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Soundproofing schemes usually used for acoustic insulation are constituted of a porous medium layer or several ones inserted between plates. Many researches have already devoted to the vibro-acoustics of simple structures such as beams, plates, circular cylindrical shells, coupled with internal or external acoustic fluids, by analytical methods (see for instance [START_REF] Morse | Theoretical Acoustics[END_REF][START_REF] Achenbach | Wave propagation in elastic solids[END_REF][START_REF] Bruneau | Introduction aux théories de l'acoustique[END_REF][START_REF] Fahy | Sound and Structural Vibration[END_REF][START_REF] Lesueur | Rayonnement acoustique des structures-Vibroacoustique-Intéractions fluidestructure[END_REF][START_REF] Blaise | On sound transmission into an orthotropic infinite shell : comparison with Koval's results and understanding of phenomena[END_REF][START_REF] Junger | Sound, Structures, and Their Interaction[END_REF][START_REF] Pierce | Acoustics -An Introduction to Its Physical Principles and Applications[END_REF]) and to the vibro-acoustics of general structures by numerical methods (see for instance [START_REF] Lesueur | Rayonnement acoustique des structures-Vibroacoustique-Intéractions fluidestructure[END_REF][START_REF] Ohayon | Soize Structural Acoustics and Vibration[END_REF]). Concerning the vibro-acoustics of multilayer systems without porous medium, a large number of works were published (see for instance [START_REF] Achenbach | Wave propagation in elastic solids[END_REF][START_REF] Lesueur | Rayonnement acoustique des structures-Vibroacoustique-Intéractions fluidestructure[END_REF][START_REF] Guyader | Acoustic transmission through orthotropic multilayered plates, Part I. Plate vibrations modes[END_REF][START_REF] Maidanik | Designing a negligible specular reflection coefficient for a panel with a compliant layer[END_REF][START_REF] Blaise | Acoustic transmission through a 2D orthotropic multilayered infinite cylindrical shell[END_REF][START_REF] Lesueur | Vibroacoustic response of composite multilayered plate coupled to a rectangular cavity and excited by white noise and a turbulent boundary layer[END_REF][START_REF] Cushieri | Influence of circumferential partial coating on the acoustic radiation from a fluid-loaded shell[END_REF][START_REF] Hwang | Acoustic Radiation by Point-or Line-Excited Laminated Plates[END_REF][START_REF] Maidanik | A boundary that sustains a negligible specular reflection coefficient over a wide frequency band[END_REF]).

The difficulties to model multilayer systems are due to the problems induced by the acoustic behaviour of porous media and by the coupling between the layers constituting the system. The porous medium is a complex material constituted of two phases : one fluid and one solid. The dissipation inside a porous medium is induced by viscous effects (friction of the fluid phase to the solid phase on the pore walls), by thermal effects (absorption of the remaining heat from the fluid phase by the solid phase) and by structural damping related to the viscoelasticity of the solid phase. A porous medium can be modelled by an equivalent fluid model [START_REF] Delany | Acoustical properties of fibrous materials[END_REF][START_REF] Johnson | Theory of dynamic permeability and tortuosity in fluidsaturated porous media[END_REF][START_REF] Champoux | Dynamic tortuosity and bulk modulus in air-saturated porous media[END_REF] if the assumption of a motionless solid phase can be justified. If the fluid phase is strongly coupled with the solid phase or, if the porous medium is coupled with a vibrating structure, one needs to take into account the motion of the solid phase [START_REF] Morse | Theoretical Acoustics[END_REF][START_REF] Zwikker | Sound Absorbing Materials[END_REF][START_REF] Bourbie | Acoustics of porous media[END_REF][START_REF] Coussy | Mécanique des milieux poreux[END_REF][START_REF] Biot | Acoustics, Elasticity and Thermodynamics of Porous Media : Twenty one papers by[END_REF][START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF][START_REF] Semeniuk | Revised Macroscopic Model of Sound Propagation Through a Fibrous Thermal Insulation[END_REF][START_REF] Semeniuk | Final Equations of Motion of a Fibrous Porous Material[END_REF][START_REF] Gorog | Mixed displacement-pressure formulation for acoustic anisotropic open porous media[END_REF][START_REF] Göransson | A 3-D, symmetric, finite element formulation of the Biot equations with applications to acoustic wave propagation through an elastic porous medium[END_REF][START_REF] Atalla | Enhanced weak integral formulation for the mixed (u,p) poroelastic equations[END_REF]. The coupling between the different layers of a multilayer system is obtained by the construction of the interface conditions between the layers (see for instance [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF][START_REF] Th | On boundary conditions for fluid flow in porous media[END_REF][START_REF] Th | Equations and Interface Conditions for Acoustic Phenomena in Porous Media[END_REF][START_REF] Gurevich | Interface conditions for Biot's equations of poroelasticity[END_REF]).

Acoustic transmission through porous media or multilayer systems included porous media have been recently studied using finite element numerical method. In this context, the entire system includes porous media which are discretised by finite elements [START_REF] Kang | Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements[END_REF][START_REF] Kang | A finite element model for sound transmission through foam-lined double panel structures[END_REF][START_REF] Panneton | Modélisation numérique tridimensionnelle par éléments finis des milieux poroélastiques[END_REF][START_REF] Panneton | Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials[END_REF][START_REF] Panneton | An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics[END_REF][START_REF] Atalla | A mixed displacement-pressure formulation for poroelastic materials[END_REF][START_REF] Dauchez | Etude vibroacoustique des matériaux poreux par éléments finis[END_REF][START_REF] Hamdi | Novel mixed finite element formulation for the analysis of sound absorption by porous materials[END_REF][START_REF] Sgard | A numerical model for the low-frequency diffuse field sound transmission loss of double-wall sound barriers with elastic porous linings[END_REF]. These methods are very efficient in the low frequency range, have to be adapted to be efficient in the medium frequency range and can not be used in the high frequencies in the state of the art. For simple structures, analytical methods can be used for the medium and high frequency ranges (see for instance [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF][START_REF] Allard | Acoustical properties of partially reticulated foams with high and medium flow resistance[END_REF][START_REF] Allard | Modelization of layered sound absorbing materials with transfert matrices[END_REF][START_REF] Bolton | Oblique Incidence Sound Transmission through Multi-Panel Structures Lined with Elastic Porous Materials[END_REF][START_REF] Lauriks | Modelization at oblique incidence of layered porous materials with impervious screens[END_REF][START_REF] Lauriks | The acoustic transmission through layered systems[END_REF][START_REF] Bolton | Sound transmission through multi-panel structures lined with elastic porous materials[END_REF][START_REF] Song | A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials[END_REF]).

