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Abstract
This paper deals with the experimental identification of the probabilistic representation of a random field

modeling the Young modulus of a non homogeneous isotropic elastic medium by experimental vibration

tests. The random field representation is based on the polynomial chaos decomposition. The coefficients of

the polynomial chaos are identified setting an inverse problem and then in solving an optimization problem

related to the maximum likelihood principle.

1 Introduction

We consider an elastic isotropic heterogeneous material at the macroscopic scale. In this paper, this material

is modeled by a random medium. Only the Young modulus is modeled by a random field. This random field

has to be identified by using an experimental database constituted of vibrational tests related to 100 speci-

mens in the frequency band [0-50]kHz. There are 60 sensors measuring accelerations. All the specimens are

excited by the same loads whose spectrum are constant on the frequency band of analysis. The linear elasto-

dynamics of the specimen is modeled by the finite element method. A chaos representation (see for instance

[1, 2, 3]) of the random field modeling the Young modulus is introduced. This identification problem has

been adressed in a recent work proposed in [4, 5]. The proposed method in [5] consists in identifying the

coefficients of the chaos representation by using the experimental database related to the dynamical response

of the specimen. The coefficients related to the finite element model of the specimen are random variables.

The first step of the method consists in identifying the related realizations of these random variables by

setting an optimization problem for each specimen. This optimization problem consists in minimizing the

distance between the frequency responce functions of the database and the frequency response function of

the finite element model with respect to the finite element coefficients of each specimen. In the second step

of the method, the polynomial chaos representation of these random variables is introduced. In the last step

of the method, the coefficients of the polynomial chaos representations are estimated by using the maximum

likelihood method. A numerical example is presented in order to validate the methodology. The example

consists in a viscoelastic random medium occupying a slender geometry. The experimental database is con-

structed by Monte Carlo numerical simulations of the direct problem. On the presented example, not only the

autocorrelation functions of the random field can be identified, but also the first order marginal probability

density functions.



2 Construction of an ”experimental database” by Monte Carlo nu-

merical simulation of the direct problem

In this paper, the “experimental database” is constructed by numerical simulation. The specimen is consti-

tuted of a non-homogeneous isotropic linear elastic medium occupying a three-dimensional bounded domain

D with boundary ∂D given in a Cartesian system Ox1x2x3. The geometry of domain D is a slender rectan-

gular box shown in Fig. 1 whose dimensions along x1, x2 and x3 are L1 = 1.3 × 10−1m, L2 = 2× 10−2m
and L3 = 2 × 10−2m. The structure is fixed on the part Γ0 of ∂D for which the displacement field is zero.
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Figure 1: Definition of the specimen

The structure is subjected to an external point force denoted as b(t) and applied to the node A along x1-

axis (see Fig. 1). The Fourier transform b̂ of b is the constant vector (1, 0, 0) in the frequency band [0, 50]
kHz. The elastic medium is random. It is assumed that the Young modulus is random while the Poisson

coefficient is deterministic. This assumption is introduced in order to simplify the presentation. The random

Young modulus field is modeled by a positive-valued second-order random field Y (x) defined by

Y (x) = c0 g(c1, c2 V (x)) , ∀x ∈ D (1)

in which c0 = 1.6663 × 1010 N.m−2, c1 = 1.5625 and c2 = 0.2. The function θ 7→ g(α, θ) from
 
into

]0 ,+∞[ is such that, for all θ in
 
,

g(α, θ) = F−1
Γα

(FΘ(θ)) ,

in which θ 7→ FΘ(θ) = P (Θ ≤ θ) is the cumulative distribution function of the normalized Gaussian

random variable Θ and where the function p 7→ F−1
Γα

(p) from ]0 , 1[ into ]0 ,+∞[ is the reciprocal function
of the cumulative distribution function γ 7→ FΓα(γ) = P (Γα ≤ γ)) of the gamma random variable Γα with

parameter α. In the right-hand side of Eq. (1) , {V (x), x ∈ D} is a second-order random field such that

E{V (x)} = 0 and E{V (x)2} = 1, defined by

V (x) =
3∑

| ! |=1

H ! (Z1, Z2, Z3, Z4)
√
γ ! ψ ! (x/2) , (2)

in which {Z1, Z2, Z3, Z4} are independent normalized Gaussian random variables, ! is a multi-index

(α1, α2, α3, α4) ∈ " 4, | ! | = α1 + α2 + α3 + α4 and where H ! (z1, z2, z3, z4) = Hα1
(z1) × Hα2

(z2) ×



Hα3
(z3) ×Hα4

(z4) in whichHαk
(zk) is the normalized Hermite polynomial of order αk such that

∫
 Hαk

(w)Hαj
(w)

1√
2π
e−

1

2
w2

dw = δαkαj
.

