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In the context of the prediction of noise levels in vibroacoustic systems, numerical models or analytical models can be

developed. Generally, numerical models are adapted to the low and medium frequency ranges and analytical models to the

medium and high frequency ranges. For analytical models, a classical approximation consists in modelling the multilayer

system by an equivalent acoustic impedance. This paper deals with a multilayer system constituted of a porous medium

inserted between two thin plates. Part I of this paper is devoted to the experiments performed and to the development

of a probabilistic algebraic model for the equivalent acoustic impedance. In the present Part II, an analytical method is

constructed for this multilayer system. This method consists in introducing the unbounded medium in the plane directions

x1 and x2 while the medium is bounded in the x3 direction. A two-dimensional space Fourier transform introducing the

wave vector coordinates k1 and k2 is used. For a given frequency and for k1 and k2 fixed, the boundary value problem in

x3 is constituted of 12 differential equations in x3 whose coefficients depend on k1 and k2, with boundary conditions. This

system of equations is solved by using adapted algebraic calculations. By inverse Fourier transform with respect to k1 and

k2, the equivalent acoustic impedance is deduced. The method which is proposed is not usual. Finally, a comparison of

this analytical approach is compared with the experimental results.

1. INTRODUCTION

Soundproofing schemes usually used for acoustic insulation are constituted of a porous medium layer

or several ones inserted between plates. Many researches have already devoted to the vibro-acoustics

of simple structures such as beams, plates, circular cylindrical shells, coupled with internal or external

acoustic fluids, by analytical methods (see for instance [1-8]) and to the vibro-acoustics of general

structures by numerical methods (see for instance [5,9]). Concerning the vibro-acoustics of multilayer

systemswithout porousmedium, a large number of works were published (see for instance [2,5,10-16]).

The difficulties to model multilayer systems are due to the problems induced by the acoustic behaviour

of porous media and by the coupling between the layers constituting the system. The porous medium

is a complex material constituted of two phases : one fluid and one solid. The dissipation inside a

porous medium is induced by viscous effects (friction of the fluid phase to the solid phase on the pore

walls), by thermal effects (absorption of the remaining heat from the fluid phase by the solid phase)

and by structural damping related to the viscoelasticity of the solid phase. A porous medium can be

modelled by an equivalent fluid model [17-19] if the assumption of a motionless solid phase can be
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justified. If the fluid phase is strongly coupled with the solid phase or, if the porous medium is coupled

with a vibrating structure, one needs to take into account the motion of the solid phase [1,20-29]. The

coupling between the different layers of a multilayer system is obtained by the construction of the

interface conditions between the layers (see for instance [24,30-32]).

Acoustic transmission through porous media or multilayer systems included porous media have been

recently studied using finite element numerical method. In this context, the entire system includes

porous media which are discretised by finite elements [33-41]. These methods are very efficient in the

low frequency range, have to be adapted to be efficient in the medium frequency range and can not be

used in the high frequencies in the state of the art. For simple structures, analytical methods can be

used for the medium and high frequency ranges (see for instance [24,42-48]).

In this paper, for the medium and high frequency ranges, one presents the modelling of a multilayer

system with porous medium by an analytical approach in order to construct an equivalent acoustic

impedance of this multilayer system. Such an acoustic impedance model can be used for the prediction

of vibro-acoustic responses of complex systems, allowing such a soundproofing scheme to bemodelled.

The multilayer system under consideration is constituted of a three dimensional porous medium made

of an open polyurethan foam inserted between two thin plates. This system is described in part I [49]

of the paper.

Concerning the three dimensional porous medium, a three dimensional formulation is used and is

based on the Biot theory which introduces the displacement fields associated with the solid and the

fluid phases. The motion of the solid phase can not be neglected because the porous medium is inserted

between two vibrating plates. Equations are written in the general case of a homogeneous anisotropic

porous medium whose solid phase is viscoelastic. In order to solve the equations, the two inplane

components of the fluid phase displacement are eliminated and the third one component relative to the

thickness direction is preserved. The boundary value problem of the multilayer system is constructed

by using the local equations of plates, for bending and membrane deformations, coupled with the

three dimensional porous medium. Since the multilayer system corresponds to one three-dimensional

medium coupled with two two-dimensional media, the interface conditions between the layers have to

be constructed. Such a method was presented in [50] for the case of a plate in bending mode coupled
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with a three-dimensional elastic media. In this paper, an extension to the case of the above multilayer

system is presented [51].

For the multilayer system under consideration, the construction of the acoustic impedance operator and

its local approximation (introduced in part I [49]) is carried out using an analytical method for which

the finite reference-plane of the mechanical system is replaced by an infinite reference-plane. This kind

of approximation is a priori usuable for the medium and high frequency ranges. This analytical method

uses the spatial coordinate corresponding to the thickness direction and uses a two-dimensional spatial

Fourier transform for the two directions corresponding to the reference-plane which is infinite. For a

given frequency and for each wave vector associated with the reference-plane directions, a system of

differential equations with respect to the thickness direction with appropriate boundary conditions has

to be solved. This system is constituted of twelve coupled equations : three for each plate (two for

the membrane deformation and one for the bending deformation), six for the porous medium (three

for the solid phase and three for the fluid phase). This system of equations is partially degenerated.

Consequently, the elimination of the two inplane phase fluide displacement can be performed and,

one then deduced ten coupled equations. This system of equations has a bad numerical conditioning

induced by the presence of terms which exponentionally increase in the thickness direction of the

porous medium. An adapted method has specifically been developed in order to solve this kind of such

a system of differential equations.

Concerning the validation of this analytical method by using the experimental results introduced in

part I [49], the mechanical properties corresponding to the experiment are used. Consequently, one

has to consider a homogeneous isotropic porous medium with a viscoelastic solid phase and two

homogeneous viscoelastic isotropic plates. The analytical method is then developed in this context.

The parameters of the porous medium introduced in the Biot theory applied in the context of acoustic

problems [22-24] were measured ([52,53]). The complete set of the anisotropic porous medium

parameters has not been measured. Consequently, the measured parameters only allow the isotropic

and transverse isotropic case to be described. The main objective of this paper is the experimental

validation of the analytical model for a porous medium modelled by a homogeneous isotropic porous

medium with a viscoelastic solid phase. The transverse isotropic viscoelastic solid phase is studied in
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[51]. Nevertheless, a comparison between the isotropic and transverse isotropic cases is presented for

the local acoustic impedance.