In this paper, for the medium and high frequency ranges, one presents the modelling of a multilayer system with porous medium by an analytical approach in order to construct an equivalent acoustic impedance of this multilayer system. Such an acoustic impedance model can be used for the prediction of vibro-acoustic responses of complex systems, allowing such a soundproofing scheme to be modelled.

The multilayer system under consideration is constituted of a three dimensional porous medium made of an open polyurethan foam inserted between two thin plates. This system is described in part I [START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF] of the paper.

Concerning the three dimensional porous medium, a three dimensional formulation is used and is based on the Biot theory which introduces the displacement fields associated with the solid and the fluid phases. The motion of the solid phase can not be neglected because the porous medium is inserted between two vibrating plates. Equations are written in the general case of a homogeneous anisotropic porous medium whose solid phase is viscoelastic. In order to solve the equations, the two inplane components of the fluid phase displacement are eliminated and the third one component relative to the thickness direction is preserved. The boundary value problem of the multilayer system is constructed by using the local equations of plates, for bending and membrane deformations, coupled with the three dimensional porous medium. Since the multilayer system corresponds to one three-dimensional medium coupled with two two-dimensional media, the interface conditions between the layers have to be constructed. Such a method was presented in [START_REF] Arango | Some boundary value problems and models for coupled elastic bodies[END_REF] for the case of a plate in bending mode coupled with a three-dimensional elastic media. In this paper, an extension to the case of the above multilayer system is presented [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]. For the multilayer system under consideration, the construction of the acoustic impedance operator and its local approximation (introduced in part I [START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF]) is carried out using an analytical method for which the finite reference-plane of the mechanical system is replaced by an infinite reference-plane. This kind of approximation is a priori usuable for the medium and high frequency ranges. This analytical method uses the spatial coordinate corresponding to the thickness direction and uses a two-dimensional spatial Fourier transform for the two directions corresponding to the reference-plane which is infinite. For a given frequency and for each wave vector associated with the reference-plane directions, a system of differential equations with respect to the thickness direction with appropriate boundary conditions has to be solved. This system is constituted of twelve coupled equations : three for each plate (two for the membrane deformation and one for the bending deformation), six for the porous medium (three for the solid phase and three for the fluid phase). This system of equations is partially degenerated.

Consequently, the elimination of the two inplane phase fluide displacement can be performed and, one then deduced ten coupled equations. This system of equations has a bad numerical conditioning induced by the presence of terms which exponentionally increase in the thickness direction of the porous medium. An adapted method has specifically been developed in order to solve this kind of such a system of differential equations.

Concerning the validation of this analytical method by using the experimental results introduced in part I [START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF], the mechanical properties corresponding to the experiment are used. Consequently, one has to consider a homogeneous isotropic porous medium with a viscoelastic solid phase and two homogeneous viscoelastic isotropic plates. The analytical method is then developed in this context.

The parameters of the porous medium introduced in the Biot theory applied in the context of acoustic problems [START_REF] Coussy | Mécanique des milieux poreux[END_REF][START_REF] Biot | Acoustics, Elasticity and Thermodynamics of Porous Media : Twenty one papers by[END_REF][START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF] were measured ( [START_REF] Dauchez | Characterization of a poroelastic material[END_REF][START_REF] Guillaumie | Substituting constitutive equations ('Øloi cpt fourier 1') and ('Øloi cpt fourier 2') of the porous medium into dynamical equations ('Øeq sf Fourier 0') yields[END_REF]). The complete set of the anisotropic porous medium parameters has not been measured. Consequently, the measured parameters only allow the isotropic and transverse isotropic case to be described. The main objective of this paper is the experimental validation of the analytical model for a porous medium modelled by a homogeneous isotropic porous medium with a viscoelastic solid phase. The transverse isotropic viscoelastic solid phase is studied in [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]. Nevertheless, a comparison between the isotropic and transverse isotropic cases is presented for the local acoustic impedance.

In Section 2, the boundary value problem is given considering the general case of a homogeneous anisotropic viscoelastic porous medium coupled with two homogeneous orthotropic viscoelastic plates in membrane and bending deformations. In Section 3, using the two-dimensional inplane space Fourier transform, the boundary value problem is deduced. Section 4 deals with the construction of the equivalent acoustic impedance. The experimental validation is presented in Section 5.

EXPRESSION OF THE BOUNDARY VALUE PROBLEM

The Love-Kirchhoff model is used for the bending motions of the two plates called P 1 and P 2 and the membrane motions are considered. Let Ω be the three-dimensional bounded region occupied by the porous material. The interfaces between the porous medium and the plates P 1 and P 2 are denoted by Σ 1 and Σ 2 (see Figure 1). A pressure field p is applied to Σ 0 . Let S 1 and S 2 be the mid-planes of the plates P 1 and P 2 . The coordinates (x 1 , x 2 , x 3 ) of a point belonging to the porous medium are given in the cartesian system whose origin belongs to the reference-plane S of the multilayer system which is chosen as the coupling interface Σ 1 . Consequently, surface S coincides with surface Σ 1 . The x 3 coordinate of the coupling interface Σ 1 (or Σ 2 ) is 0 (or H) (in which H is the thickness of the porous medium). In this paper, if T is any quantity depending on the coordinates x 1 , x 2 and x 3 , T ,k denotes the partial derivative ∂T /∂x k and T ′ = ∂T /∂x 3 , T ′′ = ∂ 2 T /∂x 2 3 . The Kronecker symbol denoted by δ αβ is such that δ αβ = 1 for α = β, δ αβ = 0 for α = β.

