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Abstract

This paper deals with the construction of a non-Gaussian positive definite matrix-valued random field whose

mathematical properties allow the fourth-order elasticity tensor of random non homogeneous anisotropic three

dimensional elastic media to be modelled. If the usual parametric probabilistic approach was used, then 21 mutually

dependent random fields should be modelled and identified by using experimental data. Such an approach would

be very difficult because the systems of the marginal probability distributions of these random fields have to be

identified due to the fact that, for a boundary value problem, the displacement field of the random medium is a

non-linear mapping of the random elasticity tensor. The theory presented in this paper allows such a probabilistic

model of the fourth-order elasticity tensor field to be constructed and depends only of four scalar parameters:

three spatial correlation lengths and one parameter allowing the level of the random fluctuations to be controlled.

To cite this article: C. Soize, C. R. Mecanique (2004).

Résumé

Modèle de champ aléatoire pour le tenseur d’élasticité des milieux aléatoires anisotropes. On

présente la construction d’un champ aléatoire à valeurs dans les matrices définies positives dont les propriétés

mathématiques permettent de modéliser le tenseur d’élasticité du quatrième ordre des mileux élastiques anisotropes

tridimensionnels aléatoires. Si l’approche probabiliste paramétrique usuelle était utilisée, alors il serait nécessaire

de modéliser et d’identifier à l’aide de données expérimentales 21 champs aléatoires mutuellement dépendants.

Une telle approche serait très difficile de part le fait que le système de lois marginales de ces champs aléatoires

doit être identifié parce que, pour un problème aux limites, le champ de déplacement est une transformation

non linéaire du tenseur d’élasticité. La théorie présentée dans ce papier permet de construire une modélisation

probabiliste du champ de tenseur d’élasticité qui ne dépend que de quatre paramètres scalaires : trois échelles de

corrélation spatiale et un paramètre permettant de contrôler le niveau des fluctuations aléatoires. Pour citer cet
article : C. Soize, C. R. Mecanique (2004).
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1. Introduction

An important problem is the construction of a stochastic representation for the fourth-order elasticity

tensor of random non homogeneous anisotropic three-dimensional elastic media. Let us consider the

following deterministic elliptic partial differential operator A on a bounded open domain Ω of R3, related

to the three-dimensional linear elasticity for a non homogeneous anisotropic elastic material,

A u = −
3

∑

i=1

ei
3

∑

j=1

∂

∂xj

{

3
∑

k,h=1

cijkh(x) εkh(u)
}

, (1)

in which x = (x1, x2, x3) ∈ Ω ⊂ R
3, where {e1, e2, e3} are the three vectors of the canonical basis of

R
3 and where x �→ u(x) = (u1(x), u2(x), u3(x)) is a twice differentiable function from Ω into R

3. The

second-order strain tensor is such that εkh(u) = (1/2) (∂uk/∂xh + ∂uh/∂xk). The fourth-order elasticity

tensor cijkh(x) has to verify [1] the symmetry property cijkh(x) = cjikh(x) = cijhk(x) = ckhij(x)

and, for all symmetric second-order real tensors {zij}ij , has to verify the positive-definiteness property,
∑3

i,j,k,h=1 cijkh(x)zkhzij ≥ c0
∑3

i,j=1 z
2
ij , in which c0 is a positive constant independent of x. For a

random medium, for all x fixed in Ω, the tensor {cijkh(x)}ijkh is replaced by a fourth-order tensor-valued

random variable {Cijkh(x)}ijkh whose mean value is {cijkh(x)}ijkh and which has to verify the symmetry

and the positive-definiteness properties in a probabilistic sense which has to be defined. Nevertheless, for

the random case, the deterministic constant c0 (introduced above) cannot generally be justified from

a probabilistic modelling point of view. Finally, x �→ {Cijkh(x)}ijkh is a fourth-order tensor-valued

random field indexed by Ω, constituted of 21 mutually dependent random fields and the stochastic partial

differential operator A associated with the operator A written as

AU = −
3

∑

i

ei
3

∑

j=1

∂

∂xj
{

3
∑

k,h=1

Cijkh(x) εkh(U)} . (2)

It should be noted that the probability distribution of this fourth-order tensor-valued random field (that

is to say the system of the marginal probability distributions) is required because the unknown solution of

the stochastic boundary value problem is a non-linear mapping of the random field x �→ {Cijkh(x)}ijkh.
If the usual parametric probabilistic approach is used, then the identification of this probability model by

using experimental data seems to be difficult. This paper deals with a non-parametric construction of the

random field x �→ {Cijkh(x)}ijkh. For that, an ensemble of non-Gaussian positive-definite matrix-valued

random fields is constructed and studied. With such a construction, the tensor-valued random field will

depend only on 4 scalar parameters: three spatial correlation lengths and one parameter allowing the
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level of the random fluctuations to be controlled. With such a model, the inverse problem related to the

experimental identification seems to be more feasible.