In Section 2, the boundary value problem is given considering the general case of a homogeneous

anisotropic viscoelastic porous medium coupled with two homogeneous orthotropic viscoelastic plates

in membrane and bending deformations. In Section 3, using the two-dimensional inplane space

Fourier transform, the boundary value problem is deduced. Section 4 deals with the construction of

the equivalent acoustic impedance. The experimental validation is presented in Section 5.

2. EXPRESSION OF THE BOUNDARY VALUE PROBLEM

The Love-Kirchhoff model is used for the bending motions of the two plates called P1 and P2 and the

membrane motions are considered. Let Ω be the three-dimensional bounded region occupied by the

porous material. The interfaces between the porous medium and the plates P1 and P2 are denoted by

Σ1 and Σ2 (see Figure 1). A pressure field p is applied to Σ0. Let S1 and S2 be the mid-planes of the

plates P1 and P2. The coordinates (x1, x2, x3) of a point belonging to the porous medium are given

in the cartesian system whose origin belongs to the reference-plane S of the multilayer system which

is chosen as the coupling interface Σ1. Consequently, surface S coincides with surface Σ1. The x3

coordinate of the coupling interface Σ1 (or Σ2) is 0 (or H) (in which H is the thickness of the porous

medium). In this paper, if T is any quantity depending on the coordinates x1, x2 and x3, T,k denotes

the partial derivative ∂T /∂xk and T ′ = ∂T /∂x3, T ′′ = ∂2T /∂x2
3. The Kronecker symbol denoted

by δαβ is such that δαβ = 1 for α = β, δαβ = 0 for α 6= β.

2.1. MEMBRANE AND BENDING VIBRATIONS EQUATIONS FOR PLATES P1 AND P2

Using thin plate classical hypotheses for plate Pℓ, ℓ = 1, 2 and since the Love-Kirchhoff model is

used for the bending motions of the two plates and the membrane motions are added, the displacement

field of plate Pℓ, ℓ = 1, 2, is defined by (vPℓ

1 (x1, x2), v
Pℓ

2 (x1, x2), w
Pℓ(x1, x2)) where vPℓ

1 (x1, x2)

and vPℓ

2 (x1, x2) are the inplane displacements (membrane displacements) of plate Pℓ and wPℓ(x1, x2)

is its transverse displacement. Plate P1 is submitted to a pressure field p. The boundary value problem
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is written as follows. The dynamical equations of plate P1 for bending and membrane motions are

expressed as

−ω2 ρP1
hP1

vP1

α − NP1

αβ,β = σ1s
α3 on S1 , (‘ eq1 ST’)

−ω2 ρP1
hP1

wP1 − MP1

αβ,αβ = σ1s
33 + σ1f

33 + hP1
σ1s

α3,α/2 + p on S1 , (‘ eq2 ST’)
in which the solid part stress tensor components σs

ij and the fluid part stress tensor components σf
ij are

defined by

σ1s
ij (x1, x2) = σs

ij(x1, x2, 0) , σ1f
ij (x1, x2) = σf

ij(x1, x2, 0) . (‘ def hat’)
The dynamical equations of plate P2 for bending and membrane motions are given by

−ω2 ρP2
hP2

vP2

α − NP2

αβ,β = −σ2s
α3 on S2 , (‘ eq7 ST’)

−ω2 ρP2
hP2

wP2 − MP2

αβ,αβ = −σ2s
33 − σ2f

33 + hP2
σ2s

α3,α/2 on S2 , (‘ eq8 ST’)
in which

σ2s
ij (x1, x2) = σs

ij(x1, x2, H) , σ2f
ij (x1, x2) = σf

ij(x1, x2, H) , (‘ def hat hat’)
The right-hand side of Eqs. (‘ eq1 ST’), (‘ eq2 ST’), (‘ eq7 ST’) and (‘ eq8 ST’) correspond to the

coupling effects of the three dimensional porous medium on the plates. For orthotropic plate Pℓ with

ℓ = 1, 2, the components of the bending moment tensor MPℓ

αβ and the components of the inplane force

tensor NPℓ

αβ are written as
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MPℓ

αβ = −(1 + i ω aPℓ

1 (ω)) Df
Pℓ

[
νPℓ wPℓ

,γγ δαβ + (1 − νPℓ) wPℓ

,αβ

]
, (‘ M complexeb’)

NPℓ

αβ = (1 + i ω aPℓ

1 (ω)) Dm
Pℓ

[
νPℓ vPℓ

γ,γ δαβ +
1

2
(1 − νPℓ) (vPℓ

α,β + vPℓ

β,α)

]
, (‘ N complexeb’)

in which Df
Pℓ

= EPℓ h3
Pℓ

/[12 (1− νPℓ 2)], Dm
Pℓ

= EPℓ hPℓ
/[1 − νPℓ 2].

2.2. THREE DIMENSIONAL VIBRATIONS OF THE POROUS MEDIUM

Let us = (us
1, u

s
2, u

s
3) and uf = (uf

1 , uf
2 , uf

3) be the displacement field of the solid phase and the fluid

phase respectively for the porous medium. The dynamical equations of the porous medium for the

solid part and the fluid part are the Biot equations [22-24] and are written as

−ω2 ρ̃11 us
i − ω2 ρ̃12 uf

i − i ω Φ2 [!−1]ij(u
f
j − us

j) − σ̃s
ij,j = 0 in Ω , (‘ eq3 ST’)

−ω2 ρ̃22 uf
i − ω2 ρ̃12 us

i + i ω Φ2 [!−1]ij(u
f
j − us

j) − σ̃f
ij,j = 0 in Ω , (‘ eq4 ST’)

in which ! is the permeability tensor relative to viscous effects and Φ is the porosity. The coefficients

ρ̃11, ρ̃22 and ρ̃12 are the density of the solid phase, the density of the fluid phase and the coupling

density between the solid and the fluid phases, respectively. For k and l equal to 1 or 2, ρ̃kl is defined

by [35]

ρ̃kl(ω) = ρkl + ∆ρkl(ω) , (‘ def des rho pr PL kl’)

in which an expression of ∆ρkl(ω) is given in Section 3 and where

ρ11 = ρ1 + Φ ρf (α − 1) , ρ22 = Φ ρf α , ρ12 = −Φ ρf (α − 1) , (‘ def des rho pr PL10’)
7
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with ρ1 = (1−Φ) ρs and where α is the tortuosity, ρf the fluid mass density and ρs the solid material

mass density.