MEMBRANE AND BENDING VIBRATIONS EQUATIONS FOR PLATES P 1 AND P 2

Using thin plate classical hypotheses for plate P ℓ , ℓ = 1, 2 and since the Love-Kirchhoff model is used for the bending motions of the two plates and the membrane motions are added, the displacement field of plate P ℓ , ℓ = 1, 2, is defined by

(v P ℓ 1 (x 1 , x 2 ), v P ℓ 2 (x 1 , x 2 ), w P ℓ (x 1 , x 2 )) where v P ℓ 1 (x 1 , x 2 )
and v P ℓ 2 (x 1 , x 2 ) are the inplane displacements (membrane displacements) of plate P ℓ and w P ℓ (x 

σ 1s ij (x 1 , x 2 ) = σ s ij (x 1 , x 2 , 0) , σ 1f ij (x 1 , x 2 ) = σ f ij (x 1 , x 2 , 0) . ('Ødef hat')
The dynamical equations of plate P 2 for bending and membrane motions are given by

-ω 2 ρ P 2 h P 2 v P 2 α -N P 2 αβ,β = -σ 2s α3 on S 2 , ('Øeq7 ST') -ω 2 ρ P 2 h P 2 w P 2 -M P 2 αβ,αβ = -σ 2s 33 -σ 2f 33 + h P 2 σ 2s α3,α /2 on S 2 , ('Øeq8 ST') in which σ 2s ij (x 1 , x 2 ) = σ s ij (x 1 , x 2 , H) , σ 2f ij (x 1 , x 2 ) = σ f ij (x 1 , x 2 , H) , ('Ødef hat hat')
The right-hand side of Eqs. ('Øeq1 ST'), ('Øeq2 ST'), ('Øeq7 ST') and ('Øeq8 ST') correspond to the coupling effects of the three dimensional porous medium on the plates. For orthotropic plate P ℓ with ℓ = 1, 2, the components of the bending moment tensor M P ℓ αβ and the components of the inplane force tensor N P ℓ αβ are written as

M P ℓ αβ = -(1 + i ω a P ℓ 1 (ω)) D f P ℓ ν P ℓ w P ℓ ,γγ δ αβ + (1 -ν P ℓ ) w P ℓ ,αβ , ('ØM complexeb') N P ℓ αβ = (1 + i ω a P ℓ 1 (ω)) D m P ℓ ν P ℓ v P ℓ γ,γ δ αβ + 1 2 (1 -ν P ℓ ) (v P ℓ α,β + v P ℓ β,α ) , ('ØN complexeb') in which D f P ℓ = E P ℓ h 3 P ℓ /[12 (1 -ν P ℓ 2 )], D m P ℓ = E P ℓ h P ℓ /[1 -ν P ℓ 2 ].

THREE DIMENSIONAL VIBRATIONS OF THE POROUS MEDIUM

Let

u s = (u s 1 , u s 2 , u s 3 ) and u f = (u f 1 , u f 2 , u f
3 ) be the displacement field of the solid phase and the fluid phase respectively for the porous medium. The dynamical equations of the porous medium for the solid part and the fluid part are the Biot equations [START_REF] Coussy | Mécanique des milieux poreux[END_REF][START_REF] Biot | Acoustics, Elasticity and Thermodynamics of Porous Media : Twenty one papers by[END_REF][START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF] and are written as

-ω 2 ρ11 u s i -ω 2 ρ12 u f i -i ω Φ 2 [ -1 ] ij (u f j -u s j ) -σs ij,j = 0 in Ω , ('Øeq3 ST') -ω 2 ρ22 u f i -ω 2 ρ12 u s i + i ω Φ 2 [ -1 ] ij (u f j -u s j ) -σf ij,j = 0 in Ω , ('Øeq4 ST')
in which is the permeability tensor relative to viscous effects and Φ is the porosity. The coefficients ρ11 , ρ22 and ρ12 are the density of the solid phase, the density of the fluid phase and the coupling density between the solid and the fluid phases, respectively. For k and l equal to 1 or 2, ρkl is defined by [START_REF] Panneton | Modélisation numérique tridimensionnelle par éléments finis des milieux poroélastiques[END_REF] ρkl (ω) = ρ kl + ∆ρ kl (ω) , ('Ødef des rho pr PL kl')

in which an expression of ∆ρ kl (ω) is given in Section 3 and where

ρ 11 = ρ 1 + Φ ρ f (α -1) , ρ 22 = Φ ρ f α , ρ 12 = -Φ ρ f (α -1) , ('Ødef des rho pr PL10')
with ρ 1 = (1 -Φ) ρ s and where α is the tortuosity, ρ f the fluid mass density and ρ s the solid material mass density.

The boundary conditions between the porous medium and plate P ℓ are given by writting the continuity of the normal displacement for the fluid phase and the continuity of the displacement field for the solid phase, that is to say

u s α = v P 1 α - h P 1 2 w P 1 ,α , u s 3 = w P 1 , u f 3 = w P 1 on Σ 1 , u s α = v P 2 α + h P 2 2 w P 2 ,α , u s 3 = w P 2 , u f 3 = w P 2 on Σ 2 . ('Øcl pb aux lim')
Since the porous medium is assumed to be viscoelastic and anisotropic, the constitutive equations are given by

σ s ij (x, ω) = (L s ijkh (ω) + i ω D ijkh (ω)) ǫ s kh + L sf ijkh (ω) ǫ f kh , ('Øloi de cpt visco sigmas part1 chp3 0') σ f ij (x, ω) = L f ijkh (ω) ǫ f kh + L f s ijkh (ω) ǫ s kh , ('Øloi de cpt visco sigmaf part2 chp3 0') L s ijkh (ω) = A ijkh (ω) + M (ω) [B ij B kh -Φ(B ij δ kh + δ ij B kh ) + Φ 2 δ ij δ kh ] , L f ijkh (ω) = M (ω) Φ 2 δ ij δ kh , L sf ijkh (ω) = L f s ijkh (ω) = M (ω) Φ (B ij δ kh -Φ δ ij δ kh )
, ('ØLijkhs visco iso in which ǫ s kh and ǫ f kh are the strain tensors relative to the solid phase and the fluid phase, respectively. The components A ijkh (ω) and D ijkh (ω) are relative to the elastic stress tensor and to the damping stress tensor, respectively. The two tensors have the usual symmetric properties and are positive definite [START_REF] Ohayon | Soize Structural Acoustics and Vibration[END_REF]. If one considers a hysteretic damping, the components D ijkh (ω) can be written as

