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B. FAVERJON and

INTRODUCTION

In the medium and high frequency ranges, the modelling of a multilayer system containing porous materials is very important for noise control in aircrafts, automobiles, buildings, etc.

Difficulties occur in modelling such multilayer systems and in validating them with experimental data basis. Many works have already been published about experimental data bases concerning the acoustic transmission through multilayer systems or concerning the surface impedance of multilayer systems with a rigid wall [START_REF] Allard | Propagation of sound in porous media : modeling sound absorbing materials[END_REF][START_REF] Allard | Acoustical properties of partially reticulated foams with high and medium flow resistance[END_REF][START_REF] Allard | Modelization of layered sound absorbing materials with transfert matrices[END_REF][START_REF] Lauriks | Modelization at oblique incidence of layered porous materials with impervious screens[END_REF][START_REF] Lauriks | The acoustic transmission through layered systems[END_REF][START_REF] Bolton | Sound transmission through multi-panel structures lined with elastic porous materials[END_REF][START_REF] Bolton | Random Incidence transmission loss of lined finite double panel systems[END_REF][START_REF] Song | A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials[END_REF][START_REF] Trochidis | Sound transmission through double partitions with cavity absorption[END_REF][START_REF] Moore | Sound transmission loss characteristics of sandwich panel constructions[END_REF]. Nevertheless, very little exists concerning experimental data basis for the equivalent acoustic impedance of multilayer systems with porous media and for the medium and high frequency ranges. Such experimental data bases are necessary to understand the physics of such systems and to validate analytical and numerical models in the medium and high frequency ranges. The main objective of the part I of this paper is to present an experimental data basis concerning the equivalent acoustic impedance of a multilayer system containing a porous medium and to propose a probabilistic model which allows the experimental data basis to be synthesized and consequently, to be reused by the community for other researches. In particular, this experimental data basis will be used in part II [START_REF] Faverjon | Equivalent acoustic impedance model : analytical approximation[END_REF] of this paper which is devoted to the validation of an analytical model of such a multilayer system for the medium and high frequency ranges. The experimental multilayer system is constituted of a three-dimensional porous medium inserted between two thin plates. At a given frequency, the equivalent acoustic impedance of such a multilayer system is the linear mapping between the pressure field applied to one plate and the jump of the normal velocities to each plate. Such an equivalent acoustic impedance can be introduced in the models allowing vibro-acoustic predictions of complex mechanical systems. An experimental data basis has specifically been constructed for this research [START_REF] Guillaumie | Wall acoustic impedance. Experimental identification[END_REF] and corresponds to the experimental identification of the equivalent acoustic impedance in the frequency band [100,1600] Hz, the medium and high ranges corresponding to the frequency band [300,1600] Hz. Using this experimental data basis, a probabilistic algebraic model of the equivalent acoustic impedance of the multilayer system is constructed. This probabilistic model synthesizes all the experimental data basis through the use of a mean algebraic model and a random fluctuation model [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF][START_REF] Faverjon | Algebraic model of a wall acoustic impedance constructed using experimental data[END_REF]. The number of parameters of this model (correlation lengths) is minimum. A good approximation of this experimental data basis is given by this model. Section 2 deals with the experiment. In Section 3, the construction of the basic algebraic model for the equivalent acoustic impedance is developed. Section 4 is devoted to the properties of the equivalent acoustic impedance which are deduced from the analysis of the experimental data basis. In Section 5, one presents the estimation of the mean values of the basic algebraic model parameters using the experimental data basis and finally, Section 6 deals with the construction of the random model.

DESCRIPTION OF AN EQUIVALENT ACOUSTIC IMPEDANCE EXPERIMENT

An experiment [START_REF] Guillaumie | Wall acoustic impedance. Experimental identification[END_REF] was carried out in an anechoic room in order to measure the equivalent acoustic impedance of a multilayer system constituted of a three-dimensional porous medium inserted between two thin plates in aluminium, denoted as P 1 and P 2 (see Figure 1). The length and width of the multilayer system is 0.6 and 0.4 meter respectively. This multilayer system is fixed in a rigid baffle. The geometry and the material properties of the experimental multilayer system are described in Appendix A. The experimental analysis and the signal processing are performed in the frequency domain. The angular frequency is denoted by ω.