The boundary conditions between the porous medium and plate Pℓ are given by writting the continuity

of the normal displacement for the fluid phase and the continuity of the displacement field for the solid

phase, that is to say

us
α = vP1

α − hP1

2
wP1

,α , us
3 = wP1 , uf

3 = wP1 on Σ1 ,

us
α = vP2

α +
hP2

2
wP2

,α , us
3 = wP2 , uf

3 = wP2 on Σ2 . (‘ cl pb aux lim’)
Since the porous medium is assumed to be viscoelastic and anisotropic, the constitutive equations are

given by

σs
ij(x, ω) = (Ls

ijkh(ω) + i ω Dijkh(ω)) ǫs
kh + Lsf

ijkh(ω) ǫf
kh , (‘ loi de cpt visco sigmas part1 chp3 0’)

σf
ij(x, ω) = Lf

ijkh(ω) ǫf
kh + Lfs

ijkh(ω) ǫs
kh , (‘ loi de cpt visco sigmaf part2 chp3 0’)

Ls
ijkh(ω) = Aijkh(ω) + M(ω) [Bij Bkh − Φ(Bij δkh + δij Bkh) + Φ2 δij δkh] ,

Lf
ijkh(ω) = M(ω) Φ2 δij δkh , Lsf

ijkh(ω) = Lfs
ijkh(ω) = M(ω) Φ (Bij δkh−Φ δij δkh) , (‘ Lijkhs visco iso

in which ǫs
kh and ǫf

kh are the strain tensors relative to the solid phase and the fluid phase, respectively.

The components Aijkh(ω) and Dijkh(ω) are relative to the elastic stress tensor and to the damping

stress tensor, respectively. The two tensors have the usual symmetric properties and are positive

definite [9]. If one considers a hysteretic damping, the components Dijkh(ω) can be written as

Dijkh(ω) = a1(ω) Aijkh(ω) in which a1(ω) is a real positive constant which depends on ω. The Bij

components are relative to the coupling of the solid phase with the fluid phase. The thermal effects

8
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are expressed by M(ω) which is defined by M(ω) = Ke(ω)/Φ in which Ke(ω) is the frequency

dependent equivalent complex bulk modulus of air [24] and is given by

Ke(ω) =
Ka

γ − γ − 1

1 + 8 ηf/
(
i Λ′2 Pr ω ρf

)
G′(ω)

, (‘ Ke’)
where Ka is the bulk modulus of the fluid (in case of air, Ka = γ pf where pf is the pressure), ηf , the

fluid viscosity, Pr, the Prandtl number, Λ′, the thermal characteristic length [24,39] which has to be

identified experimentally, G′(ω), the complex factor defined by [24]

G′(ω) =
√

1 + i ω/ωTt , (‘ G’ pores cyl’)
with ωTt = 16 ηf/(Pr Λ′2 ρf ) > 0 is real.

3. BOUNDARY VALUE PROBLEM IN THE FOURIER SPACE

As explained in Section 1, and in order to compare this analytical prediction with the experiments,

the porous medium is considered as a homogeneous viscoelastic isotropic medium and the plates are

considered as homogeneous viscoelastic isotropic media. This model can easily be extended to the

case of an anisotropic porous medium whose equations are given in Section 2. The method proposed

for the construction of the equivalent acoustic impedance is based on the spectral method relative to the

infinite plane (x1Ox2) containing the reference-plane S of the multilayer system. Since the thickness

H is finite, the coordinate x3, corresponding to the thickness direction, is preserved (see Figure 2). In

order to simplify the notation, a function and its Fourier transform are denoted by the same symbol

and differ by their arguments. Let x̃ = (x1, x2) be the point in reference-plane S of the multilayer

system, k = (k1, k2), dx̃ = dx1 dx2 and dk = dk1 dk2. The Fourier transform g(k, ω) of a function

x̃ 7→ g(x̃, ω) with respect to x̃ is such that

g(k, ω) =

∫ 2

ei k.x̃ g(x̃, ω) dx̃ , g(x̃, ω) =
1

(2 π)2

∫ 2

e−i k.x̃ g(k̃, ω) dk , (‘ def TF spatiale’)
9
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with k.x̃ = k1 x1 + k2 x2. The derivative ∂w/∂x3 is denoted by w′. The Fourier transforms with

respect to (x1, x2) of the dynamical equations for the solid and the fluid phases of the porous medium

are

−ω2 ρ̃11 us
i − ω2 ρ̃12 uf

i − i ω b (uf
i − us

i ) + i k1 σs
i1 + i k2 σs

i2 − σs
i3,3 = 0 ,

−ω2 ρ̃22 uf
i − ω2 ρ̃12 us

i + i ω b (uf
i − us

i ) − σf
i3,3 = 0 , (‘ eq sf Fourier 0’)

in which b(ω) = Φ2/K(ω)whereK(ω) is the permeability for the isotropic case. The coefficient b(ω)

is relative to the viscous effects and is written as [22-24,35]

b(ω) = Φ2 σ GR(ω) , (‘ def k panneton’)
in which GR(ω) > 0 with GR(−ω) = GR(ω) is the real part of G(ω) =

√
1 + i P ω̂/2 which

is the viscous corrective factor, and where P = 8 αk0/(Φ Λ2) with k0 = ηf/σ, the viscous static

permeability, and where σ > 0 is the resistivity which has to be identified experimentally. The non

dimensional factor ω̂ is defined by ω̂ = ω α ρf k0/(Φ ηf ) and the viscous characteristic length Λ has

to be identified experimentally. The added mass ∆ρkl(ω), introduced in Eq. (‘ def des rho pr PL kl’),

due to viscous effects, is defined by Panneton [35]

∆ρkl(ω) = (−1)k+l Φ2 σ GI(ω)/ω , (‘ Delta tilde rhokl’)
whereGI(ω) is the imaginary part ofG(ω) and which has to verify these following algebraic properties

[51]