Let x = (x1, . . . , xn) be a vector in the Euclidean space Rn equipped with the inner product <x ,y>=
∑n

j=1 xjyj and the associated norm ‖x‖ =<x ,x>1/2. Let Mn(R) be the set of all the square (n × n)

real matrices, MS
n(R) the subset of the symmetric matrices and M

+
n (R) the subset of the symmetric

positive-definite matrices. For a matrix [A ] ∈ Mn(R), one introduces the usual following notation: [A ]T

the transpose, tr[A ] =
∑n

j=1[A ]jj , ‖A‖2F = tr{[A ]T [A ]} and ‖A‖ = sup‖x‖≤1 ‖[A ]x‖. One has ‖A‖ ≤
‖A‖F ≤ √

n‖A‖.

2. Ensemble SFG+ of normalized non-Gaussian positive-definite matrix-valued random

fields

2.1. Random field S as the germ of the ensemble SFG+

One introduces a random field S as the germ of the normalized non-Gaussian positive-definite matrix-

valued random fields belonging to SFG+ which are defined as a non-linear mapping of independent copies

of the germ S.

Definition. Let d ≥ 1 be an integer. Let x �→ S(x) be a second-order centered homogeneous Gaussian

random field, defined on the probability space (Θ, T , P ), indexed by R
d, with values in R. Let L1, . . . , Ld

be positive real numbers. The autocorrelation function RS(η) = E{S(x+ η)S(x)} of this random field,

defined for all η = (η1, . . . , ηd) in R
d, is written as RS(η) = ρ1(η1) × . . . × ρd(ηd) in which, for all

j = 1, . . . , d, one has ρj(0) = 1 and ρj(ηj) = 4L2
j/(π

2η2j ) sin2(πηj/(2Lj)) for ηj 
= 0.

Properties. For all x in R
d, E{S(x)} = 0 and E{S(x)2} = 1. The random field S is mean-square

continuous on R
d ans its power spectral measure has a compact support. Introducing LS

j as the spatial

correlation length relative to coordinate xj and defined by LS
j =

∫ +∞

0
|RS(0, . . . , 0, ηj, 0, . . . , 0)| dηj , it

can be seen that LS
j = Lj. Consequently, parameters L1, . . . , Ld represent the spatial correlation lengths

of random field S.

2.2. Ensemble SFG+

One begins in introducing a family of non-linear functions h used to define the ensemble SFG+.

Definition of the family of functions {u �→ h(α, u)}α>0. Let α be a positive real number. The function

u �→ h(α, u) from R into ]0 ,+∞[ is such that Γα = h(α,U) is a gamma random variable with the param-

eter α while U is a normalized Gaussian random variable (E{U} = 0 and E{U2} = 1). Consequently, for
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all u in R, we have h(α, u) = F−1
Γα

(FU (u)) in which u �→ FU (u) = P (U ≤ u) is the cumulative distribu-

tion function of the normalized Gaussian random variable U . The function p �→ F−1
Γα

(p) from ]0 , 1[ into

]0 ,+∞[ is the reciprocical function of the cumulative distribution function γ �→ FΓα
(γ) from ]0 ,+∞[

into ]0 , 1[ of the gamma random variable Γα with the parameter α, which is such that, for all γ in R
+,

FΓα
(γ) =

∫ γ

0
1

Γ(α) t
α−1 e−t dt in which Γ(α) is the gamma function.