D ijkh (ω) = a 1 (ω) A ijkh (ω) in which a 1 (ω)
is a real positive constant which depends on ω. The B ij components are relative to the coupling of the solid phase with the fluid phase. The thermal effects are expressed by M (ω) which is defined by M (ω) = K e (ω)/Φ in which K e (ω) is the frequency dependent equivalent complex bulk modulus of air [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF] and is given by

K e (ω) = K a γ - γ -1 1 + 8 η f / i Λ ′2 P r ω ρ f G ′ (ω) , ('ØKe')
where K a is the bulk modulus of the fluid (in case of air, K a = γ p f where p f is the pressure), η f , the fluid viscosity, P r , the Prandtl number, Λ ′ , the thermal characteristic length [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF][START_REF] Dauchez | Etude vibroacoustique des matériaux poreux par éléments finis[END_REF] which has to be identified experimentally, G ′ (ω), the complex factor defined by [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF] G ′ (ω) = 1 + i ω/ω T t , ('ØG' pores cyl')

with ω T t = 16 η f /(P r Λ ′2 ρ f ) > 0 is real.

BOUNDARY VALUE PROBLEM IN THE FOURIER SPACE

As explained in Section 1, and in order to compare this analytical prediction with the experiments, the porous medium is considered as a homogeneous viscoelastic isotropic medium and the plates are considered as homogeneous viscoelastic isotropic media. This model can easily be extended to the case of an anisotropic porous medium whose equations are given in Section 2. The method proposed for the construction of the equivalent acoustic impedance is based on the spectral method relative to the infinite plane (x 1 Ox 2 ) containing the reference-plane S of the multilayer system. Since the thickness H is finite, the coordinate x 3 , corresponding to the thickness direction, is preserved (see Figure 2). In order to simplify the notation, a function and its Fourier transform are denoted by the same symbol and differ by their arguments. Let x = (x 1 , x 2 ) be the point in reference-plane S of the multilayer system, k = (k 1 , k 2 ), dx = dx 1 dx 2 and dk = dk 1 dk 2 . The Fourier transform g(k, ω) of a function

x → g(x, ω) with respect to x is such that

g(k, ω) = Ê 2 e i k.x g(x, ω) dx , g(x, ω) = 1 (2 π) 2 Ê 2 e -i k.x g( k, ω) dk , ('Ødef TF spatiale') with k.x = k 1 x 1 + k 2 x 2 .
The derivative ∂w/∂x 3 is denoted by w ′ . The Fourier transforms with respect to (x 1 , x 2 ) of the dynamical equations for the solid and the fluid phases of the porous medium are

-ω 2 ρ11 u s i -ω 2 ρ12 u f i -i ω b (u f i -u s i ) + i k 1 σ s i1 + i k 2 σ s i2 -σ s i3,3 = 0 , -ω 2 ρ22 u f i -ω 2 ρ12 u s i + i ω b (u f i -u s i ) -σ f i3,3 = 0 , ('Øeq sf Fourier 0') in which b(ω) = Φ 2 /K(ω)
where K(ω) is the permeability for the isotropic case. The coefficient b(ω)

is relative to the viscous effects and is written as [START_REF] Coussy | Mécanique des milieux poreux[END_REF][START_REF] Biot | Acoustics, Elasticity and Thermodynamics of Porous Media : Twenty one papers by[END_REF][START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF][START_REF] Panneton | Modélisation numérique tridimensionnelle par éléments finis des milieux poroélastiques[END_REF]]

b(ω) = Φ 2 σ G R (ω) , ('Ødef k panneton') in which G R (ω) > 0 with G R (-ω) = G R (ω) is the real part of G(ω) = 1 + i P ω/2 which
is the viscous corrective factor, and where P = 8 α k 0 /(Φ Λ 2 ) with k 0 = η f /σ, the viscous static permeability, and where σ > 0 is the resistivity which has to be identified experimentally. The non dimensional factor ω is defined by ω = ω α ρ f k 0 /(Φ η f ) and the viscous characteristic length Λ has to be identified experimentally. The added mass ∆ρ kl (ω), introduced in Eq. ('Ødef des rho pr PL kl'), due to viscous effects, is defined by Panneton [START_REF] Panneton | Modélisation numérique tridimensionnelle par éléments finis des milieux poroélastiques[END_REF] ∆ρ

kl (ω) = (-1) k+l Φ 2 σ G I (ω)/ω , ('ØDelta tilde rhokl')
where G I (ω) is the imaginary part of G(ω) and which has to verify these following algebraic properties [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF] G

I (ω) > 0 for ω > 0 , G I (-ω) = -G I (ω) , lim ω→0 |G I (ω)/ω| = C < ∞ , ('Øptes GI')
in which C is a finite constant. An expression of G I (ω) is given by [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF] G

I (ω) = 1 √ 2 ω/ω T v 1 + 1 + (ω/ω tv ) 2 , ('ØGI') in which ω T v = σ 2 Λ 2 Φ 2 /(4 α 2 η s ρ f )
where the structural dissipation factor η s has to be identified experimentally. For the solid phase of the porous medium, the Fourier transforms with respect to (x 1 , x 2 ) of the constitutive equations are

σ s 11 (k, x 3 , ω) = A F (ω) (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) + B F (ω) (-i k 1 ) u s 1 +C F (ω) (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) , σ s 22 (k, x 3 , ω) = A F (ω) (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) + B F (ω) (-i k 2 ) u s 2 +C F (ω) (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) , σ s 33 (k, x 3 , ω) = A F (ω) (-i k 1 u s 1 -i k 2 u s 2 + u s 3,3 ) + B F (ω) u s 3,3 +C F (ω) (-i k 1 u f 1 -i k 2 u f 2 + u f 3,3 ) , σ s 12 (k, x 3 , ω) = -i B F (ω) (k 2 u s 1 + k 1 u s 2 )/2 , σ s 13 (k, x 3 , ω) = B F (ω) (u s 1,3 -i k 1 u s 3 )/2 , σ s 23 (k, x 3 , ω) = B F (ω) (u s 2,3 -i k 2 u s 3 )/2 , ('Øloi cpt fourier 1') in which A F (ω), B F (ω) and C F (ω) are defined by A F (ω) = (1 +i ω a 1 (ω)) ν E/[(1 +ν) (1 -2 ν)] + M (ω) (B -Φ) 2 , B F (ω) = (1 + i ω a 1 (ω)) E/(1 + ν), C F (ω) = Φ M (ω) (B -Φ) with E, the
Young modulus and ν the Poisson coefficient of the solid phase. In acoustic problems, the coupling factor B is such that [START_REF] Coussy | Mécanique des milieux poreux[END_REF][START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF] B = 1. For the fluid phase, the Fourier transforms with respect to (x 1 , x 2 )