GI(ω) > 0 for ω > 0 , GI(−ω) = −GI (ω) , lim
ω→0

|GI(ω)/ω| = C < ∞ , (‘ ptes GI’)
10
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in which C is a finite constant. An expression of GI(ω) is given by [24]

GI(ω) =
1√
2

ω/ωTv√
1 +

√
1 + (ω/ωtv)

2

, (‘ GI’)
in which ωTv = σ2 Λ2 Φ2/(4 α2 ηs ρf ) where the structural dissipation factor ηs has to be identified

experimentally. For the solid phase of the porous medium, the Fourier transforms with respect to

(x1, x2) of the constitutive equations are

σs
11(k, x3, ω) = AF (ω) (−i k1 us

1 − i k2 us
2 + us

3,3) + BF (ω) (−i k1) us
1

+CF (ω) (−i k1 uf
1 − i k2 uf

2 + uf
3,3) ,

σs
22(k, x3, ω) = AF (ω) (−i k1 us

1 − i k2 us
2 + us

3,3) + BF (ω) (−i k2) us
2

+CF (ω) (−i k1 uf
1 − i k2 uf

2 + uf
3,3) ,

σs
33(k, x3, ω) = AF (ω) (−i k1 us

1 − i k2 us
2 + us

3,3) + BF (ω) us
3,3

+CF (ω) (−i k1 uf
1 − i k2 uf

2 + uf
3,3) ,

σs
12(k, x3, ω) = −i BF (ω) (k2 us

1 + k1 us
2)/2 ,

σs
13(k, x3, ω) = BF (ω) (us

1,3 − i k1 us
3)/2 ,

σs
23(k, x3, ω) = BF (ω) (us

2,3 − i k2 us
3)/2 , (‘ loi cpt fourier 1’)

in whichAF (ω),BF (ω) andCF (ω) are defined byAF (ω) = (1+i ω a1(ω)) ν E/[(1+ν) (1−2 ν)]+

M(ω) (B − Φ)2, BF (ω) = (1 + i ω a1(ω)) E/(1 + ν), CF (ω) = Φ M(ω) (B − Φ) with E, the

Young modulus and ν the Poisson coefficient of the solid phase. In acoustic problems, the coupling

factorB is such that [22,24]B = 1. For the fluid phase, the Fourier transforms with respect to (x1, x2)

of the constitutive equations are

σf
ii(k, x3, ω) = EF (ω) (−i k1 uf

1−i k2 uf
2+uf

3,3)+CF (ω) (−i k1 us
1−i k2 us

2+us
3,3) , (‘ loi cpt fourier 2’)

11
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for i=1, 2, 3, and where EF (ω) = Φ2 M(ω). The plate P1 is subjected to a point force applied to

the origine of plate P1 in the direction x3 with the intensity f(ω). Therefore, the pressure field p

introduced in Eq. (‘ eq2 ST’) is such that p(x̃, ω) = f(ω) δ0(x̃) in which δ0(x̃) is the Dirac function

at point 0. For plates P1 and P2, the Fourier transforms with respect to (x1, x2) of the dynamical

equations are

−ω2 ρP1
hP1

uP1 + (1 + i ω aP1

1 (ω))!1(k) uP1 = F1(k, ω) + f(ω) ,

−ω2 ρP2
hP2

uP2 + (1 + i ω aP2

1 (ω))!2(k) uP2 = F2(k, ω) , (‘ eq plaque P’)
in which uP1(k, ω) = (vP1

1 (k, ω), vP1

2 (k, ω), wP1(k, ω)) and uP2(k, ω) = (vP2

1 (k, ω), vP2

2 (k, ω),

wP2(k, ω)), f(ω) is such that f(ω) = (0, 0, f(ω)), for ℓ=1 or 2, !ℓ(k) is the stiffness matrix for plate

Pℓ and is such that !ℓ(k) =




aℓ
11(k) aℓ

12(k) 0
aℓ
12(k) aℓ

22(k) 0
0 0 aℓ

33(k)



 , (‘ eq raideur’)
in which

aℓ
11(k) = Dm

Pℓ
[(1 + νPℓ)k2

1 + (1 − νPℓ)(k2
1 + k2

2)]/2 , aℓ
12(k) = Dm

Pℓ
(1 + νPℓ)k1k2/2 ,

aℓ
22(k) = Dm

Pℓ
[(1 + νPℓ)k2

2 + (1− νPℓ)(k2
1 + k2

2)]/2 , aℓ
33(k) = Df

Pℓ
(k2

1 + k2
2)

2 .(‘ eq raideur 2’)
The vectors F1(k, ω) and F2(k, ω) correspond to the forces induced by the porous medium on the

plates P1 and P2 and are given by

F1(k, ω) =




σ1s

13

σ1s
23

σ1s
33 + σ̃1f

33 − i hP1
(k1 σ1s

13 + k2 σ1s
23)/2



 ,

F2(k, ω) =




−σ2s

13

−σ2s
23

−σ2s
33 − σ2f

33 − i hP2
(k1 σ2s

13 + k2 σ2s
23)/2



 . (‘ eq forces’)
12
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Finally, the boundary value problem in x3 is completely defined in adding the Fourier transform with

respect to (x1, x2) of the boundary conditions defined by equation Eq. (‘ cl pb aux lim’), i.e.
us

α = vP1

α + i hP1
kα wP1/2 , us

3 = wP1 , uf
3 = wP1 , on Σ1 , α = 1, 2 ,

us
α = vP2

α − i hP2
kα wP2/2 , us

3 = wP2 , uf
3 = wP2 , on Σ2 . (‘ cl pb aux lim Fourier’)