In the right-hand side of Eq. (2) , {γ  }1≤|  |≤3 and {ψ  }1≤|  |≤3 are defined as the eigenvalues and the

eigeinfunctions of the the integral linear operator C defined by the kernel C(x, x ′) = exp (−|x1 − x′1|/L)
in which L = L1/40 and where x = (x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) belong to D. This means that the

correlation length of the random field is much smaller than the length L1 of the specimen. The eigenvalue

problem related to operator C is then written as
∫

D
C(x, x′)ψ  (x′)dx′ = γ  ψ  (x) . (3)

It should be noted that, Y (x) = Y (x1) and consequently, Y (x) is independent of x2 and x3. Finally, it is

assumed that the Poisson coefficient µ = 0.3 and the mass density ρ = 2.7 × 103Kg/m3 are deterministic

real constants.

The finite element mesh of the structure is shown in Fig. 1 and consists of 8-node isoparametric 3D solid fi-

nite elements. There areNd = 1620 degrees of freedom. Let Z = (Z1, Z2, Z3, Z4) be the
! 4-valued random

variable constituted of the 4 independent random variables in Eq. (2) (the random germ of uncertain-

ties). Let [K(Z)] be the random stiffness matrix with values in the set of all the positive-definite symmetric

(Nd ×Nd) real matrices. Let [M ] and [D] be the mass and the damping matrices such that [D] = a [M ] with
a = 103 s−1. Matrices [M ] and [D] are deterministic positive-definite symmetric (Nd × Nd) real matrices.
The

! Nd-valued random-frequency-response function ω 7→ U(ω) related to the nodal displacements is such
that

[A(ω;Z)]U(ω) = f(ω) ,

in which [A(ω;Z)] = −ω2 [M ] + i ω [D] + [K(Z)] is the dynamic stiffness matrix and where f(ω) is the!!"
d-vector of the external forces. Let UΓ(ω) be the vector corresponding to the Nb = 60 nodes belonging

to ∂D which can be written as UΓ(ω) =
#
(U(ω)) in which

#
is a linear mapping from

! "
d into

! "
b . The

experimental database is constituted ofm = 100 realizations of random vector UΓ(ω) which are denoted by
u1

Γ(ω) = UΓ(ω, θ1), . . . ,u
m
Γ (ω) = UΓ(ω, θm) corresponding to the specimens and for ω running through

the frequency band of analysis.

3 Identification of the random field modeling the Young modulus by

solving an inverse problem

The finite element approximation Ỹ of random field Y indexed by D is written as Ỹ (x) =
∑N

k=1Rkhk(x1)
in which h1(x1), . . . , hN (x1) are the usual linear interpolation functions related to the finite element mesh

of domain D, where N = 60 is the degree of this approximation and where R1, . . . RN are the random

coefficients. We introduce the
! N -valued random variable R such that R = (R1, . . . , RN ). Let [Ã(ω;R)]

be the random dynamical stiffness matrix constructed by using the finite element approximation Ỹ (x) of
the Young modulus. For each realization u

j
Γ(ω) belonging to the experimental database, the realization

rj = R(θj) of the random variable R are constructed by solving the nonlinear optimization problem (see

[5])

min
rj

ℓdyn(rj,uj
Γ) , (4)

in which

ℓdyn(rj ,uj
Γ) =

Nband∑

k=1

∫

Bk

∥∥∥
#

(
[Ã(ω; rj)]−1f(ω)

)
− uj

Γ(ω)
∥∥∥
2
dω . (5)



In the right-hand side of Eq. (5) , Bk = [ωmin,k, ωmax,k] with ωmin,k = ωk − Beq,k/2 and ωmax,k =
ωk + Beq,k/2 where Beq,k is an equivalent bandwidth related to the eigenfrequency ωk of the mean model

of the specimens and where Nband is the number of bands considered for the identification. It should be

noted that the optimization problem introduced in [4] in order to solve the inverse problem to calculate the

realizations r1, . . . , rm of random vector R is based on an elastostatic problem. In this case, the experimental

database is constituted of static measurements and the optimisation problem is

min
rj

ℓstat(r
j ,uj

Γ) , (6)

in which

ℓstat(r
j ,uj

Γ) =
∥∥∥

 
(
[Ã(0; rj)]−1f(0)

)
− uj

Γ(0)
∥∥∥
2

.