Normal point forces to plate P 1 are successively applied to the N = 25 points M 1 , . . . , M N defined in Figure 2. The normal velocities at these N driving points are measured using laser velocimetry (see Figure 3). Consequently, the N points M 1 , . . . , M N in plate P 1 are driving and receiving points. In addition, the normal accelerations are measured at N points M 1 , . . . , M N in plate P 2 (see Figure 4) and then, the associated normal velocities are deduced on plate P 2 . These N receiving points M 1 , . . . , M N in plate P 2 are in correspondence with the N points M 1 , . . . , M N in plate P 1 which means that, for all j = 1, . . . , N , point M j and point M j have the same coordinates x 1 and x 2 (but have a different coordinate x 3 ). This choice allows the jump of the normal velocities between the two sides of the multilayer system to be calculated. Let F exp k (ω) be the normal point force applied to point M k belonging to the N driving points M 1 , . . . , M N in plate P 1 . Excitation F exp k (ω) induces the normal velocities V P 1 exp jk (ω) and V P 2 exp jk (ω) at receiving point M j in plate P 1 and at corresponding receiving point M j in plate P 2 , respectively. Let ∆V exp (ω) = (∆V exp 1k (ω), . . . ,

∆V exp Nk (ω)) with ∆V exp jk (ω) = V P 1 exp jk (ω) -V P 2 exp
jk (ω) be the jump of the normal velocities to the N couples of points (M j , M j ). For each k fixed in {1, ..., 25} and for 8192 values of ω in the frequency band of analysis [30,1600] Hz, the experimental measures allow the (N × N ) complex matrix-valued frequency response function [H exp (ω)] to be constructed for a linear filter whose inputs are the normal forces applied to N nodes of plate P 1 and whose outputs are the jump of the normal velocities at the N couples of points (M j , M j ). Consequently, one has The geometry of the multilayer system is shown in Figure 5. The interfaces between the porous medium and the plates P 1 and P 2 are denoted by Σ 1 and Σ 2 . The theoretical model which is considered introduces an applied pressure field p acting on surface Σ 0 . The reference-plane surface system of the multilayer system is denoted by S and coincides with surface Σ 1 . The coordinates (x 1 , x 2 , x 3 ) of a point belonging to the porous medium are given in the cartesian system whose origin belongs to the reference-plane S. The x 3 coordinate of the coupling interface Σ 1 (or Σ 2 ) is 0 (or H) (in which H is the thickness of the porous medium). Below, x = (x 1 , x 2 ) denotes the point belonging to reference plane S. Let S 1 and S 2 be the mid-planes of the plates P 1 and P 2 .

∆V exp (ω) = [H exp (ω)] F exp (ω) in which [H exp (ω)] =    ∆V exp 11 (ω) ... ∆V exp 1N (ω) . . . ∆V exp N1 (ω) ... ∆V exp NN (ω)    F exp (ω) = (F exp 1 (ω), . . . , F exp N (ω)). ( ' 

DEFINITION OF THE EQUIVALENT ACOUSTIC IMPEDANCE DENSITY FUNCTION

The experimental measures have been made in an anechoic room such that the effect of the coupling between the external air and the multilayer system can be considered as negligible compared to the effect of the viscous dissipation of the multilayer system. Let v P 1 ( x, ω) and v P 2 ( x, ω) be the normal velocities at the point M in plate P 1 and at the corresponding point M in plate P 2 such that the corresponding points M and M have the same coordinates x = (x 1 , x 2 ). For fixed ω, the equivalent acoustic impedance is the integral operator (ω) defined by a density function z(x, x′ , ω) with complex values such that 

p(x, ω) ={ (ω) (v P 1 (., ω) -v P 2 (., ω))}(x) = x′ ∈S z(x, x′ , ω) (v P 1 (x ′ , ω) -v P 2 (x ′ , ω))
deduced that z R (x, x′ , ω) = z R (x ′ , x, ω) , z I (x, x′ , ω) = z I (x ′ , x, ω) , ('Øpte sym znoyau RI' ) z R (x, x′ , -ω) = z R (x, x′ , ω) , z I (x, x′ , -ω) = -z I (x, x′ , ω) . ('Øpte conj znoyau RI' )
The correspondance between the continuous model defined by Eq. ( 3) and the discrete experimental model defined by Eq. ( 1) is obtained by discretizing Eq. (3) using the usual collocation method with the N points of the mesh.