4. SOLVING THE BOUNDARY VALUE PROBLEM AND CALCULATION OF THE

EQUIVALENT ACOUSTIC IMPEDANCE

For ω, k1 and k2 fixed, the boundary value problem in x3, constructed in Section 3, is consti-

tuted of 12 coupled differential equations in x3 whose coefficients depend on ω, k1 and k2, and

on boundary conditions. The acoustic impedance equivalent to the multilayer system being as-

sumed homogeneous in plane x̃ = (x1, x2), the pressure field p applied to plate P1 is related to the

normal velocity jump ∆v(x̃′, ω) = vP1(x̃′, ω) − vP2(x̃′, ω), with vP1(x̃′, ω) = i ω wP1(x̃′, ω) and

vP2(x̃′, ω) = i ω wP2(x̃′, ω), and is given by the following equation (see Part I of the paper)

p(x̃, ω) =

∫

x̃′∈S

z(x̃ − x̃′, ω) ∆v(x̃′, ω) dSx̃′ , x̃ ∈ S , (‘ def Z TF ms 1’)

where dSx̃′ = dx′

1 dx′

2. The Fourier transform with respect to x̃ of Eq. (‘ def Z TF ms 1’) is written as

p(k, ω) = i ω z(k, ω) ∆w(k, ω) , (‘ relation imped’)
in which ∆w(k, ω) = wP1(k, ω) − wP2(k, ω) is the Fourier transform of ∆w(x̃, ω) = wP1(x̃, ω) −

wP2(x̃, ω). An equation allowing the calculation of p(k, ω) as a function of ∆w(k, ω) has to be

constructed. Consequently, the unknowns uf and us have to be eliminated from the system of

13
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equations. Substituting Eqs. (‘ loi cpt fourier 1’) and (‘ loi cpt fourier 2’) into Eq. (‘ eq sf Fourier 0’)
yields

[!11 0
0 0

] [
X′′(x3)
Y′′(x3)

]
+

["11(k) "12(k)"T
12(k) 0

] [
X′(x3)
Y′(x3)

]
+

[#11(k) #12(k)#T
12(k) #22(k)

] [
X(x3)
Y(x3)

]
= 0 , (‘ eq MP’)

for x3 in ]0, H[,in which vectors X(x3) and Y(x3) are such that X(x3) = (us
1(x3), u

s
2(x3), u

s
3(x3),

uf
3 (x3)) and Y(x3) = (uf

1(x3), u
f
2(x3)). It should be noted that all quantities in Eq. (‘ eq MP’) depend

on ω. In order to simplify the notation, the dependence on k of X and Y is omitted. The matrices!11, "11(k), "12(k), #11(k), #12(k) and #22(k) are defined in Appendix A and !T is the transpose

of matrix !. Since #22(k) is invertible for ω 6= 0, Y can be eliminated from Eq. (‘ eq MP’) by using

the second line of this equation and yields

A(k) X′′(x3) + B(k) X′(x3) + C(k) X(x3) = 0 , (‘ 2eme eq syst en X bis’)

in which A(k), B(k) and C(k) are defined by

A(k) = !11 − "12(k)#−1
22 (k)"T

12(k) ,

B(k) = "11(k) − "12(k)#−1
22 (k)#T

12(k) − #12(k)#−1
22 (k)"T

12(k) ,

C(k) = #11(k) − #12(k)#−1
22 (k)#T

12(k) . (‘ def des matrices A B C’)

One introduces W(x3) = (X′(x3), X(x3)). As above, the dependence in k and ω of W is omitted. The

second-order differential Eq. (‘ 2eme eq syst en X bis’) is transformed into the following first order

differential equation

−A(k) W′(x3) + B(k) W(x3) = 0 , (‘ syst val p 0’)
in which complex symmetric matrices A(k) and B(k) are such that

14
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A(k) =

[
−A(k) 0

0 C(k)

]
and B(k) =

[
B(k) C(k)
C(k) 0

]
. (‘ syst val p 02’)

In order to solve Eq. (‘ syst val p 0’) and since it can be proved that the complex matrix A(k)−1 B(k)

is diagonalisable for any k in !2, the eigenvalue problem A(k)−1 B(k) Φ(k) = Φ(k) Λ(k) associated

with this equation is introduced, in which Λ(k) is the diagonal matrix constituted of the eight complex

eigenvalues λ1, ..., λ8. The complex square matrix Φ(k) is constituted of the associated eigenvectors.

Therefore, the general solution of Eq. (‘ syst val p 0’) is written as
W(x3) = G(k, x3) W(0) , G(k, x3) = Φ(k)D(k, x3) Φ(k)−1 ,

[D(k, x3)]jk = δjk ex3 λj(k) , (‘ solution W 2 2’)

Taking x3 = H in Eq. (‘ solution W 2 2’), the vector (X′(H), X′(0)) can be expressed as a function

of the vector (X(H), X(0)) which is written as

[
X′(H)
X′(0)

]
= "H(k, ω)

[
X(H)
X(0)

]
, (‘ def MH’)

in which the construction of the complex matrix "H(k, ω) is given in Appendix B. It should be noted

that the construction of the matrix"H(k, ω) cannot be obtained by a direct algebraic calculation. This

matrix has to be constructed using a numerical calculation on an ill-conditioned numerical problem.

Consequently, an adapted algebraic calculation has to be developed in order to avoid the bad numerical

conditioning. This ill-conditioning is due to the four complex eigenvalues having positive real parts

while the four other complex eigenvalues with negative real parts do not induce numerical problems.

These numerical difficulties are induced by the fact that, for x3 in ]0, H[, four diagonal terms of the

matrix D(k, x3) are exponentionally increasing. In Appendix B, a well-conditioned formulation is

constructed and consists in treating separately the two groups of eigenvalues. Using the second line
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of Eq. (‘ eq MP’) with X′(0) and X′(H), and substituting Eq. (‘ def MH’) in the resulting equations

yields

[
Y(H)
Y(0)

]
= (!B(k, ω)"H(k, ω) + !C(k, ω))

[
X(H)
X(0)

]
, (‘ def MH 2’)

in which !B(k, ω) and !C(k, ω) are given by!B(k, ω) =

[
−!22(k, ω)−1 #12(k, ω)T 0

0 −!22(k, ω)−1 #12(k, ω)T

]
,!C(k, ω) =

[
−!22(k, ω)−1 !12(k, ω)T 0

0 −!22(k, ω)−1 !12(k, ω)T

]
. (‘ def CC et CB’)

The boundary conditions defined by Eq. (‘ cl pb aux lim Fourier’) can be rewritten as

X(0) = $1(k) uP1 and X(H) = $2(k) uP2 , (‘ X0XH’)
in which matrices $1(k) and $2(k) are defined by$1(k) =