The optimization problems defined by Eqs. (4) and (6) are solved by using a least-squares estimation of

nonlinear parameters (see [6]). Finally, for all x fixed in D, the realizations ỹ1(x) = Ỹ (x; θ1), . . . , ỹ
m(x) =

Ỹ (x; θm) of random variable Ỹ (x) are constructed by using the relation ỹj(x) = h(x1)
T rj in which h(x1) =

(h1(x1), . . . , hN (x1)). Figure 4 shows the graph of realization x1 7→ ỹ1(x) with x2 = x3 = 0 constructed
by solving Eq. (4) ( “dynamic inverse problem”) and Eq. (6) (“static inverse problem”).
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Figure 2: Graph of x1 7→ Y (x; θ1) (thick solid line) and graph of realization x1 7→ ỹ1(x) with x2 = x3 = 0
constructed by solving the “dynamic inverse problem” (dash line) with Nband = 5 . Horizontal axis: x1.

Vertical axis: Y (x; θ1) and Ỹ
1(x)

4 Statistical reduction

The size of the random vector R can be reduced. Let λ1 ≥ . . . ≥ λN be the eigenvalues of the covariance

matrix [CR] of random vector R. The normalized eigenvectors associated with the eigenvalues λ1, . . . , λN

are denoted by  1, . . . ,  N . Consequently, the random vector R can be written as

R = R+
N∑

k=1

Qk

√
λk  k ,

in which Q1, . . . , QN are N centered real-valued random variables defined by
√
λkQk =  T

k (R − R)
where R = E{R} such that for all k and ℓ, E{Qk} = 0 and E{QkQℓ} = δkℓ. From the study of the



function n 7→ ∑n
k=1 λk, it can be deduced that random vector R can be approximated by the random vector

R+ [Φ] [Λ]Qµ with µ = 15 < N in which the (µ× µ) matrix [Λ] and the (N × µ) matrix [Φ] are such that
[Λ]ℓk = δℓk

√
λℓ and [Φ]ℓk = [  k]ℓ and where Q

µ = (Q1, . . . , Qµ). For all j = 1, . . . ,m, the realization

qj = Qµ(θj) of random vector Qµ is calculated by qj = [Λ]−1[Φ]T (rj − R).

5 Chaos decomposition

Let Wν = (W1, . . . ,Wν) be the normalized Gaussian random vector such that E{WiWj} = δij . The

truncated Chaos representation of the
 µ-valued random variable Qµ in terms ofWν is written as

Qµ,ν =
+∞∑

! ,| ! |=1

a ! H ! (Wν) , (7)

where ! is a multi-index belonging to " ν and where H ! (Wν) is the multi-indexed Hermite polynomials

(see section 3). The coefficients a ! belonging to
 µ are such that

∑+∞
! ,| ! |=1 a ! aT! = [ Iµ] in which [ Iµ]

is the (µ × µ) unit matrix. The truncated Chaos representation of random vector Qµ,ν is denoted by Qµ,ν,d

and is such that Qµ,ν,d =
∑d

! ,| ! |=1 a ! H ! (Wν). Consequently, for all x ∈ D, the random Young modulus

Ỹ (x) can be approximated by the random variable Ỹ µ,ν,d(x) = h(x1)
T ([Φ] [Λ]Qµ,ν,d + R).

The maximum likelihood method (see, for instance, [7]) is used to estimate parameters a ! from realizations

q1, . . . ,qm. We then have to solve the following problem of optizimation: find  = {a ! , | ! | = 1, . . . , d}
such that

max! L(q1, . . . ,qm;  ) , with

d∑

! ,| ! |=1

a ! aT! = [ Iµ] (8)

where L(q1, . . . ,qm;  ) = pQµ,ν,d(q1,  ) × . . . × pQµ,ν,d(qm,  ) is the likelihood function associated with

observations q1, . . . ,qm and where pQµ,ν,d is the probability density function of Qµ,ν,d. However, the opti-

mization problem defined by Eq. (8) yields a very high computational cost induced by the estimation of the

joint probability density functions pQµ,ν,d(qj,  ) (even for reasonable values of the length µ of random vec-

