H∆H, the reverse
classifier joint error, the error on the target test sample of a SF-classifier learning without DA as a baseline.

Table 3. Toy Problem: The average landmark number (i.e. the sparsity) according to λ and β from DASF.
Bold values are associated with the best model.

(a) The sparsity according λ with β = 0.75.

Rot. angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

λ = 0 16 12 13 8 12 6 7 8
λ = 0.01 15 10 9 6 5 5 8 11
λ = 0.1 10 9 8 6 3 3 2 6
λ = 0.25 15 11 12 5 4 5 6 3
λ = 0.5 18 17 14 10 6 6 9 4
λ = 0.75 13 15 13 10 8 9 8 8
λ = 1 15 21 16 9 12 12 8 7

(b) The sparsity according to β with λ = 0.15.

Rot. angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

β = 0 24 24 24 24 22 20 20 20
β = 0.01 22 18 20 20 4 6 6 11
β = 0.1 16 17 17 19 3 4 5 9
β = 0.25 13 11 13 12 3 3 5 7
β = 0.5 11 10 8 11 3 3 3 7
β = 0.75 12 16 11 11 3 4 3 6
β = 1 14 11 8 6 3 5 4 5

DASF: Influence of the Hyperparameters λ and β
We aim at observing how the correct classification rate evolves according to different

values of the hyperparameters of our global Problem (DASFopt) for DASF. Experi-
ments reported on Figure 9(a), respectively Figure 9(b), correspond to the average cor-
rect classification rate for each rotation angle according to λ ∈ [0; 1] (with the bestβ),
respectively β ∈ [0; 1] (with the best λ). Moreover, in Table 3, we indicate the average
number of reasonable points (i.e. the sparsity) associated with the learned models. We
can make the following remarks:

– Concerning λ, on Figure 9(a) we note that for the 4 easiest tasks, this parameter does
not influence a lot the results: The gain is between 0 and 0.1. However, for the 4
hardest tasks, chosen a relevant λ shows better results: The gain is between 0.1 and
0.2. For all problems, the best value seems to stand between 0.1 and 0.25. From Table
3(a), we note that the sparsity of the models does not really depend on the value of λ,
indeed this sparsity is also influenced by β and it is the combination of the both that
leads to sparser models.

– On Figure 9(b), we remark that the models are more sensitive to β than λ. In fact,
when β tends to the best value, the increasing of the correct classification rate is more
significant than for λ: The gain is between 0.05 and 0.35. Like in the observation of
λ, the hardest tasks are more sensitive to β. The relevant value of β seems to stand
between 0.5 and 1. Moreover, as expected by Lemma 2, the sparsity increases with
the value of β associated with the best model (see Table 3(b)) and with the difficulty
of the task.
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Fig. 9. Toy Problem: The correct classification rate according to λ and β in Problem (DASFopt) of DASF.

Table 4. Toy Problem: The average number of landmarks selected (i.e. the sparsity) according to κ, with
λ = 0.15 and β = 0.75 from SSDASF.

Rotation angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

κ = 0 24 22 16 18 11 8 17 8
κ = 0.01 18 19 11 17 15 7 15 6
κ = 0.1 22 18 13 10 11 9 4 11
κ = 0.25 21 19 14 17 10 17 6 11
κ = 0.5 19 18 19 11 12 8 13 10
κ = 0.75 19 17 16 20 9 14 8 14
κ = 0.8 22 20 10 16 12 14 9 16
κ = 0.85 24 18 24 18 7 14 13 11
κ = 0.9 24 21 18 23 14 12 9 10
κ = 0.95 21 23 20 14 11 12 16 14
κ = 0.99 7 7 7 7 12 9 11 7

SSDASF: Influence of Combining Source and Target Labeled Learning Sample
We consider here SSDASF, the semi-supervised extension of DASF combining source

and target labeled samples by solving (SSDASFopt) with the setup of Algorithm 2.