1 0 i hP1
k1/2

0 1 i hP1
k2/2

0 0 1
0 0 1



 , $2(k) =





1 0 −i hP2
k1/2

0 1 −i hP2
k2/2

0 0 1
0 0 1



 . (‘ def L1 L2’)
Consequently, the vector (F2(k, ω), F1(k, ω)), inwhichF2(k, ω) andF1(k, ω) are defined byEq. (‘ eq forces’),
can be rewritten as

[
F2(k, ω)
F1(k, ω)

]
= %(k, ω)

[
uP2(k, ω)
uP1(k, ω)

]
, (‘ def AAP1 AAP2 0’)

where the matrix%(k, ω) is a (6×6) complex matrix which can easily be calculated [51]. Substituting

Eq. (‘ def AAP1 AAP2 0’) into Eq. (‘ eq plaque P’) allows the vector (uP2(k, ω), uP1(k, ω)) to be

calculated as a function of f(ω) by solving the linear matrix equation
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 (k, ω)

[
uP2(k, ω)
uP1(k, ω)

]
=

[
0

f(ω)

]
, (‘!eq plaques 3’)

in which  (k, ω) can easily be constructed. Knowing uP1(k, ω) and uP2(k, ω), one can deduce

wP1(k, ω) and wP2(k, ω) and consequently, ∆w(k, ω) which is equal to wP1(k, ω) − wP2(k, ω) can

be calculated by

∆w(k, ω) = h(k, ω) f(ω) , (‘!wP fct p’)
in which h(k, ω) = [ −1(k, ω)]66 − [ −1(k, ω)]36. Taking the inverse Fourier transform in k of

Eq. (‘!wP fct p’) yields
∆w(x̃, ω) = h(x̃, ω) f(ω) with h(x̃, ω) =

1

(2 π)2

∫ 2

e−i k.x̃ h(k, ω) dk . (‘!TF-1 Delta w 22’)

The equivalent acoustic impedance of the multilayer system being assumed isotropic in reference-

plane S, then z(x̃ − x̃′, ω) depends on ||x̃ − x̃′|| and consequently, the Fourier transform z(k, ω)

depends on ||k||. One then deduces that h(k, ω) depends only on k = ||k|| and is rewritten as h(k, ω).

Consequently, since the driving force is a point force applied to the origin, ∆w(x̃, ω) depends only on

r = ||x̃|| and is rewritten as ∆w(r, ω). Thus ω 7→ ∆w(r, ω) appears as the cross-frequency response

function relative to two points distinct of r. Using the classical formula of the Fourier transform in

polar coordinates yields

∆w(r, ω) =
1

2 π

∫ +∞

0

k J0(kr) h(k, ω) dk , (‘!def operateur h TF-1 polaire 2’)
in which J0(kr) is the zero order Bessel function. Equation (‘!def operateur h TF-1 polaire 2’) gives a
continuous expression of ∆w(r, ω) as a function of the distance r between the origin in the reference-

plane S and the point x̃ in the reference-plane S. In order to compare the present model with the
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experiments (see Part I of the paper [49]), the (25 × 25) impedance matrix corresponding to the 25

driving and receiving points has to be constructed. Let [∆W (ω)] be the (25× 25) symmetric complex

matrix defined by

[∆W (ω)]jk = ∆w(rjk, ω) , (‘ op discretise W’)

in which rjk = ||x̃j− x̃k||where x̃1, ..., x̃25 are the 25 driving points with a unite force and the receiving

points defined in Figure 2 of the part I of the paper. Consequently [∆W (ω)] can be viewed as the

matrix-valued frequency response function relative to these points. Let [Z(ω)] be the corresponding

(25 × 25) symmetric complex impedance matrix which is thus defined by

[Z(ω)] =
1

i ω
[∆W (ω)]−1 . (‘ op discretise Z’)

For each ω fixed, complex matrix [Z(ω)] is numerically calculated by using the analytical calculation

presented above and in Appendices A and B. For ω belonging to the frequency band of analysis,

impedance matrix [Z(ω)] has to be compared to experimental impedance matrix [Zexp(ω)] constructed

in Part I of the paper [49].

5. EXPERIMENTAL COMPARISONS AND VALIDATION

In this section, the analytical model is compared to the experiment presented in Part I of the paper. The

geometry and the material properties of the multilayer system are given in Appendix A of Part I of the

paper [49].

5.1. EXPERIMENTAL COMPARISONS AND VALIDATION FOR THE EQUIVALENT ACOUS-

TIC IMPEDANCE

The right-hand side of equation (‘ def operateur h TF-1 polaire 2’) is numerical calculated with a space
step ∆r = 6.28 × 10−3 m for r in [0, 6.3] m.
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5.1.1. Local acoustic impedance

The analytical model of the local equivalent acoustic impedance corresponds to the diagonal terms

of the impedance matrix defined by Eq. (‘ op discretise Z’). Figures 3 to 5 display the graphs of the
real part and the imaginary part of the local equivalent acoustic impedance at the points 8, 15 and 16,

defined in Figure 2 of Part I [49]. The solid lines are relative to the analytical model and the dashed

lines to the experiments. There is a good agreement between the analytical model and the experimental

results for these three points but also for all the 22 other points (see [51]), which are not presented

in this paper. Since the results for all the 25 points cannot be given in the present paper, and taking

into account that the graphs of all the real parts are similar and that the graphs of all the imaginary

parts are similar, a part of the results can be synthetised in giving the real part and the imaginary

part of the average local acoustic impedance defined as 1
25

∑25
j=1[Z(ω)]jj . Concerning this average

local impedance, Figures 6-a and -b compare the analytical results with the experiments for the real

part and for the imaginary part. On each figure, there is a good agreement between analytical result

and experiment. In each Figure (3 to 6), it can be seen that the real part (see Figures 3-a, 4-a, 5-a

and 6-a) and the imaginary part (see Figures 3-b, 4-b, 5-b and 6-b) of the impedance look like to the

schematic graph given in Figure 6 of Part I, that is to say, for all ω ≥ 0, the real part is positive with a

peak at 844 Hz, and the imaginary part has a vertical asymptote when ω goes to 0 and there is a zero

crossing for a frequency equal to 400 Hz associated with the peak of the real part. The peak and the

associated zero crossing seem to be due to a resonance phenomenum between the dilatational wave

which preferentially propagates in the fluid phase of the porous medium and the bending waves in

the two plates. In addition, Figure 6-a and -b compare the analytical results for an isotropic porous

medium (solid line) with the analytical results for a porous medium having a transverse isotropic solid

phase (dash-dot line) whose parameters have partially been measured [53]. One can observe that these

two analytical models are very similar. Consequently, in this paper, one only presents results for the

case of an isotropic porous medium. For the case of a transverse isotropic solid phase of the porous

medium, theory details and results can be found in [51]. The robustness of the analytical method

has been proved by performing a sensitivity analysis with respect to the parameters of the solid phase

(mass density, Young modulus, dissipation factor and Poisson coefficient) and of the coupling between
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the two phases (porosity, tortuosity, resistivity, viscous and thermal characteristic lengths). From this

sensitivity analysis, it can be concluded that the analytical model weakly depends on these parameters.