of the constitutive equations are

σ f ii (k, x 3 , ω) = E F (ω) (-i k 1 u f 1 -i k 2 u f 2 +u f 3,3 )+C F (ω) (-i k 1 u s 1 -i k 2 u s 2 +u s 3,3 ) , ('Øloi cpt fourier 2')
for i=1, 2, 3, and where E F (ω) = Φ 2 M (ω). The plate P 1 is subjected to a point force applied to the origine of plate P 1 in the direction x 3 with the intensity f (ω). Therefore, the pressure field p introduced in Eq. ('Øeq2 ST') is such that p(x, ω) = f (ω) δ 0 (x) in which δ 0 (x) is the Dirac function at point 0. For plates P 1 and P 2 , the Fourier transforms with respect to (x 1 , x 2 ) of the dynamical equations are

-ω 2 ρ P 1 h P 1 u P 1 + (1 + i ω a P 1 1 (ω)) Ã 1 (k) u P 1 = F 1 (k, ω) + f(ω) , -ω 2 ρ P 2 h P 2 u P 2 + (1 + i ω a P 2 1 (ω)) Ã 2 (k) u P 2 = F 2 (k, ω) , ('Øeq plaque P') in which u P 1 (k, ω) = (v P 1 1 (k, ω), v P 1 2 (k, ω), w P 1 (k, ω)) and u P 2 (k, ω) = (v P 2 1 (k, ω), v P 2 2 (k, ω), w P 2 (k, ω)), f(ω) is such that f(ω) = (0, 0, f (ω))
, for ℓ=1 or 2, Ã ℓ (k) is the stiffness matrix for plate P ℓ and is such that

à ℓ (k) =   a ℓ 11 (k) a ℓ 12 (k) 0 a ℓ 12 (k) a ℓ 22 (k) 0 0 0 a ℓ 33 (k)   , ('Øeq raideur')
in which

a ℓ 11 (k) = D m P ℓ [(1 + ν P ℓ )k 2 1 + (1 -ν P ℓ )(k 2 1 + k 2 2 )]/2 , a ℓ 12 (k) = D m P ℓ (1 + ν P ℓ )k 1 k 2 /2 , a ℓ 22 (k) = D m P ℓ [(1 + ν P ℓ )k 2 2 + (1 -ν P ℓ )(k 2 1 + k 2 2 )]/2 , a ℓ 33 (k) = D f P ℓ (k 2 1 + k 2 2 ) 2 .('Øeq raideur 2')
The vectors F 1 (k, ω) and F 2 (k, ω) correspond to the forces induced by the porous medium on the plates P 1 and P 2 and are given by

F 1 (k, ω) =   σ 1s 13 σ 1s 23 σ 1s 33 + σ1f 33 -i h P 1 (k 1 σ 1s 13 + k 2 σ 1s 23 )/2   , F 2 (k, ω) =   -σ 2s 13 -σ 2s 23 -σ 2s 33 -σ 2f 33 -i h P 2 (k 1 σ 2s 13 + k 2 σ 2s 23 )/2   . ('Øeq forces')
Finally, the boundary value problem in x 3 is completely defined in adding the Fourier transform with respect to (x 1 , x 2 ) of the boundary conditions defined by equation Eq. ('Øcl pb aux lim'), i.e.

u s α = v P 1 α + i h P 1 k α w P 1 /2 , u s 3 = w P 1 , u f 3 = w P 1 , on Σ 1 , α = 1, 2 , u s α = v P 2 α -i h P 2 k α w P 2 /2 , u s 3 = w P 2 , u f 3 = w P 2 , on Σ 2 .
('Øcl pb aux lim Fourier')

SOLVING THE BOUNDARY VALUE PROBLEM AND CALCULATION OF THE EQUIVALENT ACOUSTIC IMPEDANCE

For ω, k 1 and k 2 fixed, the boundary value problem in x 3 , constructed in Section 3, is constituted of 12 coupled differential equations in x 3 whose coefficients depend on ω, k 1 and k 2 , and on boundary conditions. The acoustic impedance equivalent to the multilayer system being assumed homogeneous in plane x = (x 1 , x 2 ), the pressure field p applied to plate P 1 is related to the normal velocity jump ∆v(x ′ , ω) = v P 1 (x ′ , ω) -v P 2 (x ′ , ω), with v P 1 (x ′ , ω) = i ω w P 1 (x ′ , ω) and v P 2 (x ′ , ω) = i ω w P 2 (x ′ , ω), and is given by the following equation (see Part I of the paper)

p(x, ω) = x′ ∈S z(x -x′ , ω) ∆v(x ′ , ω) dS x′ , x ∈ S , ('Ødef Z TF ms 1')
where

dS x′ = dx ′ 1 dx ′ 2 .
The Fourier transform with respect to x of Eq. ('Ødef Z TF ms 1') is written as

p(k, ω) = i ω z(k, ω) ∆w(k, ω) , ('Ørelation imped') in which ∆w(k, ω) = w P 1 (k, ω) -w P 2 (k, ω) is the Fourier transform of ∆w(x, ω) = w P 1 (x, ω) - w P 2 (x, ω
). An equation allowing the calculation of p(k, ω) as a function of ∆w(k, ω) has to be constructed. Consequently, the unknowns u f and u s have to be eliminated from the system of

A(k) = -A(k) 0 0 C(k) and B(k) = B(k) C(k) C(k) 0 . ('Øsyst val p 02')
In order to solve Eq. ('Øsyst val p 0') and since it can be proved that the complex matrix A(k) -1 B(k)

is diagonalisable for any k in Ê 2 , the eigenvalue problem A(k) -1 B(k) Φ(k) = Φ(k) Λ(k) associated
with this equation is introduced, in which Λ(k) is the diagonal matrix constituted of the eight complex eigenvalues λ 1 , ..., λ 8 . The complex square matrix Φ(k) is constituted of the associated eigenvectors.