Firstly, on Figure 10(a) we observe the average correct classification rates by adding
target labeled samples of different sizes. The results show that the classifier’s perfor-
mance increases with the number of labeled target examples which is an expected be-
havior. The more difficult the problem, the more significant the increase. However, for
the hardest tasks (≥ 70◦) we are not able to find an efficient classifier in comparison
with a SF-classifier only learned from the labeled target sample (without DA). It is co-
herent with the analysis of the semi-supervised generalization bound since for the hard-
est tasks, the models need more target labels when the domains are far, and sometimes
it is more reliable to focus only on target data.

Secondly, on Figure 10(b) we observe the behavior of SSDASF (using 10 target
labels) according to the hyperparameter κ which weights the importance of the labeled
target data in Problem (SSDASFopt). We fix λ = 0.15 and β = 0.75. As expected, this
method needs a high κ value between 0.9 to 0.99: The gain is between 0.1 to 0.5, and
again the impact is higher for the hardest problems. From Table 4, κ directly influences
the sparsity of the models for the easiest tasks. However, for the hardest ones, i.e. when
BR tends to be high, κ has a lower impact. Finally, as expected from Lemma 3, the use
of target labeled data leads to less sparse models.

Computational Costs
We report now in Table 5 the average execution time of each algorithm with fixed
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Fig. 10. Toy Problem: The average correct classification rates obtained by combining source and target
labeled samples in Problem (SSDASFopt), i.e. with SSDASF.

Table 5. Toy Problem: The average computational costs of each method measured as a ratio of the baseline
SF.

Rotation angle 20◦ 30◦ 40◦ 50◦ 60◦∗ 70◦∗ 80◦∗ 90◦∗ AVERAGE

SVM 1 1 1 1 1 1 1 1 1

SF 1 1 1 1 1 1 1 1 1

TSVM 3 3 1 1 1 1 2 3 1 .8

DASVM 29 14 13 8 8 19 26 28 18 .1

DASFit1 1 1 1 1 1 1 1 1 1
DASF 8 7 6 6 4 6 7 6 6 .2

parameters. We take the SF-classifier learning as the baseline, which with SVM is the
fastest. Firstly, we can observe that the first iteration of DASF (DASFit1 ) needs the
same time as the usual SF algorithm. The additional cost due to the iterations of DASF
is reasonable since for at most 10 iterations, it is between 4 and 8 times longer than
DASFit1 . Secondly, our method DASF is faster than DASVM. It takes between almost
one-third as long. Nevertheless, TSVM is quicker than DASF, probably due to the cost
of computing the pairs for DASF. Finally, we observe for the three adaptive methods -
TSVM, DASVM and DASF - that the lowest costs are obtained for 40◦ to 70◦ rotations.
We have not reported the costs for SSDASF, since the execution times of SSDASF and
DASF for these easy tasks are almost the same.

7.4. Image Classification

Setup
In this section, we experiment our approach on PascalVOC 2007 (Everingham et al.,

2007) and TrecVid 2007 (Smeaton et al., 2009) corpora. The goal is to identify vi-
sual objects and scenes in images and videos. TrecVid corpus is constituted of images
extracted from videos and can be seen as an image corpus. Visual features used for
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Fig. 11. Image Classification: Idea behind the visual features.

those experiments are based on the prediction scores of 15 “intermediate” visual con-
cepts (ANIMAL, BUILDING, CAR, CARTOON, EXPLOSION-FIRE, FLAG-US, GREENERY, MAPS, ROAD,
SEA, SKIN FACE, SKY, SNOW, SPORTS, STUDIO SETTING) which have been successfully used in
previous TrecVid evaluations. Each of those intermediate concepts are detected using
SVM-classifiers from color moments and edge orientations on 260 blocs of 32×32 pixels
(data dimension is 3900) according to (Ayache et al., 2007) (Figure 11 is an illustration).