For instance, figures 7 and 8 show the results for the Poisson ratio ν varying in [0.25 , 0.46] and for

the resistivity σ varying in [2000 , 20000] N s m−4. Figures 7a and 8a display the real part of the

impedance, figures 7b and 8b display its imaginary part.

It should be noted that, although the averaged impedance does not seem affected by the resistivity,

others numerical simulations have been performed in [51]. For instance, the porous medium has been

modelled by the fluid equivalent theory. Such a model does not give good results with respect to

the experiments. In order to study the type of model for the porous medium, the parametric analysis

performed in [51] shows that the complete 3D model of the porous medium presented in this paper is

necessary to predict the experimental results with a good accuracy.

5.1.2. Off-diagonal terms of the acoustic impedance

The equivalent acoustic impedance tends to become local for frequencies greater than 300 Hz. Fig-

ures 9-a and -b display the equivalent acoustic impedance as a function of distance r between the

driving and the receiving points. For a frequency equal to 1400 Hz, the analytical results (circle

symbols) and the experimental results (cross symbols) are very close. This conclusion holds for the

the other frequencies (see [51]). The aspect of the real part (Figure 9-a) and of the imaginary part

(Figure 9-b) of the equivalent acoustic impedance as a function of the distance r has been explained in

Part I [49] (exponential decreasing, sinusoidal function, non zero phase for ω = 0 for the imaginary

part). For the other frequencies belonging to [300, 1600] Hz, the results are very similar. There is a

good agreement between the analytical results and the experiments.

5.2. EXPERIMENTAL COMPARISONS AND VALIDATION FOR THE CROSS-FREQUENCY

RESPONSE FUNCTION

The analytical model of the cross response function between 2 points distinct of r is the mapping

ω 7→ ∆w(r, ω). In this subsection, one compares the experiments with the analytical results for the

20



B. FAVERJON and C. SOIZE

function r 7→ ∆w(r, ω) at a fixed frequency equal to 800 Hz. It should be noted that the choice

of this frequency is arbitrary, but the quality of the comparisons is similar for any frequency on the

frequency band of analysis. Figures 10-a and -b display the graphs of the real and imaginary parts of

the function r 7→ ∆w(r, ω) at frequency 800 Hz. The comparisons between the experimental results

(cross symbols) and the analytical model (solid line) are good. In addition, in these 2 figures, the circle

symbols correspond to the average of the experimental values over the points having the same distance

r.

CONCLUSIONS

The multilayer system constituted of porous media are relatively difficult to model in the medium and

high frequency domain. The purpose of this paper has been to construct of an analytical expression of

the equivalent acoustic impedance for a multilayer system, constituted of a three dimensional porous

medium inserted between two thin plates, for the medium and high frequency ranges. For complex

structural acoustic systems, this type of results can be used to model a sounproofing scheme by a wall

acoustic impedance. The methodology proposed can be used to other similar multilayer systems. The

boundary value problem of the multilayer system constituted of two dimensional media (thin plates)

coupled with a three dimensional medium (porous medium) has been presented. The equations for the

general case of a homogeneous anisotropic viscoelastic porous mediumwith homogeneous orthotropic

viscoelastic plates have been presented. An analytical model of the equivalent acoustic impedance

has been constructed using a spectral method and its validation has been obtained by comparisons

with experiments. This construction is not self-evident and an adapted algebraic formulation has had

to be developed. In the medium and high frequency ranges, the comparisons between the analytical

model and the experiments are good enough either for the local impedance or for the cross impedance

between the driving and the receiving points. The good agreement of these results gives an experimental

validation, firstly, for the mechanical model, i.e., for the boundary value problem, and, secondly, for

the analytical method used to the equivalent acoustic impedance. In addition, it should be noted that,

similarly to the conclusions given in the Part I of the paper, the equivalent acoustic impedance tends to
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be local for frequencies greater than 300 Hz and, in this case, the modulus of this impedance is a quasi

exponential decreasing function with the distance.

ACKNOWLEDGMENTS

The authors would like to thank ONERA which supports this research.

REFERENCES

[1] P.M. Morse, K.U. Ingard, Theoretical Acoustics, Princeton University Press, New Jersey, 1968.

[2] J.D. Achenbach, Wave propagation in elastic solids, North-Holland, Amsterdam, 1973.
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APPENDIX A : EXPRESSION OF THE MATRICES OF THE MATRICIAL EQUATION

RELATIVE TO THE POROUS MEDIUM .

Substituting constitutive equations (‘ loi cpt fourier 1’) and (‘ loi cpt fourier 2’) of the porous medium
into dynamical equations (‘ eq sf Fourier 0’) yields Eq. (‘ eq MP’) in which matrices !11, "11(k),"12(k), #11(k), #12(k) and #22(k) are defined by!11 =





−BF /2 0 0 0
0 −BF /2 0 0
0 0 −(AF + BF ) −CF

0 0 −CF −EF



 , "12(k) =





0 0
0 0

i k1 CF i k2 CF

i k1 EF i k2 EF



 ,

"11(k) =





0 0 i k1 (AF + BF /2) i k1 CF

0 0 i k2 (AF + BF /2) i k2 CF

i k1 (AF + BF /2) i k2 (AF + BF /2) 0 0
i k1 CF i k2 CF 0 0



 ,
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



ρ̃11 0 0 0
0 ρ̃11 0 0
0 0 ρ̃11 ρ̃12

0 0 ρ̃12 ρ̃22



 + i ω b





1 0 0 0
0 1 0 0
0 0 1 −1
0 0 −1 1





+





(AF + BF ) k2
1 + BF k2

2/2 k1 k2 (AF + BF /2) 0 0
k1 k2 (AF + BF /2) (AF + BF ) k2

2 + BF k2
1/2 0 0

0 0 (k2
1 + k2

2) BF /2 0
0 0 0 0



 ,

 12(k) = −ω2 ρ̃12





1 0
0 1
0 0
0 0



 + i ω b





−1 0
0 −1
0 0
0 0



 + CF





k2
1 k1 k2

k1 k2 k2
2

0 0
0 0



 , 22(k) = −ω2 ρ̃22

[
1 0
0 1

]
+ i ω b

[
1 0
0 1

]
+ EF

[
k2
1 k1 k2

k1 k2 k2
2

]
.