LOCAL EQUIVALENT ACOUSTIC IMPEDANCE

The local equivalent acoustic impedance denoted by z loc is defined by

p(x, ω) = z loc (x, ω) (v P 1 (x, ω) -v P 2 (x, ω)) , ∀x ∈ S . ('Øformule Z avec F2' )
Sometimes, such a local equivalent impedance z loc is called the wall acoustic impedance [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF][START_REF] Pierce | Acoustics : An Introduction to its Physical Principles and Applications[END_REF].

From Eqs. ('Ørel op' ) and ('Øformule Z avec F2' ), it can be deduced that the local equivalent acoustic impedance can be written as

z(x, x′ , ω) = z loc (x, ω) δ 0 (x -x′ ) , ('Ønoyau z' )
in which, for all x′ belonging to S, δ 0 (x -x′ ) is the Dirac function such as S φ(x) δ 0 (x -

x′ ) dS x = φ(x ′ ).
It should be noted that z loc (x, ω) differs from z(x, x′ , ω) by a surface element.

Introducing the real and the imaginary parts of the local equivalent acoustic impedance such that z loc (x, ω) = z loc R (x, ω) + i z loc I (x, ω), from Eq. ('Øpte conj znoyau RI' ), it can be deduced that

z loc R (x, -ω) = z loc R (x, ω) , z loc I (x, -ω) = -z loc I (x, ω) . ('Øptes ZR et ZI1' )
For all x in S, the local equivalent acoustic impedance has to satisfy the following properties (see [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF])

z loc R (x, ω) > 0 , ∀ω ∈ Ê , -ω z loc I (x, ω) ≥ 0 , ∀ω ∈ [-ω 0 , ω 0 ] in which ω 0 > 0 , lim ω→0 (-ω z loc I (x, ω)) = α(x) ≥ α min > 0 , ('Øptes ZR et ZI2' )
in which α min is a given real positive constant and x → α(x) is a positive-valued function 

defined on S. Equation ('Øptes ZR et ZI2' ) means that z loc I (x, ω) ∼ -α(x)/ω if ω → 0. For all x in S, the function ω → z loc R (x,
z loc (x, ω) = 0 , ∀x ∈ S , ∀ω , ('Øptes ZR et ZI6' ) {i ω z loc (x, ω)} ω=0 = {-ω z loc I (x, ω)} ω=0 = α(x) > 0 . ('Øptes ZR et ZI7' )
The real part corresponds to the dissipative part of z loc (x, ω) (acoustic impedance resistance).

The imaginary part corresponds to the conservative part of z loc (x, ω) (acoustic impedance reactance). Let ∆w(x, ω) = w P 1 (x, ω) -w P 2 (x, ω) be the difference between the normal displacements of the two plates and let be ∆v(x, ω)

= v P 1 (x, ω) -v P 2 (x, ω). Therefore, on has ∆v(x, ω) = i ω ∆w(x, ω). Equation ('Øformule Z avec F2' ) yields p(x, ω) =z loc (x, ω) ∆v(x, ω) =[-ω z loc I (x, ω) + i ω z loc R (x, ω)] ∆w(x, ω) . ('Øeq zeta' )
Figure 6 displays a typical graph (see for instance [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]) for the functions ω → z loc R (x, ω) and ω → z loc I (x, ω). 

ρ R (x, x′ , ω) = z R (x, x′ , ω) ζ R (x, ω) ζ R (x ′ , ω) . ('Ødef rhoR z' )
For the imaginary part, there exists ω 0 such that ζ I (x, ω 0 ) = 0, for all x. Consequently, the normalization of the imaginary part is defined by shows that frequencies below 300 Hz belongs to the low frequency range (the modal domain), and frequencies above 300 Hz belongs to the medium and high frequency ranges for which the proposed algebraic model is constructed. When frequency increases, the experimental equivalent acoustic impedance tends to be a diagonal matrix. For instance, at frequency 100 Hz, Figure 8 shows that the impedance matrix is not diagonal at all. Such a matrix corresponds to an equivalent acoustic impedance which is not local in space (see Figure 9).