We made two experiments. Section 7.4.1 deals with the first one where the objective
is to evaluate the DA capability of our algorithm on close domains. The Section 7.4.2
presents the second experiment which stands in an usual DA setup with potentially very
different domains.

7.4.1. Adaptation Capability when the Label Ratio is Different Between Source
and Target Sample

Setup
The PascalVOC benchmark is constituted of 5000 training images, 5000 test images

and a list of 20 concepts to identify. Train and test sets are in fact relatively close
(d̂H∆H ' 0.05) and a DA step is not necessary. We rather propose to evaluate the
DA capability of our algorithm when the ratio +/− is different between the source and
target samples, leading to a harder DA task. Our objective is not to provide a solution
in such a situation (specific methods already exist like (Seah et al., 2010)), but rather to
evaluate if our method can avoid negative transfer and improve the accuracy over the
test set. Since the two domains are close, we only evaluate our unsupervised approach
DASF (adding labeled target examples will actually correspond to adding more labeled
source instances).

In general, the ratio between positive and negative examples (ratio +/−) is less than
10% in this dataset. For each concept, we generated a source sample constituted of all
the training positive examples and negative examples independently drawn such that
the ratio +/− is 1

3 / 2
3 . We keep the original test set as the target sample. We applied

the five methods previously described for learning a binary classifier for each concept.
Due to the relative small ratio +/− in the target sample, we evaluate the performances
according to the well known F-measure defined by 2.Precision.Recall

Precision+Recall .

Results
The results are reported in Table 6. First, TSVM and DASVM perform badly, probably

because of the difference between target and source ratios +/− which cannot be esti-
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Table 6. Image Classification: The F-measure results for each concept (CONC.) on the PascalVOC test target
domains according to the F-measure. AVG. is the average result.

CONC. bird boat bottle∗ bus car cat chair cycle cow diningtable

SVM 0.18 0.29 0.01 0.16 0.28 0.23 0.24 0.10 0.15 0.15
SV 867 351 587 476 1096 882 1195 392 681 534

SF 0.18 0.27 0.11 0.12 0.34 0.20 0.21 0.10 0.11 0.10
LAND. 237 203 233 212 185 178 241 139 239 253

TSVM 0.14 0.14 0.11 0.16 0.37 0.14 0.22 0.13 0.12 0.13
SV 814 704 718 445 631 779 864 390 888 515

DASVM 0.16 0.22 0.11 0.14 0.37 0.20 0.23 0.14 0.11 0.15
SV 922 223 295 421 866 1011 1418 706 335 536

DASF 0.20 0.32 0.12 0.17 0.38 0.23 0.26 0.16 0.16 0.16
LAND. 50 184 78 94 51 378 229 192 203 372

CONC. dog∗ horse monitor motorbike person∗ plane plant sheep sofa train AVG.

SVM 0.24 0.31 0.16 0.17 0.56 0.34 0.12 0.16 0.16 0.36 0 .22
SV 436 761 698 670 951 428 428 261 631 510 642

SF 0.18 0.24 0.12 0.17 0.46 0.34 0.13 0.12 0.13 0.20 0 .19
LAND. 200 247 203 243 226 178 236 128 224 202 210

TSVM 0.22 0.17 0.12 0.12 0.44 0.18 0.10 0.12 0.15 0.19 0 .17
SV 704 828 861 861 1111 585 406 474 866 652 705

DASVM 0.22 0.23 0.12 0.14 0.55 0.30 0.12 0.13 0.17 0.28 0 .20
SV 180 802 668 841 303 356 1434 246 486 407 622

DASF 0.25 0.32 0.16 0.18 0.58 0.35 0.15 0.20 0.18 0.42 0 .25
LAND. 391 384 287 239 6 181 293 153 167 75 200

Fig. 12. Image Classification: The 6 landmarks selected for the concept PERSON, the first three images are
positive and the last three are negative (PascalVOC).

mated due to the lack of information on the target sample. SVM performs often better
than the two previous ones that can be explained by the similarity between the train and
test data. DASF has the best behavior on average. It always improves the results of a
SF-classifier, avoiding negative transfer, and is the best for 18 concepts. Moreover, it
always outputs significantly sparser models. As an illustration, we give in Figure 12 the
landmarks selected for the concept PERSON.