Therefore, the general solution of Eq. ('Øsyst val p 0') is written as

W(x 3 ) = G(k, x 3 ) W(0) , G(k, x 3 ) = Φ(k) D(k, x 3 ) Φ(k) -1 , [D(k, x 3 )] jk = δ jk e x 3 λ j (k) , ('Øsolution W 2 2')
Taking x 3 = H in Eq. ('Øsolution W 2 2'), the vector (X ′ (H), X ′ (0)) can be expressed as a function of the vector (X(H), X(0)) which is written as

X ′ (H) X ′ (0) = Å H (k, ω) X(H) X(0) , ('Ødef MH')
in which the construction of the complex matrix Å H (k, ω) is given in Appendix B. It should be noted that the construction of the matrix Å H (k, ω) cannot be obtained by a direct algebraic calculation. This matrix has to be constructed using a numerical calculation on an ill-conditioned numerical problem.

Consequently, an adapted algebraic calculation has to be developed in order to avoid the bad numerical conditioning. This ill-conditioning is due to the four complex eigenvalues having positive real parts while the four other complex eigenvalues with negative real parts do not induce numerical problems.

These numerical difficulties are induced by the fact that, for x 3 in ]0, H[, four diagonal terms of the matrix D(k, x 3 ) are exponentionally increasing. In Appendix B, a well-conditioned formulation is constructed and consists in treating separately the two groups of eigenvalues. Using the second line of Eq. ('Øeq MP') with X ′ (0) and X ′ (H), and substituting Eq. ('Ødef MH') in the resulting equations yields

Y(H) Y(0) = ( B (k, ω) Å H (k, ω) + C (k, ω)) X(H) X(0) , ('Ødef MH 2')
in which B (k, ω) and C (k, ω) are given by

B (k, ω) = -22 (k, ω) -1 12 (k, ω) T 0 0 -22 (k, ω) -1 12 (k, ω) T , C (k, ω) = -22 (k, ω) -1 12 (k, ω) T 0 0 -22 (k, ω) -1 12 (k, ω) T . ('Ødef CC et CB')
The boundary conditions defined by Eq. ('Øcl pb aux lim Fourier') can be rewritten as

X(0) = Ä 1 (k) u P 1 and X(H) = Ä 2 (k) u P 2 , ('ØX0XH')
in which matrices Ä 1 (k) and Ä 2 (k) are defined by

Ä 1 (k) =    1 0 i h P 1 k 1 /2 0 1 i h P 1 k 2 /2 0 0 1 0 0 1    , Ä 2 (k) =    1 0 -i h P 2 k 1 /2 0 1 -i h P 2 k 2 /2 0 0 1 0 0 1    . ('Ødef L1 L2')
Consequently, the vector (F 2 (k, ω), F 1 (k, ω)), in which F 2 (k, ω) and F 1 (k, ω) are defined by Eq. ('Øeq forces'), can be rewritten as

F 2 (k, ω) F 1 (k, ω) = AE(k, ω) u P 2 (k, ω) u P 1 (k, ω) , ('Ødef AAP1 AAP2 0')
where the matrix AE(k, ω) is a (6 × 6) complex matrix which can easily be calculated [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]. Substituting Eq. ('Ødef AAP1 AAP2 0') into Eq. ('Øeq plaque P') allows the vector (u P 2 (k, ω), u P 1 (k, ω)) to be calculated as a function of f(ω) by solving the linear matrix equation

È(k, ω) u P 2 (k, ω) u P 1 (k, ω) = 0 f(ω)
, ('Øeq plaques 3') in which È(k, ω) can easily be constructed. Knowing u P 1 (k, ω) and u P 2 (k, ω), one can deduce w P 1 (k, ω) and w P 2 (k, ω) and consequently, ∆w(k, ω) which is equal to w P 1 (k, ω) -w P 2 (k, ω) can be calculated by

∆w(k, ω) = h(k, ω) f (ω) , ('ØwP fct p') in which h(k, ω) = [È -1 (k, ω)] 66 -[È -1 (k, ω)] 36 .
Taking the inverse Fourier transform in k of Eq. ('ØwP fct p') yields

∆w(x, ω) = h(x, ω) f (ω) with h(x, ω) = 1 (2 π) 2 Ê 2 e -i k.x h(k, ω) dk . ('ØTF-1 Delta w 22')
The equivalent acoustic impedance of the multilayer system being assumed isotropic in reference- 

[Z(ω)] = 1 i ω [∆W (ω)] -1 . ('Øop discretise Z')
For each ω fixed, complex matrix [Z(ω)] is numerically calculated by using the analytical calculation presented above and in Appendices A and B. For ω belonging to the frequency band of analysis, impedance matrix [Z(ω)] has to be compared to experimental impedance matrix [Z exp (ω)] constructed in Part I of the paper [START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF].

EXPERIMENTAL COMPARISONS AND VALIDATION

In this section, the analytical model is compared to the experiment presented in Part I of the paper. The geometry and the material properties of the multilayer system are given in Appendix A of Part I of the paper [START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF].

EXPERIMENTAL COMPARISONS AND VALIDATION FOR THE EQUIVALENT ACOUS-TIC IMPEDANCE

The right-hand side of equation ('Ødef operateur h TF-1 polaire 2') is numerical calculated with a space step ∆r = 6.28 × 10 -3 m for r in [0, 6.3] m.

the two phases (porosity, tortuosity, resistivity, viscous and thermal characteristic lengths). From this sensitivity analysis, it can be concluded that the analytical model weakly depends on these parameters. It should be noted that, although the averaged impedance does not seem affected by the resistivity, others numerical simulations have been performed in [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]. For instance, the porous medium has been modelled by the fluid equivalent theory. Such a model does not give good results with respect to the experiments. In order to study the type of model for the porous medium, the parametric analysis performed in [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF] shows that the complete 3D model of the porous medium presented in this paper is necessary to predict the experimental results with a good accuracy.

Off-diagonal terms of the acoustic impedance

The equivalent acoustic impedance tends to become local for frequencies greater than 300 Hz. 