ρ I (x, x′ , ω) = z I (x, x′ , ω) |ζ(x, ω)| |ζ(x ′ , ω)| . ('Ødef rhoI z' ) One then obtains z(x, x′ , ω) = |ζ(x, ω)| |ζ(x ′ , ω)| ρ R (x, x′ , ω)× ζ R (x, ω) |ζ(x, ω)| ζ R (x ′ , ω) |ζ(x ′ , ω)| +i ρ I (x,
In opposite, at frequency 1200 Hz, this impedance matrix is a quasi-diagonal matrix which means that the equivalent acoustic impedance is almost local in space. The detailed analysis of the experimental data basis shows that the upper bound of the frequency for which the equivalent acoustic impedance is non local in space is about 300 Hz (this is also the lower bound for which the impedance is almost local in space). An additional detailed analysis of the experimental data basis [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF] shows that the experimental equivalent acoustic impedance can be considered as homogeneous and isotropic with respect to the coordinates x 1 and x 2 for frequencies greater than 300 Hz. This kind of analysis is too long and cannot be developed here. It should be noted that at high frequencies, Figure 9 shows that the structure of the impedance matrix is quasi-diagonal which is coherent with the physical point of view. Some small differences appear especially around the points 1 and 25 which are the most far away from each other relative to the symmetric point 13. These minor differences (not greater than 5 -8 P a.m -1 s) are certainly due to experimental errors (especially, one reason could be that the experimental lateral boundary conditions could induce some differences from one lateral side to another one).

BASIC ALGEBRAIC MODEL

For frequencies greater than 300 Hz, the equivalent acoustic impedance density function is then considered as homogeneous and isotropic. Therefore, the density function z(x, x′ , ω) depends only on ||x -x′ || and is then rewritten as z(||x -x′ ||, ω). Consequently, ζ(x, ω) does not depend on x and is rewritten as

ζ(x, ω) = ζ(ω) , ζ(ω) = ζ R (ω) + i ζ I (ω) . ('Ødef zeta sans x' ) Equation ('Ødef z rho' ) is then rewritten as z(||x -x′ ||, ω) = |ζ(ω)| ρ R (||x -x′ ||, ω) ζ R (ω) |ζ(ω)| + i ρ I (||x -x′ ||, ω) . ('Ødef z rho 2' )
The following algebraic models for the functions ρ R (||x

-x′ ||, ω) and ρ I (||x -x′ ||, ω) are pro- posed ρ R (||x -x′ ||, ω) = e -||x-x ′ ||/L R (ω) cos (2 π ||x -x′ ||/λ R (ω)) , ('Ømodele rhoR' ) ρ I (||x -x′ ||, ω) = e -||x-x ′ ||/L I (ω) cos 2 π ||x -x′ ||/λ I (ω) + φ I (ω) . ('Ømodele rhoI' )
These algebraic models result from an analysis of the experimental data basis [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF]. and ('Ømodele rhoI' ) dependent on ω. Nevertheless, one will see in the next sections that the values of these parameters will be chosen as quantities independent of ω. This assumption results from a compromise between the simplicity of the model and its capability to represent the experimental data basis. A more sophisticated mean algebraic model could be introduced in choosing these parameters as a function of the frequency. Such a solution has been studied in [START_REF] Faverjon | Modélisation et validation expérimentale d'un modèle d'impédance acoustique dans le domaine des moyennes et hautes fréquences pour un système multicouche composé d'un matériau poreux épais inséré entre deux plaques minces[END_REF] and the gain obtained is not significant with respect to the frequency independent assumption retained for the mean model. 

ζ R (ω) is proposed ζ R (ω) = ζ R 0 + (ζ R max -ζ R 0 ) |ω| ω R0 γ R e -a R |ω| ω R0 -1 b R , ('Ømodele zetaR' ) in which the parameters ζ R 0 , ζ R max , ω R0 , γ R , a R and b R are fitted in minimizing B |ζ exp R (ω)- ζ exp R (ω)| 2 dω
in which B is the frequency band of analysis. The result of this minimization yields

ζ R 0 = 1.678 × 10 6 Pa.s.m -3 , ζ R max = 4.717 × 10 6 Pa.s.m -3 , ω R0 = 5303 rad.s -1 , γ R = 2 , a R = 46 , b R = 2 .
The frequency band of analysis B is equal to [100,1600] Hz. Figure 10 

CALCULATION OF THE MODULUS |ζ(ω)| AND EXPERIMENTAL COMPARISONS

CALCULATION OF THE PHASE AND EXPERIMENTAL COMPARISONS

Phase φ I (ω) be the phase defined by cos(φ

I (ω)) = ζ I (ω) |ζ(ω)| , ψ I (ω) ∈ [0, π] . ('Ø=te normalisation et rhoi homog' )
The corresponding experimental value is such that cos(φ exp I (ω)) = ζ exp I (ω)/|ζ exp (ω)|. Figure 13 shows the comparison of φ exp I (ω) with φ I (ω) over the frequency band [100,1600] Hz. It should be noted that in Eq. ('Ømodele rhoI' ), the mean value φ I of the phase is then defined as the following constant independent of ω,

φ I = 1 |B| B φ I (ω) dω . ('Ødef phiI' )
¿From the experimental data basis, one obtains φ I = 1.1697 rad.