Definition of the ensemble SFG+ of the random field x �→ [Gn(x)]. The ensemble SFG+ is defined as

the set of all the random fields x �→ [Gn(x)], defined on the probability space (Θ, T , P ), indexed by R
d

where d ≥ 1 is a fixed integer, with values in M
+
n (R) where n ≥ 2 is another fixed integer, and defined

as follows: ( i) Let {Sjj′(x),x ∈ R
d}, 1 ≤ j ≤ j′ ≤ n, be n(n + 1)/2 independent copies of the random

field {S(x),x ∈ R
d} defined in Section 2.1. Consequently, for 1 ≤ j ≤ j′ ≤ n, one has E{Sjj′ (x)} = 0

and E{Sjj′ (x)
2} = 1 and the random field x �→ Sjj′ (x) is completely defined. ( ii) Let δ be the real

number, independent of x and n, such that 0 < δ <
√

(n+ 1)(n+ 5)−1 < 1. This parameter will allow

the dispersion of the random field to be controlled. ( iii) For all x in R
d, [Gn(x)] = [Ln(x)]

T [Ln(x)]

in which [Ln(x)] is the upper (n× n) real triangular random matrix defined as follows. The n(n+ 1)/2

random fields x �→ [Ln(x)]jj′ for 1 ≤ j ≤ j′ ≤ n, are independent. For j < j′, the real-valued random

field x �→ [Ln(x)]jj′ , indexed by R
d, is defined by [Ln(x)]jj′ = σnSjj′ (x) in which σn is such that

σn = δ (n+1)−1/2. For j = j′, the positive-valued random field x �→ [Ln(x)]jj , indexed by R
d, is defined

by [Ln(x)]jj = σn

√

2 h(αj, Sjj(x)) in which, for j = 1, . . . , n, one hask αj = (n+ 1)/(2δ2) + (1− j)/2.

Basic properties. x �→ [Gn(x)] is a homogeneous second-order mean-square continjuous random field

indexed by R
d with values in M

+
n (R). In addition, the trajectories of random field x �→ [Gn(x)] are

continuous from R
d into M

+
n (R) almost surely. For all x ∈ R

d, one has E{‖[Gn(x)]‖2F } < +∞ and

E{[Gn(x)]} = [In]. The parameter δ is such that δ =
{

1
nE{‖ [Gn(x)]− [In] ‖2F}

}1/2
which shows that

E{‖ [Gn(x)] ‖2F } = n (δ2 + 1). The random field x �→ [Gn(x)] is non-Gaussian. For all x fixed in R
d, the

probability distribution on M
+
n (R) the random matrix [Gn(x)] is explicitly calculated in [2] and shows

that, for all x fixed in R
d, the random variables {[Gn(x)]ij , 1 ≤ i ≤ j ≤ n} are mutually dependent.

The system of the marginal probability distributions of the random field x �→ [Gn(x)] is well defined but

cannot be explicitly calculated. Finally, since [Gn(x)] belongs to M
+
n (R) almost surely, then [Gn(x)]

−1

exists almost surely. However, since almost sure convergence does not yield mean-square convergence, one

does not have, a priori, E{‖[Gn(x)]
−1‖2} < +∞. Nevertheless, it is proved in [2] that, for all n ≥ 2 and

for all x ∈ R
d, there exists a positive constant c0 independent of n and independent of x, but depending

on δ, such that E{‖[Gn(x)]
−1‖2} ≤ c0 < +∞.
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Fundamental property. Let Ω be a bounded open domain of Rd and let Ω = Ω ∪ ∂Ω be its closure in

which ∂Ω is the boundary of Ω. One then has

E
{

(sup
x∈Ω

‖ [Gn(x)]
−1‖)2

}

= c2G < +∞ , (3)

in which sup is the supremum and where 0 < cG < +∞ is a finite positive constant.

Remark concerning the proof of Eq. (3). Let us consider the case d = 1 with Ω be a compact inter-

val of R. Since the stochastic process {‖Gn(x)
−1‖ ,x ∈ Ω ⊂ R} is not a continuous local martingal

with respect to an increasing family of σ-fields, the following fundamental Doob maximal inequality [3]

E
{

sup
x∈Ω ‖ [Gn(x)]

−1‖2
}

≤ 4E
{

‖ [Gn(x)]
−1‖2

}

cannot be used. In addition, one has to consider the

non-Gaussian random field case d ≥ 2. Consequently, there is no known result allowing a direct proof of

Eq. (3) to be obtained and a complete proof of this fundamental result is given in [4].