CONCLUSIONS

The multilayer system constituted of porous media are relatively difficult to model in the medium and high frequency domain. The purpose of this paper has been to construct of an analytical expression of the equivalent acoustic impedance for a multilayer system, constituted of a three dimensional porous medium inserted between two thin plates, for the medium and high frequency ranges. For complex structural acoustic systems, this type of results can be used to model a sounproofing scheme by a wall acoustic impedance. The methodology proposed can be used to other similar multilayer systems. The boundary value problem of the multilayer system constituted of two dimensional media (thin plates) coupled with a three dimensional medium (porous medium) has been presented. The equations for the general case of a homogeneous anisotropic viscoelastic porous medium with homogeneous orthotropic viscoelastic plates have been presented. An analytical model of the equivalent acoustic impedance has been constructed using a spectral method and its validation has been obtained by comparisons with experiments. This construction is not self-evident and an adapted algebraic formulation has had to be developed. In the medium and high frequency ranges, the comparisons between the analytical model and the experiments are good enough either for the local impedance or for the cross impedance between the driving and the receiving points. The good agreement of these results gives an experimental validation, firstly, for the mechanical model, i.e., for the boundary value problem, and, secondly, for the analytical method used to the equivalent acoustic impedance. In addition, it should be noted that, similarly to the conclusions given in the Part I of the paper, the equivalent acoustic impedance tends to
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For x 3 ∈]0, H[, the matrix D(k, x 3 ) has four diagonal terms which are exponentionally increasing and which yields a bad numerical conditioning of the problem. The solution retained consists in splitting D(k, x 3 ) into two matrices + (k, x 3 ) corresponding to the eigenvalues with positive real parts and -(k, x 3 ) corresponding to the eigenvalues with negative real parts, such that

D(k, x 3 ) = + (k, x 3 ) 0 0 -(k, x 3 ) with [ + (k, x 3 )] jk = δ jk e x 3 λ + j (k) , [ -(k, x 3 )] jk = δ jk e x 3 λ - j (k) .
Defining T(x 3 ) = Φ(k) -1 W(x 3 ), the first equation ('Øsolution W 2 2') in x 3 = H can be rewritten as

T(H) = D(k, H) T(0). Splitting T(x 3 ) = (T + (x 3 ), T -(x 3 )) yields T -(H) = -(k, H) T -(0) and T + (0) = ( + (k, H)) -1 T + (H). Introducing the matrix [ -(k, H)] such that [ -(k, H)] = [ + (k, H)] -1 , ones then has [ -(k, H)] jk = δ jk e -x 3 λ + j (k)
for j and k in 1, ..., 4, thus, one obtains

T + (0) = -(k, H) T + (H). The matrix Φ(k, x 3 ) can be written as Φ(k, x 3 ) = Φ ++ (k, x 3 ) Φ +-(k, x 3 ) Φ -+ (k, x 3 ) Φ --(k, x 3 ) .
Therefore, taking into account the definition of T(x 3 ), one obtains 
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  plane S, then z(x -x′ , ω) depends on ||x -x′ || and consequently, the Fourier transform z(k, ω) depends on ||k||. One then deduces that h(k, ω) depends only on k = ||k|| and is rewritten as h(k, ω).Consequently, since the driving force is a point force applied to the origin, ∆w(x, ω) depends only on r = ||x|| and is rewritten as ∆w(r, ω). Thus ω → ∆w(r, ω) appears as the cross-frequency response function relative to two points distinct of r. Using the classical formula of the Fourier transform in polar coordinates yields ∆w(r, ω) (kr) h(k, ω) dk , ('Ødef operateur h TF-1 polaire 2') in which J 0 (kr) is the zero order Bessel function. Equation ('Ødef operateur h TF-1 polaire 2') gives a continuous expression of ∆w(r, ω) as a function of the distance r between the origin in the referenceplane S and the point x in the reference-plane S. In order to compare the present model with the experiments (see Part I of the paper [49]), the (25 × 25) impedance matrix corresponding to the 25 driving and receiving points has to be constructed. Let [∆W (ω)] be the (25 × 25) symmetric complex matrix defined by [∆W (ω)] jk = ∆w(r jk , ω) , ('Øop discretise W') in which r jk = ||x j -x k || where x1 , ..., x25 are the 25 driving points with a unite force and the receiving points defined in Figure 2 of the part I of the paper. Consequently [∆W (ω)] can be viewed as the matrix-valued frequency response function relative to these points. Let [Z(ω)] be the corresponding (25 × 25) symmetric complex impedance matrix which is thus defined by

For instance, figures 7

 7 and 8 show the results for the Poisson ratio ν varying in [0.25 , 0.46] and for the resistivity σ varying in [2000 , 20000] N s m -4 . Figures 7a and 8a display the real part of the impedance, figures 7b and 8b display its imaginary part.

Fig- ures 9

 9 -a and -b display the equivalent acoustic impedance as a function of distance r between the driving and the receiving points. For a frequency equal to 1400 Hz, the analytical results (circle symbols) and the experimental results (cross symbols) are very close. This conclusion holds for the the other frequencies (see[START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]). The aspect of the real part (Figure9-a) and of the imaginary part (Figure9-b) of the equivalent acoustic impedance as a function of the distance r has been explained in Part I[START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF] (exponential decreasing, sinusoidal function, non zero phase for ω = 0 for the imaginary part). For the other frequencies belonging to [300, 1600] Hz, the results are very similar. There is a good agreement between the analytical results and the experiments.5.2. EXPERIMENTAL COMPARISONS AND VALIDATION FOR THE CROSS-FREQUENCY RESPONSE FUNCTIONThe analytical model of the cross response function between 2 points distinct of r is the mapping ω → ∆w(r, ω). In this subsection, one compares the experiments with the analytical results for the function r → ∆w(r, ω) at a fixed frequency equal to 800 Hz. It should be noted that the choice of this frequency is arbitrary, but the quality of the comparisons is similar for any frequency on the frequency band of analysis. Figures10-aand -b display the graphs of the real and imaginary parts of the function r → ∆w(r, ω) at frequency 800 Hz. The comparisons between the experimental results (cross symbols) and the analytical model (solid line) are good. In addition, in these 2 figures, the circle symbols correspond to the average of the experimental values over the points having the same distance r.