FITTING THE MEAN ALGEBRAIC MODEL

Concerning the real part, the mean algebraic model for ρ R is defined by

ρ R (||x -x′ ||) = e -||x-x ′ ||/L R cos (2 π ||x -x′ ||/λ R ) , ('ØdefrhoR moyen' ) in which η = ||x -x′ ||.
In a first step, the mean experimental function

ρ exp R (η) = 1 |B| B ρ exp R (η, ω) dω
is introduced. This function is then deduced from the experimental data basis for the different distances η 1 , η 2 , ... relative to the driving and receiving points. In a second step, the values

L R and λ R are calculated in minimizing j |ρ R (η j ) -ρ exp R (η j )| 2 . One obtains L R = 0.0664 , λ R = 0.0771 .
('Øvaleurs LR lambdaR' )

Figure 14 shows the graphs of η → ρ exp R (η) and η → ρ R (η). Figure 15 displays the graphs of the functions ω → ρ exp R (η, ω) for all the receiving points having the same distance η = 0.075 m and the corresponding graph of the function ω → ρ R (η). This figure shows that the frequency averaging introduced is well adapted to the present case and justifies the frequency independent parameters assumption. Concerning the imaginary part, the mean model for ρ I is defined by ρ I (η) = e -η/L I cos 2 π η/λ I + φ I .

('Ømodele rhoI moyen' )

Similarly, one introduces the mean experimental function Figure 16 shows the graphs of η → ρ exp I (η) and η → ρ I (η). Figure 17 displays the graphs of the functions ω → ρ exp I (η, ω) for all the receiving points having the same distance η = 0.075 m and the corresponding graph of the function ω → ρ I (η). Similarly for the real case, Figure 17 shows that the frequency averaging introduced is well adapted to the present case and justifies the frequency independent parameters assumption.

ρ exp I (η) = 1 |B| B ρ exp I (η,

CONSTRUCTION OF A RANDOM MODEL FOR ρ R (η) and ρ I (η)

The model relative to the local impedance (diagonal terms of the impedance matrix) leads to a good model fitting the experimental data. Concerning the off-diagonal terms of the impedance matrix, which are a function of the distance between the different points of the multilayer system, the deterministic model defined by Eqs. ( 22)-( 23) yields a reasonable approximation with a significant dispersion with respect to all experimental points. Then, a stochastic approach is proposed in order to increase the robustness of the algebraic model in its capability to represent all the experimental data. A detailed analysis has been carried out in order to define the parameters of the basic algebraic model which have to be modelled by a random 

ESTIMATING THE PROBABILITY DISTRIBUTIONS OF THE RANDOM PARAMETERS

Random variables Λ R and Λ I are positive-valued random variables and Φ I is a random variable with values in [0, 2 π]. The maximum entropy principle is used to construct the probability distribution [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF] for each random variable Λ R , Λ I or Φ I . Below, Λ r denotes either Λ R or Λ I . It is assumed that the probability distribution of the random variable Λ r is defined by a probability density function p Λ r (λ) with respect to dλ. For random variable Λ r , the available information is constituted of the mean value m r 1 = E{Λ r } and of the second order moment m r 2 = E{Λ 2 r }. Consequently, the maximum entropy principle consists in maximizing entropy S defined by S(p Λ r (λ)) = -Ê + p Λ r (λ) ln(p Λ r (λ)) dλ with the constraints defined by the available informations and written as

Ê + λ l p Λ r (λ) dλ = m r l , for l=0, 1, 2 . ('Ødef moments' )
One then obtains

p Λ r (λ) = ½ Ê + (λ) C r 0 e -µ r 1 λ-µ r 2 λ 2 , ('Ødef proba r' )
in which C r 0 > 0, µ r 1 and µ r 2 > 0 have to be chosen such that the constraints be satisfied.