Computational Costs
The average execution time of each algorithm (with fixed parameters) is reported in

Table 7. We recall that the SF-classifier learning is the baseline. For this real corpus,
DASVM is significantly more costly. Unlike the toy problem, SVM is on average longer
than the baseline and DASF quicker than TSVM. This is probably a direct consequence
of the use of theL1-norm regularization. Indeed, the size of the set of landmarks is lower
than the quantity of possible support vectors. Again, an interesting point is that the cost
of the first iteration of our method (DASFit1 ) is the same as the cost of a SF learning.
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Table 7. Image Classification: The average computational costs of each method measured as a ratio of the
baseline SF.

CONC. bird boat bottle∗ bus car cat chair cycle cow diningtable

SVM 5.5 0.8 2.1 2 1.3 9 3.4 8.8 0.3 1.9

SF 1 1 1 1 1 1 1 1 1 1

TSVM 18.2 4.1 8 6 3.3 11.4 8.7 28.6 2.8 5.7

DASVM 4254 1440 3870 4860 1470 3428 2674 2828 900 1300

DASFit1 1 1 1 1 1 1 1 1 1 1
DASF 4.9 6 6 9 7.3 5 3.8 6.8 2.7 2.1

CONC. dog∗ horse monitor motorbike person∗ plane plant sheep sofa train AVG.

SVM 1.4 3.7 4.2 5 2.1 2.9 0.5 1.4 2 1.4 2 .2

SF 1 1 1 1 1 1 1 1 1 1 1

TSVM 1.9 7.4 12.2 5.9 4.5 10 0.7 4.4 15.9 10.1 8 .49

DASVM 340 3553 4230 3060 675 1710 3900 1836 1912 1550 2489

DASFit1 1 1 1 1 1 1 1 1 1 1 1
DASF 6.1 5.8 8.8 5.5 5.6 5 3.7 3.6 5.7 5.5 5 .4

Moreover, the additional cost due to the iterations of DASF is again very reasonable: it
is of a factor 5.4 on average and significantly lower than DASVM and TSVM.

7.4.2. Adaptation from PascalVOC 2007 to TrecVid 2007

Setup
In the last experiment, we select the 6 common concepts between TrecVid 2007 and

PascalVOC 2007. For each concept, we keep our previous PascalVOC train set as the
source domain and take, as the target domain, a TrecVid set of examples with the same
ratio +/− as the train set. d̂H∆H is about 1.4, justifying the high difference between the
two corpora and thus a potentially hard DA task.

Results
The results evaluated with the F-measure are reported in Table 8. DASF obtains the

best results on average and outputs again significantly sparser models. Finally, for those
hard tasks, the normalized similarity is always preferred (∗), showing that DASF is
effectively able to deal with non symmetric non PSD good similarities. KST has the
interest of incorporating some target information which seems useful for hard DA tasks.

DASF: Influence of the Hyperparameters λ and β
In these experiments, we observe on Figure 13 the impacts on the F-measure of λ (with

the best β) and β (with the best λ). We make the following remarks:

– From Figure 13(a), the parameter λ shows a relative influence except for the concept
CAR where the value leading to the best classifier is near 0.25 (for which the gain
is at least 0.15). For the others, the gain is lower than 0.1. The best λ depends on
the considered problem but must be greater than 0, indicating that the corresponding
regularization is necessary.