tor Qµ,ν,d). Consequently, it is proposed to substitute the usual likelihood function by the pseudo-likelihood

function

L̃(q1, . . . ,qm;  ) =
µ∏

k=1

p
Q

µ,ν,d

k

(q1k,  ) × . . .×
µ∏

k=1

p
Q

µ,ν,d

k

(qm
k ,  ) (9)

where qj = (qj
1, . . . , q

j
µ) and Qµ,ν,d = (Qµ,ν,d

1 , . . . , Qµ,ν,d
µ ) and where p

Q
µ,ν,d

k

is the probability density

function of random variable Qµ,ν,d
k . Finally, the following problem of optimization is substituted to the

problem defined by Eq. (8) . Find  = {a ! , | ! | = 1, . . . , d} such that

max! L̃(q1, . . . ,qm;  ) , with

d∑

! ,| ! |=1

a ! aT! = [ Iµ] . (10)

6 Convergence Analysis

In order to perform a convergence analysis of the method proposed in this paper, the normalized random

variables Y(x) and Ỹµ,ν,d(x) defined by Y(x) = Y (x)/E{Y (x)} and Ỹµ,ν,d(x) = Ỹ µ,ν,d(x)/E{Ỹ µ,ν,d(x)},



for all x ∈ D, are introduced. Let r(x, x′) and rn,ν,d(x, x′) be the correlation functions of the random fields

Y and Ỹn,ν,d such that, for all x and x′ in D,

r(x, x′) =
E{Y(x)Y(x′)} − 1√

(E{Y(x)2} − 1)(E{Y(x′)2} − 1)
,

and

rn,ν,d(x, x′) =
E{Ỹn,ν,d(x)Ỹn,ν,d(x′)} − 1√

(E{Ỹn,ν,d(x)2} − 1)(E{Ỹn,ν,d(x′)2} − 1)
.

The mean-square convergence analysis is performed with respect to the correlation functions and shows that

the probabilistic model is converged for ν = 4. The remaining error is due to the truncating of the statistical
reduction defined in Section 5.

7 Identification of the probabilistic model

Figure 3 shows the graphs of x 7→ r(x, x′) (thick dashed line) and x 7→ rn,ν,d(x, x′) (thin solid line) where
x = (x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) with x2 = x3 = 0 and x′1 = 0.0520, x′2 = x′3 = 0 and with d = 5,

µ = 15, ν = 4 .
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Figure 3: Graphs of x 7→ r(x, x′) (thick dashed line) and x 7→ rn,ν,d(x, x′) (thin solid line) where x =
(x1, x2, x3) and x

′ = (x′1, x
′
2, x

′
3) with x2 = x3 = 0 and x′1 = 0.0520, x′2 = x′3 = 0 and with q = 5,

µ = 15, ν = 4. Horizontal axis: x1. Vertical axis: r(x, x
′) and rn,ν,d(x, x′)

For all x ∈ D, let y 7→ pY(x)(y; x) and y 7→ p
Ỹµ,ν,d(x)

(y; x) be the probability density functions of the

random variables Y(x) and Ỹµ,ν,d(x). Figure 4 shows the graphs of y 7→ log10(pY(x)(y; x)) (thick solid line)
and y 7→ log10(pỸµ,ν,d(x)

(y; x)) (thin solid line) where x = (x1, x2, x3) with x2 = x3 = 0 and x1 = 0.0152

with d = 5, µ = 15 and ν = 4. It can be seen that the probabily density function is accurately identified.

8 Conclusion

A method for solving the stochastic inverse problem using chaos representation of the stochastic field to be

identified and an experimental database is proposed. The proposed method uses the maximum likelihood

principle to identify the coefficients of the chaos representation. For presented example, this method allows

any probabilistic quantities to be identified such as the autocorrelation function of the random field and the

marginal probability density functions. It should be noted that the proposed method can easily be extended

to the case of a viscoelastic random medium for which the elastic properties depend on frequency.
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Figure 4: Graphs of y 7→ log10(pY(x)(y; x)) (thick solid line) and y 7→ log10(pỸµ,ν,d(x)
(y; x)) (thin solid

line) where x = (x1, x2, x3) with x2 = x3 = 0 and x1 = 0.0152 with d = 5, µ = 15 and ν = 4. Horizontal
axis: y. Vertical axis: log10(pY(x)(y; x)) and log10(pỸµ,ν,d(x)

(y; x)).
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