One has m r 0 = 1. The moment m r 1 = λ r has been calculated in Section 5. The second order moment m r 2 is estimated using the experimental data basis and yields m R 2 = 0.006994 (resp.

m I 2 = 0.005107). Consequently, the standard deviation Using the same methodology for random variable Φ I , the probability density function p Φ I (φ) is written as

σ Λ r = m r 2 -λ r 2 is σ Λ R =
p Φ I (φ) = ½ [0,2 π] (φ) C φ 0 e -µ φ 1 φ-µ φ 2 φ 2 , ('Ødef densite proba phi' )
in which C φ 0 , µ φ 1 and µ φ 2 have to be such that

2 π 0 φ l p Φ I (φ) dφ = m φ l , l = 0, 1, 2 , ('Ødef contrainte phiI' ) σ 2 ρ R (η) = E{ρ R (η) 2 } -(E{ρ R (η)}) 2 . ('Ødef Erho˙R variance' )
The upper envelope is constructed by using Tchebychev's inequality which, for a real-valued centered random variable X, is written as

P(|X| ≥ ǫ) ≤ E{|X| 2 }/ǫ 2 . ('Ødef Tcheb' ) One then has P{|ρ R (η) -E{ρ R (η)}| ≥ ǫ R (η)} ≤ E{|ρ R (η) -E{ρ R (η)}| 2 }/ǫ 2 R (η) . ('Ødef Tcheb 2' ) Using Eq. ('Ødef Erho˙R variance' ) yields P{|ρ R (η) -E{ρ R (η)}| ≥ ǫ R (η)} ≤ σ 2 ρ R (η)/ǫ 2 R (η) , ('Ødef Tcheb 3' )
and consequently,

P{|ρ R (η) -E{ρ R (η)}| < ǫ R (η)} ≥ P c , ('Ødef Tcheb 4' ) in which P c = 1 -σ 2 ρ R (η)/ǫ 2 R (η). The probability level P c being fixed, one obtains ǫ R (η) = σ ρ R (η)/ √ 1 -P c . Equation ('Ødef Tcheb 4' ) is rewritten as P{-ǫ R (η) + E{ρ R (η)} < ρ R (η) < ǫ R (η) + E{ρ R (η)}} ≥ P c . ('Ødef Tcheb 5' )
Comparing Eq. ('Ødef Tcheb 5' ) with Eq. ('Ødef domaine' ) yields

ρ + R (η) = E{ρ R (η)} + ǫ R (η) , ρ - R (η) = E{ρ R (η)} -ǫ R (η) . ('Ødef rhoR-2' )
The confidence region corresponding to a probability level equal to 0.95 is shown in Figure 18.

In this figure, each vertical solid line is constituted of a set of dot symbols corresponding to the experimental values for a same distance η. It should be noted that almost all the significant experimental data are inside the confidence region (95 %).

CONSTRUCTION OF THE PROBABILISTIC ALGEBRAIC MODEL FOR ρ I (η)

Using the approach defined in Section 6.2, the real-valued random variable ρ I (η) is defined by

ρ I (η) = e -η/L I cos (2 π η/Λ I + Φ I ) , ('Ømodele rhoI moyen proba' )
which depends on the random variables Λ I and Φ I . The confidence region of ρ I (η) is defined by

P(ρ - I (η) < ρ I (η) < ρ + I (η)) ≥ P c , ('Ødef Tcheb I 1' )
in which the upper envelope is defined by ρ + I (η) = E{ρ I (η)} + ǫ I (η) and the lower envelope is defined by ρ -

I (η) = E{ρ I (η)} -ǫ I (η) with ǫ I (η) = σ ρ I (η)/ √ 1 -P c .
The mean value and second order moment of the random variable ρ I (η) are defined by

E{ρ I (η) α } = +∞ 0 2 π 0 p Λ I (λ) p Φ I (φ) {e -η/L I ×cos (2 π η/λ + φ)} α dλ dφ , α = 1, 2 .('Ødef Erho˙I
The variance is such that

σ 2 ρ I (η) = E{ρ I (η) 2 } -(E{ρ I (η)}) 2 .
The confidence region corresponding to a probability level equal to 0.95 is shown in Figure 19. In this figure, each vertical solid line is constituted of a set of dot symbols corresponding to the experimental values for a same distance η. Similarly for the probabilistic model ρ R (η), it can be shown that almost all the significant experimental data are inside the confidence region (95 %). The probability distributions are modelled by using the entropy maximum principle. This work has been performed in order to construct an algebraic representation which synthesizes a large experimental data basis over the medium and high frequency ranges, using a small number of parameters for the algebraic model. The comparison between this model and the experiments are good and consequently, this model can be considered as a synthesis of this experimental data basis and will be reused for other researches. 
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5 .