– From Figure 13(b), β clearly shows a higher impact: For BOAT, CAR and PLANE the gain
is between 0.1 and 0.15. Except for PERSON where the gain is quasi null, the choice
of a relevant β can imply an improvement of at least 0.05 and even more. The value
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Table 8. Image Classification: The F-measure results obtained for each concept on the TrecVid target do-
mains according to the F-measure. AVERAGE is the average result.

CONCEPT boat∗ bus∗ car∗ monitor∗ person∗ plane∗ AVERAGE

SVM 0.56 0.25 0.43 0.19 0.52 0.32 0 .38
SV 351 476 1096 698 951 428 667

SF 0.49 0.46 0.50 0.34 0.45 0.54 0 .46
LAND. 214 224 176 246 226 178 211

TSVM 0.56 0.48 0.52 0.37 0.46 0.61 0 .50
SV 498 535 631 741 1024 259 615

DASVM 0.52 0.46 0.55 0.30 0.54 0.52 0 .48
SV 202 222 627 523 274 450 383

DASF 0.57 0.49 0.55 0.42 0.57 0.66 0 .54
LAND. 120 130 254 151 19 7 113
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Fig. 13. Image Classification: The results for each concept according to λ and β in Problem (DASFopt),
with DASF.

associated with the best classifier is greater than 0 and belongs to [0.01; 0.25] except
for the concept PLANE which prefers a β greater than 0.5.

Like for the toy problems, the parameter β has a higher impact. Thus, for lightening a
bit the search of relevant parameters, one can focus more precisely on β than on λ.

SSDASF: Influence of Combining Source and Target Labeled Learning Sample
On Figure 14(a), we can observe the average results for each concept by running SS-

DASF on a combination of source and target labeled learning samples. These results
improve those obtained without target labels. We can remark that with less than 8 target
labeled examples, our extended approach SSDASF always improves the results in com-
parison with a SF-classifier learned only from the target labeled data. Some concepts
may even need more than 20 target examples that shows that the addition of a few target
labels can be very useful.

On Figure (14(b)) are reported results for the different values of κ (with 10 target
labels and the best λ and β). Then, we clearly see that a relevant value for κ stands
between 0.9 and 0.99 showing that the target labels give an important - additional -
information during the learning process for these hard DA tasks.

Finally, it appears that, for some concepts, the used visual features may be not very
expressive which can explain the difficulty to obtain better results. In fact, in many
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(a) The F-measure according to the quantity of labeled target examples in the learning sample. “Without Source
Data” corresponds to the result obtain with a SF-classifier learned only from the target labeled sample.
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Fig. 14. Image Classification: The F-measure obtained for each concept by combining source and target
labeled samples in Problem (SSDASFopt), i.e. with SSDASF.

image processing or multimedia issues, data are often represented with multimodal or
multiview features in order to have a higher level of expressiveness. Taking into account
such multimodal features would lead to further investigation, out of the scope of this
paper. But this might be clearly a promising perspective.

Computational Costs
Table 9 corresponds to the average computational costs (with fixed parameters) re-

ported as a ratio of the baseline (SF). The only difference with the previous image
classification task (c.f. Section 7.4.1) is that TSVM is here quicker than DASF. This
may be due to the difficulty of the task. In fact, in Section 7.4.1 the distance between
the marginal distributions is low, whereas in this experiment the distance is large. This
imply a harder construction of the set of pairs: When the points are far from each other,
the minimization of the objective function of Problem (7) needs more time.

Lastly, SSDASF (and its first iteration) is about 1.5 more longer than the unsuper-
vised DASF. The Problem (SSDASFopt) is actually constructed by adding constraints
to Problem (DASFopt). Then, it explains why it may need more time for being solved.
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Table 9. Image Classification: The average computational costs of each method measured as a ratio of the
baseline SF.