APPENDIX B : EXPRESSION OF MATRIX !H(k, ω) RELATING VECTOR (X′(H), X′(0))

WITH VECTOR (X(H), X(0)).

For x3 ∈]0, H[, the matrixD(k, x3) has four diagonal terms which are exponentionally increasing and

which yields a bad numerical conditioning of the problem. The solution retained consists in splitting

D(k, x3) into two matrices "+(k, x3) corresponding to the eigenvalues with positive real parts and"−(k, x3) corresponding to the eigenvalues with negative real parts, such that

D(k, x3) =

["+(k, x3) 0
0 "−(k, x3)

]

with ["+(k, x3)]jk = δjk ex3 λ+

j
(k) , ["−(k, x3)]jk = δjk ex3 λ−

j
(k) .

Defining T(x3) = Φ(k)−1 W(x3), the first equation (‘#solution W 2 2’) in x3 = H can be rewritten as

T(H) = D(k, H) T(0). Splitting T(x3) = (T+(x3), T−(x3)) yields T−(H) = "−(k, H) T−(0)

and T+(0) = ("+(k, H))−1 T+(H). Introducing the matrix ["−(k, H)] such that ["−(k, H)] =

["+(k, H)]−1, ones then has ["−(k, H)]jk = δjk e−x3 λ+

j
(k)

for j and k in 1, ..., 4, thus, one obtains

T+(0) = "−(k, H) T+(H). ThematrixΦ(k, x3) can bewritten asΦ(k, x3) =

[
Φ++(k, x3) Φ+−(k, x3)
Φ−+(k, x3) Φ−−(k, x3)

]
.

Therefore, taking into account the definition of T(x3), one obtains
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X′(H) = Φ++(k, H) T+(H) + Φ+−(k, H) T−(H) ,

X′(0) = Φ++(k, 0) T+(0) + Φ+−(k, 0) T−(0) ,

X(H) = Φ−+(k, H) T+(H) + Φ−−(k, H) T−(H) ,

X(0) = Φ−+(k, 0) T+(0) + Φ−−(k, 0) T−(0) .

Solving these four matrix equations yields a linear mapping between the vector (X′(H), X′(0)) and

the vector (X(H), X(0)) such as

[
X′(H)
X′(0)

]
=  H(k, ω)

[
X(H)
X(0)

]
in which  H(k, ω) =

[!HH "−1
HH !H0 − !HH "−1

HH "H0!0H "−1
HH !00 − !0H "−1

HH "H0

]
,

and where!HH(k, 0, H) = Φ++(k, H) − Φ+−(k, H)#−(k, H) Φ−−(k, 0)−1 Φ−+(k, 0)#−(k, H) ,"H0(k, 0, H) = Φ−−(k, H)#−(k, H) Φ−−(k, 0)−1 ,"HH(k, 0, H) = Φ−+(k, H) − Φ−−(k, H)#−(k, H) Φ−−(k, 0)−1 Φ−+(k, 0)#−(k, H) ,!H0(k, 0, H) = Φ+−(k, H)#−(k, H) Φ−−(k, 0)−1 ,!0H(k, 0, H) = Φ++(k, 0)#−(k, H) − Φ+−(k, 0) Φ−−(k, 0)−1 Φ−+(k, 0)#−(k, H) ,!00(k, 0) = Φ+−(k, 0) Φ−−(k, 0)−1 .

It should be noted that "HH(k, 0, H) is invertible.
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Fig. 3. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 8.

Analytical model (solid line), experimental results (dashed line).
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Fig. 4. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 15.

Key as for Figure 3.
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Fig. 5. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 16.

Key as for Figure 3.
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Fig. 6. (a) Real and (b) imaginary parts of the average local equivalent acoustic impedance on all

points. Analytical model for isotropic solid phase (solid line), experimental results (dashed line),

analytical model for transverse isotropic phase (dash-dot line).
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Fig. 7. (a) Real and (b) imaginary parts of the average local equivalent acoustic impedance over all the

points for the different values of the Poisson coefficient ν (from 0.25 to 0.46). Experimental results

for ZR (dashed line), predicted values of acoustic impedance for varying Poisson coefficient ν : 0.25

(dotted line with asterisk symbols), 0.28 (dashed line with square symbols), 0.31 (dotted line), 0.34

(dash-dot line), 0.37 (solid line), 0.4 (solid line with cross symbols), 0.43 (thick dotted line), 0.46

(dash-dot line with circle symbols).
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Fig. 8. (a) Real and (b) imaginary parts of the average local equivalent acoustic impedance over all

the points for the different values of the resistivity σ (N s m−4). Experimental results (dashed line),

predicted results : 2000 (solid line), 4000 (solid line with cross symbols), 6000 (dotted line), 8000

(dash-dot line), 10000 (dashed line with circle symbols), 12000 (dash-dot line with circle symbols),

14000 (dotted line with circle symbols), 16000 (dashed line with asterisk symbols), 18000 (dotted line

with square symbols), 20000 (thick dotted line).
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Fig. 9. (a) Real and (b) imaginary parts of the off-diagonal terms of the equivalent acoustic impedance

matrix as a function of the distance r at 1396.6086 Hz. Analytical model (circle symbols), experimental

results (cross symbols).
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Fig. 10. (a) Real and (b) imaginary parts of the function r 7→ ∆w(r, ω) at the frequency 801.881 Hz

for r in [0,0.36] m. Analytical results (solid line), experimental results (cross symbols). Average

experimental values over the points having the same distance r (circle symbols).
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