 5 ESTIMATING THE MEAN VALUES OF THE BASIC ALGEBRAIC MODEL PARAMETERS USING THE EXPERIMENTAL DATA BASIS The objective is to estimate (1) the values of ζ R (ω), ζ I (ω) and |ζ(ω)| and (2) the parameters L R , λ R , L I , λ I and φ I of the mean algebraic model. 5.1 CONSTRUCTION OF A REPRESENTATION OF ζ R (ω) Since the experimental values of ζ exp R (x j , ω) in the 25 measured points x1 , ..., x25 , are close together (that is coherent with the introduced homogeneity assumption), an estimation of ζ exp R (ω) is given by ζ exp R (ω) = 1 25 25 j=1 ζ R (x j , ω) which represents the experimental mean value. The following algebraic model for

  displays the graph of ζ exp R (ω) and ζ R (ω) over the frequency band B. The comparison is good.

5. 2 ζ

 2 CONSTRUCTION OF A REPRESENTATION OF ζ I (ω) Similarly to the real part case, an estimation of ζ exp I (ω) is returned as I (x j , ω) which represents the experimental mean value. The following algebraic model for ζ I (ω) is proposed ζ I (ω) = a I ω b I ω 4 + c I ω 2 -1 + d I (ω 2 -ω 2 I0 ) 2 + e I ω 2 , ('Ømodele zetaI' ) in which the parameters ω I0 , a I , b I , c I , d I andt e I are fitted in minimizing B |ζ exp I (ω)ζ exp I (ω)| 2 dω. The result of this minimization yields ω I0 = 4.86 10 3 rad.s -1 , a I = 4.7 10 9 , b I = 8 10 -16 , c I = 1 10 -25 , d I = 1.6 10 14 , e I = 2.4 10 6 .

Figure 11 displays

 11 Figure 11 displays the graph of ζ exp I (ω) and ζ I (ω) over the frequency band B. The comparison is good.

Figure 12

 12 Figure 12 shows the comparison of |ζ exp (ω)| with |ζ(ω)| over the frequency band [100,1600] Hz, the moduli |ζ exp (ω)| and |ζ(ω)| being calculated using the fitted representation of ζ R (ω) and ζ I (ω).

  ω) dω which is deduced from the experimental data basis for the different distances η 1 , η 2 , ... Then, since φ I = 1.1697 rad, the values L I and λ I of the mean algebraic model are calculated in minimizing j |ρ I (η j ) -ρ exp I (η j )| 2 . One obtains L I = 0.0603 , λ I = 0.0660 . ('Øvaleurs LI lambdaI' )

  variable. The retained model is the basic algebraic model in which ζ R and |ζ| are modelled by the mean values estimated in Sections 5.1 and 5.3, L R and L I are modelled by L R and L I estimated in Section 5.5 and where λ R , λ I and φ I are modelled by mutually independent random variables Λ R , Λ I and Φ I respectively, independent of frequency ω. By construction, the mean values of these three random variables are λ R , λ I and φ I estimated in Sections 5.4 and 5.5.

  0.0324 (resp. σ Λ I = 0.0274). One then has to solve the three algebraic equations defined by the three contraints defined by Eq. ('Ødef moments' ) in which m r 0 , m r 1 and m r 2 are given and where the unknowns are C r 0 > 0, µ r 1 and µ r 2 > 0. This calculation yields C R 0 = 0.926 > 0 , µ R 1 = -67.377 , µ R 2 = 442.809 > 0 C I 0 = 1.012 > 0 , µ I 1 = -81.157 , µ I 2 = 622.792 > 0 .('Øvaleur ecarttype et lambdarmoy' )

  Soundproofing schemes including porous materials are difficult to model. The objective of part I of this paper is to construct an equivalent acoustic impedance for a multilayer system constituted of a three dimensional porous medium inserted between two thin plates. The construction of a probabilistic algebraic model is based on the introduction of an adapted algebraic model and on the use of an experimental data basis specifically carried out for this research. The probabilistic algebraic model is constituted of the mean algebraic model and of the probability distribution of the random model parameters. A minimum number of parameters in the model is used and the parameters are fitted using the experimental data basis.
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Fig. 2 .Fig. 3 .