CONCEPT boat∗ bus∗ car∗ monitor∗ person∗ plane∗ AVERAGE

SVM 0.8 2 1.3 4.2 2.1 2.9 2 .2

SF 1 1 1 1 1 1 1

TSVM 5 7 3.6 13.2 5.5 11 7 .5

DASVM 3870 720 2370 2790 300 540 1765

DASFit1 1 1 1 1 1 1 1
DASF 9.5 10 8 23 3.4 10.5 10 .7

SSDASFit1 4.4 2 0.4 1 0.6 1.5 1 .6
SSDASF 29.8 14.4 6.6 29 3.4 13 16

For both DASF and SSDASF, the overhead cost due to the iterations is again relatively
reasonable with a factor 10 on average, showing that the iterative approach is still com-
petitive in terms of computational cost.

8. Conclusion and Perspectives

In this paper, we have proposed a novel domain adaptation approach that makes use of
the framework of Balcan et al. (Balcan et al., 2008a; Balcan et al., 2008b) allowing one
to deal with similarity functions potentially non-PSD and non-symmetric. Our method
relies on a regularization term that helps to build a projection space - made of similar-
ities to landmark points - by selecting the landmarks that are both close to the source
and target examples. We have also proposed an effective iterative procedure in order to
lighten the search of the projection space by a reweighting of the similarities. The lin-
ear formulation of the method enables the proposed algorithm to output sparse models,
even when the DA task is hard. We have also studied the generalization ability of our
method according to the framework of robustness which allows us to take into account
our regularizers. Moreover, we have extended our method for allowing the use of some
few target labels. We have shown experimentally good adaptation capabilities on vari-
ous tasks. Furthermore, our method always outputs sparser models which is clearly an
advantage for a large scale application perspective. Additionally, our results show that a
similarity renormalized according to a DA objective in a non-PSD and non-symmetric
way enables us to infer better models for difficult domain adaptation problems.

Finally, we present and discuss several perspectives.

Designing Non-PSD Similarity Function by Metric Learning. From our experimen-
tal evaluation (Section 7.1), it appears that the use of non-PSD non-symmetric func-
tions can be useful for solving domain adaptation tasks. So far, we have only proposed
a simple heuristic for designing such similarities. It is nevertheless an important issue
to be able to automatically design relevant good similarities. We think that a possi-
ble direction is to investigate some metric learning approaches for domain adaptation.
At the moment, few methods exist (Zhang and Yeung, 2010; Geng et al., 2011; Cao
et al., 2011; Kulis et al., 2011) and they mainly focus on PSD similarities. A possible
way could be to combine such approaches with non-PSD similarity learning like the
work of Bellet et al. (2011).



Parsimonious Unsupervised and Semi-Supervised Domain Adaptation with Good Similarity Functions 37

Building a Projection Space of Landmark Points. According to the theory of (Balcan
et al., 2008a; Balcan et al., 2008b), a low-error linear classifier can be learned in the
explicit φR-space induced by the mapping function φR, defined by the landmarks (see
Equation (2)). In fact, according to Theorem 2, the process needs enough different and
representative landmarks for learning a good classifier. On the other hand, using a lot
of landmarks implies a high dimensional projection space and thus to deal with a more
complex optimization problem. One possible perspective is to use a pre-processing step
for selecting a limited set of relevant landmark points (such as clustering (Macqueen,
1967) for example) in order to deal with a lower dimensional space. An important issue
in this context is to select the ratio of source and target instances to use in the projection
space. Indeed, in our experiments, we have noticed that in the unsupervised setting, the
addition of target instances in the space of landmarks does not improve the results while
the addition of target landmarks appears necessary in the semi-supervised approach.
Moreover, this step is clearly related with the metric learning perspective evoked above
since the projection space also depends on the similarity and a good similarity could
compensate the lack of dimension.