3. Ensemble SFE+ of non-Gaussian positive-definite matrix-valued random fields

3.1. Definition of the ensemble SFE+

Let d ≥ 1 and n ≥ 2 be two fixed integers. Let Ω be an open (or closed) bounded (or not) domain

of Rd (one can have Ω = R
d). Let x �→ [an(x)] be a matrix-valued field from Ω into M

+
n (R). Then, for

all x fixed in Ω, there is an upper triangular invertible matrix [Ln(x)] in Mn(R) such that [an(x)] =

[Ln(x)]
T [Ln(x)]. It is assumed that: ( i) there is a real positive constant 0 < c0 < +∞ independent of

x such that, for all x in Ω and for all y ∈ R
n, < [an(x)]y ,y> ≥ c0 ‖y‖2; ( ii) there is a real positive

constant 0 < c1 < +∞ independent of x such that, for all x in Ω, one has ‖[Ln(x)]‖ ≤ √
c1 which yields

< [an(x)]y ,y > ≤ c1 ‖y‖2, for all y in R
n and for all x in Ω. Consequently, for all x in Ω, one has

‖[an(x)]‖ ≤ c1 and ‖[an(x)]‖F ≤ √
n c1. The ensemble SFE+ is then defined as the set of all the random

fields x �→ [An(x)], defined on the probability space (Θ, T , P ), indexed by Ω, with values in M
+
n (R), such

that

∀x ∈ Ω , [An(x)] = [Ln(x)]
T [Gn(x)] [Ln(x)] , (4)

in which x �→ [Gn(x)] is the random field in SFG+, defined on (Θ, T , P ), indexed by R
d and with values

in M
+
n (R) (see Section 2.2).
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3.2. Properties of the random field x �→ [An(x)]

Basic properties. For all x in Ω, [An(x)] is a random matrix with values in M
+
n (R), the mean function

is x �→ E{[An(x)]} = [an(x)] ∈ M
+
n (R) and E{‖[An(x)]‖2} ≤ E{‖[An(x)]‖2F } < +∞ which proves that

x �→ [An(x)] is a second-order random field on Ω. In general, since [an(x)] depends on x, then the random

field {[An(x)] ,x ∈ Ω} is non homogeneous.We haveE{‖[An(x)]−[an(x)]‖2F } = {δ2/(n+1)}{‖[an(x)]‖2F+
( tr [an(x)])

2}. The dispersion parameter, defined by δAn
(x) = {E{‖[An(x)]− [an(x)]‖2F }/‖[an(x)]‖2F }1/2,

is such that δAn
(x) = (δ/

√
n+1){1 + ( tr [an(x)])

2/ tr{[an(x)]2}}1/2.
Spatial correlation lengths for the homogeneous case. If [an(x)] = [an] is independent of x, then the ran-

dom field {[An(x)] = [Ln]
T [Gn(x)] [Ln] ,x ∈ Ω} can be viewed as the restriction to Ω of a homogeneous

random field indexed by R
d. Therefore, δAn

(x) = δAn
is independent of x. Let η = (η1, . . . , ηd) �→

rAn(η) = trE{([An(x+ η)]−[an]) ([An(x)]−[an])}/E{‖[An(x)]−[an]‖2F } from R
d into R. One has

rAn(0) = 1 and rAn(−η) = rAn(η). For all j = 1, . . . , d, the spatial correlation length LAn

j of the

homogeneous random field x �→ [An(x)] indexed by R
d, relative to the coordinate xj , can then be defined

by LAn

j =
∫ +∞

0
|rAn(0, . . . , 0, ηj, 0, . . . , 0)| dηj .

4. Ellipticity of the stochastic elasticity operator

The stochastic elasticity operator given by Eq. (2) is assumed to be defined on an open bounded domain

Ω of R3 whose boundary ∂Ω is written as Γ0 ∪ Γ. On Γ0, there is a zero Dirichlet boundary condition.

One introduces the real Hilbert spaces H = (L2(Ω))3 and V = {u ∈ (H1(Ω))3, u = 0 on Γ0} whose

inner products are denoted by <u,w>H and <u,w>V respectively, and where the associated norms are

denoted by ‖u‖H and ‖u‖V respectively. Let H = L2(Θ, H) and V = L2(Θ, V )) be the real Hilbert spaces

of all the second-order random variables θ �→ {x �→ U(x, θ)} defined on the probability space (Θ, T , P ),

with values in H and V respectively, equipped with the inner products ≪U ,W ≫H= E{<U ,W >H}
and ≪U ,W ≫V= E{<U ,W >V } respectively, and where the associated norms are denoted by ‖U‖H
and ‖U‖V respectively.