 23 Fig. 2. Location of the 25 driving and receiving points in plate P 1 .

Fig. 4 . 3 Fig. 5 .Fig. 6 .Fig. 7 .

 43567 Fig. 4. For plate P 2 , 25 receiving points measured by accelerometers.

Fig. 8 .

 8 Fig. 8. Real part of the experimental impedance matrix [Z exp (2 π ν)] ij at frequency ν = 100 Hz as a function of indices i and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

Fig. 9 .

 9 Fig. 9. Real part of the experimental impedance matrix [Z exp (2 π ν)] ij at frequency ν = 1200 Hz as a function of indices i and j. The light grey pixels correspond to the higher values and the dark grey pixels to the lower values.

Fig. 10 .

 10 Fig. 10. Graphs of ζ R (ω) (solid line) and of ζ exp R (ω) (cross symbols) over the frequency band [100,1600] Hz.

Fig. 11 .

 11 Fig. 11. Graphs of ζ I (ω) (solid line) and of ζ exp I (ω) (cross symbols) over the frequency band [100,1600] Hz.

Fig. 12 .

 12 Fig. 12. Graphs of |ζ(ω)| (solid line) and of |ζ exp (ω)| (cross symbols) over the frequency band [100,1600] Hz.

Fig. 13 .

 13 Fig. 13. Graphs of φ I (ω) (solid line) and φ exp I (ω) (cross symbols) over the frequency band[100,1600] Hz.

Fig. 14 .

 14 Fig. 14. Graph of the function η → ρ R (η) (solid line) with η = ||x -x′ || and graph of its envelope (dashed line). Graph of the function η → ρ exp R (η) (cross symbols).

Fig. 15 .

 15 Fig. 15. Graphs of the function ω → ρ exp R (η, ω) (dotted lines) and graph of the function ω → ρ R (η) (solid line) for η = 0.075 m.

Fig. 16 .

 16 Fig. 16. Graph of the function η → ρ I (η) (solid line) with η = ||x -x′ || and graph of its envelope (dashed line). Graph of the function η → ρ exp I (η) (cross symbols).

Fig. 17 .Fig. 18 .

 1718 Fig. 17. Graphs of the function ω → ρ exp I (η, ω) (dotted lines) and graph of the function ω → ρ I (η) (solid line) for η = 0.075 m.
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and where m φ 0 = 1, m φ 1 = φ I has been calculated in Section 5 and where the second order moment m φ 2 is estimated with the experimental data basis and yields m φ 2 = 1.5085. Consequently, the standard deviation σ Λ φ = m φ 2 -φ I 2 is 0.3745 rad. The calculation of C φ 0 , µ φ 1 and µ φ 2 yields

('Øvaleur ecarttype et phiImoy' )

¿From the basic algebraic model and from the hypotheses introduced at Section 4.2, the real-valued random variable ρ R (η) is defined by

('Ømodele rhoR moyen proba' )

For a fixed value η of the distance, the confidence region of ρ R (η), corresponding to a given probability level P c , is defined by the upper envelope ρ + R (η) and the lower envelope ρ - R (η) such that

The mean value and the second order moment of the random variable ρ R (η) are such that

and the variance is

APPENDIX A : GEOMETRY AND MATERIALS PROPERTIES OF THE EXPERIMENTAL MULTILAYER SYSTEM

The multilayer system is constituted of a porous medium and of two plates in alumini for which their thicknesses are h P 1 = 1 mm and h P 2 = 3 mm. Table 1 summarizes the plate parameters. The porous medium is a polyurethan foam saturated in air whose thickness H is 100 mm. Table 2 summarizes the air parameters. The parameters of the porous medium, introduced in the Biot theory applied in the acoustic problems and characterizing the solid phase and the fluid-solid coupling, have been measured [START_REF] Guillaumie | Wall acoustic impedance. Experimental identification[END_REF][START_REF] Dauchez | Characterization of a poroelastic material[END_REF]. A summary of these results is presented in Table 3. Physical parameters for air into the porous medium.

LIST OF TABLES

Parameters Value

Mass density ρ f = 1.213 kg m -3 Adiabatic bulk modulus K a = 1.42 × 10 5 Pa Viscosity η f = 1.84 × 10 -5 kg m -1 s -1 Prandtl number P r = 0.71 Specific heats ratio γ = 1.4

Table 3 Solid phase parameters and fluid-solid coupling parameters for the porous medium.

Parameters Value

Mass density of the solid phase