Relationships with other DA frameworks The two previous perspectives are of high
importance for precisely modeling the domain adaptation problem. For example, if the
source and target domains are not very different, we have to slightly modify a relevant
projection space for the source domain. This can be done by looking for some few
new relevant landmark points. Some outlier detection can eventually help to find the
part of the density that requires more attention. However, if the two domains are very
different, we then must modify drastically the projection space. Another interesting
and important perspective is also to investigate the link with reweighting methods for
domain adaptation like (Jiang and Zhai, 2007; Mansour et al., 2009; Sugiyama et al.,
2007) and in particular their relationships with our iterative procedure for reweighting
similarities. Another point concerns our generalization bound: The divergence measure
dH∆H used is not directly linked with the framework of robustness. In their extended
work, Xu and Mannor (2012) mention in their perspectives that the sum of the absolute
values of the deviations between the expectations of source and target examples in each
part of the instance space cover can be used to bound the domain adaptation error. It
may lead to better convergence bound but deserves more investigation in our case.

Combining Multiple Source Data. To deal efficiently with images or video corpora,
it is necessary to use multimodal or multiview representations allowing one to combine
multiple features taking into account various information (such as colors, textures, spa-
tiotemporal descriptors, . . . ). A perspective is then to consider an adaptation of some
multisource frameworks presented in (Balcan et al., 2008b; Ben-David et al., 2010a;
Chattopadhyay et al., 2011; Duan et al., 2009; Mansour et al., 2008). Another stand-
point could be to study some multi-tasks approaches (Ando and Zhang, 2005; Fei and
Huan, 2011; Xu and Kersting, 2011).
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Appendix

Proof of Theorem 8

In order to prove this theorem, we first need two technical lemmas from Ben-David
et al. (2010a) able to link errT (h), errκ(h) and ˆerrκ(h).

Lemma 4 (Ben-David et al. (2010a)). Let h be an hypothesis in a classH, then,

| errκ(h)− errT (h)| ≤ (1− κ)

(
1

2
dH∆H(DS , DT ) + ν

)
.

Lemma 5 (Ben-David et al. (2010a)). Let h be a fixed hypothesis, if a random sample
of size dl is generated by drawing i.i.d. θdl points from PT and (1 − θ)dl points from
PS , then for any δ > 0, with probability at least 1− δ (over the choice of the samples),

| ˆerrκ(h)− errκ(h)| <
√
κ2

θ
+

(1− κ)2

1− θ

√
ln 2

δ

2dl
.

Then, in order to take into account our regularizers, we use again the framework
of robustness. For readability reasons, we recall the generalization bound of Xu and
Mannor (2010) for robust algorithms introduced previously in Section 4.2.2.

Theorem 4 (Xu and Mannor (2010)). If a learning sample LS = {(xi, yi)}dli=1 is
drawn i.i.d. from a distribution P and if an algorithm A is (M, ε(LS)) robust, then
for any δ > 0, with probability at least 1− δ,

errP (ALS) ≤ êrrP (ALS) + ε(LS) + LUP

√
2M ln 2 + 2 ln 1

δ

dl
,

where errP (ALS) and êrrP (ALS) are respectively the generalization and the empirical
errors over P of the modelALS learned from LS, L(·, ·) being upper bounded by LUP .

By combining source and target labels, this theorem cannot be used directly on errκ
since the learning sample LS = (LSS , LST ) contains examples coming from two dif-
ferent distributions. However, by definition of errκ and êrrκ, the corresponding error on
the source domain and on the target one are evaluated independently on each domain.
A solution is then to apply the robustness theorem on each domain error and then to
consider the convex combination of the two bounds with respect to κ.

Assuming a normalization such thatLUP = 1 in our case, we can now prove Theorem 8.