Figure 9 : 38 Figure 10 : 3 Fig. 1 . 1 Fig. 2 .

 938103112 Figure 9 : (a) Real and (b) imaginary parts of the off-diagonal terms of the equivalent acoustic impedance matrix as a function of the distance r at 1396.6086 Hz. Analytical model (circle symbols), experimental results (cross symbols) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Fig. 3 .Fig. 4 .

 34 Fig. 3. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 8.Analytical model (solid line), experimental results (dashed line).

Fig. 5 .

 5 Fig. 5. (a) Real and (b) imaginary parts of the local equivalent acoustic impedance at the point 16. Key as for Figure 3.

Fig. 6 .Fig. 7 .

 67 Fig. 6. (a) Real and (b) imaginary parts of the average local equivalent acoustic impedance on all points. Analytical model for isotropic solid phase (solid line), experimental results (dashed line), analytical model for transverse isotropic phase (dash-dot line).

Fig. 8 .

 8 Fig. 8. (a) Real and (b) imaginary parts of the average local equivalent acoustic impedance over all the points for the different values of the resistivity σ (N s m -4 ). Experimental results (dashed line), predicted results : 2000 (solid line), 4000 (solid line with cross symbols), 6000 (dotted line), 8000(dash-dot line), 10000 (dashed line with circle symbols), 12000 (dash-dot line with circle symbols), 14000 (dotted line with circle symbols), 16000 (dashed line with asterisk symbols), 18000 (dotted line with square symbols), 20000 (thick dotted line).

Fig. 10 .

 10 Fig. 10. (a) Real and (b) imaginary parts of the function r → ∆w(r, ω) at the frequency 801.881 Hz for r in [0,0.36] m. Analytical results (solid line), experimental results (cross symbols). Average experimental values over the points having the same distance r (circle symbols).

  1 , x 2 )is its transverse displacement. Plate P 1 is submitted to a pressure field p. The boundary value problem is written as follows. The dynamical equations of plate P 1 for bending and membrane motions are

	expressed as	
	-ω 2 ρ P 1 h P 1 v P 1 α -N P 1 αβ,β = σ 1s α3 on S 1 ,	('Øeq1 ST')
	-ω 2 ρ P 1 h P 1 w P 1 -M P 1 αβ,αβ = σ 1s 33 + σ 1f 33 + h P 1 σ 1s α3,α /2 + p on S 1 ,	('Øeq2 ST')
	in which the solid part stress tensor components σ s ij and the fluid part stress tensor components σ f ij are
	defined by	
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equations. Substituting Eqs. ('Øloi cpt fourier 1') and ('Øloi cpt fourier 2') into Eq. ('Øeq sf Fourier 0') yields 11 0 0 0

X(x 3 ) Y(x 3 ) = 0 , ('Øeq MP') for x 3 in ]0, H[,in which vectors X(x 3 ) and Y(x 3 ) are such that X(x 3 ) = (u s 1 (x 3 ), u s 2 (x 3 ), u s 3 (x 3 ),

)) and Y(x 3 ) = (u f 1 (x 3 ), u f 2 (x 3 )). It should be noted that all quantities in Eq. ('Øeq MP') depend on ω. In order to simplify the notation, the dependence on k of X and Y is omitted. The matrices 11 , 11 (k), 12 (k), 11 (k), 12 (k) and 22 (k) are defined in Appendix A and T is the transpose of matrix . Since 22 (k) is invertible for ω = 0, Y can be eliminated from Eq. ('Øeq MP') by using the second line of this equation and yields

in which A(k), B(k) and C(k) are defined by

As above, the dependence in k and ω of W is omitted. The second-order differential Eq. ('Ø2eme eq syst en X bis') is transformed into the following first order differential equation

in which complex symmetric matrices A(k) and B(k) are such that

Local acoustic impedance

The analytical model of the local equivalent acoustic impedance corresponds to the diagonal terms of the impedance matrix defined by Eq. ('Øop discretise Z'). Figures 3 to 5 display the graphs of the real part and the imaginary part of the local equivalent acoustic impedance at the points 8, 15 and 16, defined in Figure 2 of Part I [START_REF] Faverjon | Equivalent acoustic impedance model : experiments and physical model[END_REF]. The solid lines are relative to the analytical model and the dashed lines to the experiments. There is a good agreement between the analytical model and the experimental results for these three points but also for all the 22 other points (see [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]), which are not presented in this paper. Since the results for all the 25 points cannot be given in the present paper, and taking into account that the graphs of all the real parts are similar and that the graphs of all the imaginary parts are similar, a part of the results can be synthetised in giving the real part and the imaginary part of the average local acoustic impedance defined as 1 6 of Part I, that is to say, for all ω ≥ 0, the real part is positive with a peak at 844 Hz, and the imaginary part has a vertical asymptote when ω goes to 0 and there is a zero crossing for a frequency equal to 400 Hz associated with the peak of the real part. The peak and the associated zero crossing seem to be due to a resonance phenomenum between the dilatational wave which preferentially propagates in the fluid phase of the porous medium and the bending waves in the two plates. In addition, Figure 6-a and -b compare the analytical results for an isotropic porous medium (solid line) with the analytical results for a porous medium having a transverse isotropic solid phase (dash-dot line) whose parameters have partially been measured [START_REF] Guillaumie | Substituting constitutive equations ('Øloi cpt fourier 1') and ('Øloi cpt fourier 2') of the porous medium into dynamical equations ('Øeq sf Fourier 0') yields[END_REF]. One can observe that these two analytical models are very similar. Consequently, in this paper, one only presents results for the case of an isotropic porous medium. For the case of a transverse isotropic solid phase of the porous medium, theory details and results can be found in [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]. The robustness of the analytical method has been proved by performing a sensitivity analysis with respect to the parameters of the solid phase (mass density, Young modulus, dissipation factor and Poisson coefficient) and of the coupling between be local for frequencies greater than 300 Hz and, in this case, the modulus of this impedance is a quasi exponential decreasing function with the distance.

Solving these four matrix equations yields a linear mapping between the vector (X ′ (H), X ′ (0)) and the vector (X(H), X(0)) such as

, and where

It should be noted that Ê HH (k, 0, H) is invertible. 
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