Theorem 8. Let θ ∈ [0, 1], κ ∈ [0, 1], and LS be a labeled learning sample of size dl
constituted of θdl instances i.i.d. from target distribution PT and (1 − θ)dl examples
i.i.d. from source distribution PS . Let η′, η > 0 with M = max(Mη,Mη′) a covering
number forX , β > 0, λ > 0 andBR > 0. For all h ∈ Hminimizing the empirical error
by Problem (SSDASFopt), if h∗ = argminh′∈H{errT (h′)/ ˆerrκ(h) ≤ ˆerrκ(h′)},
then with probability at least 1− δ,

errT (h) ≤ errT (h∗) +

√
κ2

θ
+

(1−κ)2

1−θ

√
ln 4

δ

2dl
+
κ(NT

η′ −NS
η ) +NS

η

(1−κ)βBR + λ
+√

2M ln 2 + 2 ln 4
δ

dl

(
κ√
θ

+
1−κ√
1−θ

)
+ 2(1−κ)

(
1

2
dH∆H(DS , DT )+ν

)
,
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where BR = min
x′j∈R

{
max

(xs,xt)∈CST
|K(xs,x

′
j)−K(xt,x

′
j)|
}

and

NS
η = max

xa,xb∼DS
ρ(xa,xb)≤η

‖tφR(xa)− tφR(xb)‖∞, NT
η′ = max

xa,xb∼DT
ρ(xa,xb)≤η′

‖tφR(xa)− tφR(xb)‖∞.

Proof. First, by applying Theorem 4 on the target domain and on the source domain,
with Lemma 3 and eventually two different covers of X , we have respectively:

with probability 1− δ

4
and NT

η′ = max xa,xb∼DT
ρ(xa,xb)≤η′

‖tφR(xa)− tφR(xb)‖∞,

κ ˆerrT (h) ≤ κ

errT (h) +
NT
η′

(1− κ)βBR + λ
+

√
2Mη′ ln 2 + 2 ln 4

δ

θdl

 ,

with probability 1− δ

4
and NS

η = max xa,xb∼DS
ρ(xa,xb)≤η

‖tφR(xa)− tφR(xb)‖∞,

(1−κ) ˆerrS(h) ≤ (1−κ)

errS(h) +
NS
η

(1− κ)βBR + λ
+

√
2Mη ln 2 + 2 ln 4

δ

(1− θ)dl

 .

Let h be the hypothesis minimizing ˆerrκ(h), h∗ = argminh′∈H{errT (h′)/ ˆerrκ(h) ≤
ˆerrκ(h′)} and let A = 1

2dH∆H(DS , DT ) + ν, then

errT (h) ≤ errκ(h) + (1− κ)A, from Lemma 4,

≤ ˆerrκ(h) +
κ(NT

η′ −NS
η ) +NS

η

(1− κ)βBR + λ
+

√
2M ln 2 + 2 ln 4

δ

dl

(
κ√
θ

+
1− κ√
1− θ

)
+

(1− κ)A, by Theorem 4 on the two domain errors with M = max(Mη′ ,Mη),

≤ ˆerrκ(h∗) +
κ(NT

η′ −NS
η ) +NS

η

(1− κ)βBR + λ
+

√
2M ln 2 + 2 ln 4

δ

dl

(
κ√
θ

+
1− κ√
1− θ

)
+

(1− κ)A, since ˆerrκ(h) ≤ ˆerrκ(h∗),

≤ errκ(h∗) +

√
κ2

θ
+

(1− κ)2

1− θ

√
ln 4

δ

2dl
+
κ(NT

η′ −NS
η ) +NS

η

(1− κ)βBR + λ
+√

2M ln 2 + 2 ln 4
δ

dl

(
κ√
θ

+
1− κ√
1− θ

)
+ (1− κ)A, by Lemma 5,

≤ errT (h∗) +

√
κ2

θ
+

(1− κ)2

1− θ

√
ln 4

δ

2dl
+
κ(NT

η′ −NS
η ) +NS

η

(1− κ)βBR + λ
+√

2M ln 2 + 2 ln 4
δ

dl

(
κ√
θ

+
1− κ√
1− θ

)
+ 2(1− κ)A, by Lemma 4.
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