4.1. Weak formulation of the stochastic elasticity operator

Let n = 6 and d = 3. Let us introduce the new indices I and J belonging to {1, . . . , 6} such that I = (i, j)

and J = (k, h) with the following correspondence: 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 = (1, 2), 5 = (2, 3)

and 6 = (3, 1). Thus, for all x in Ω, one introduces the matrix [an(x)] in M
+
n (R) such that [an(x)]IJ =

6



cijkh(x) and the random (n× n) real matrix [An(x)] such that [An(x)]IJ = Cijkh(x). A nonparametric

probabilistic model of the random fourth-order elasticity tensor Cijkh(x) consists in choosing the random

field x �→ [An(x)] in SFE+ with the mean value [an(x)] = E{[An(x)]}. The weak formulation of the

stochastic elasticity operator defined by Eq. (2) leads the random bilinear form (U ,W ) �→ K(U ,W ) on

V× V to be introduced, such that

K(U ,W ) =

∫

Ω

< [An(x)] e(U(x)) , e(W (x))> dx , (5)

in which e(u) = (ε11(u), ε22(u), ε33(u), 2 ε12(u), 2 ε23(u), 2 ε31(u)).

4.2. Ellipticity of the random bilinear form

Let (U ,W ) �→ K(U ,W ) be the bilinear form on V × V defined by K(U ,W ) = E{K(U ,W )}. If the
following property was introduced: for all x ∈ Ω and for all Rn-valued random variable Y defined on

(Θ, T , P ), < [An(x)]Y ,Y > ≥ c ‖Y ‖2 a.s in which 0 < c < +∞ is independent of x, then the bilinear

form (U ,W ) �→ K(U ,W ) on V × V would be coercive in V (i.e. V-elliptic) because, we would have

K(U ,U) ≥ cE
{∫

Ω ‖e(U(x))‖2 dx
}

≥ cK‖U‖2
V
with 0 < cK < +∞. This uniform ellipticity condition,

which is generally not coherent with the available information which can be deduced from the objective

data, does not hold for the random field x �→ [An(x)] belonging to SFE+ and consequently, the usual

analysis given above cannot presently be used. A non uniform ellipticity condition has to be developed

using the fundamental property defined by Eq. (3): it is proved [4] that, for all random field {x �→ U(x)}
in V, we have

√

E{K(U ,U)2} ≥ cK ‖U‖2V , (6)

in which cK is a positive finite real constant. Note that Eq. (6) differs from E{K(U ,U)} ≥ cK ‖U‖2
V

due to the fact that the two positive-valued random variables sup
x∈Ω ‖ [Gn(x)]

−1‖ and K(U ,U) are

dependent.

4.3. Existence and uniqueness of a weak second-order stochastic solution for a stochastic BVP

Let w �→ f(w) be a given continuous linear form on V , that is to say such that |f(w)| ≤ cf ‖w‖V with

0 < cf < +∞. Then, the following random problem: find a random field {x �→ U(x)} in V such that, for

all W ∈ V, K(U ,W ) = f(W ) a.s , has a unique stochastic solution {x �→ U(x)} in V.

The proof can easily be constructed. From equations K(U ,W ) = f(W ) and |f(w)| ≤ cf ‖w‖V , it can
be deduced that K(U ,U) ≤ cf ‖U‖V and consequently, E{K(U ,U)2} ≤ c2f E{‖U‖2V }. Using Eq. (6)
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yields c2K ‖U‖4
V

≤ c2f ‖U‖2
V
which can be rewritten as ‖U‖V ≤ cU < +∞ with cU = cf/cK and yields the

existence. Finally, the proof of the uniqueness is straightforward because, if U and U ′ are two solutions in

V, for all W in V, one has K(U−U ′,W ) = 0 a.s and thus E{K(U−U ′,W )2} = 0. Taking W = U−U ′

and from Eq. (6) yield ‖U −U ′‖2
V
= 0, i.e., U = U ′ in V.

5. Conclusions

One has presented the mathematical construction of a non-Gaussian positive-definite (n×n) real matrix-

valued random field, indexed by any domain of Rd, depending only on the mean function and on a small

number of scalar parameters constituted of a dispersion parameter and d spatial correlation lengths. Such

a random field is adapted to the stochastic inverse problem relative to the experimental identification of

the random field. A fundamental mathematical property is proved and allows the ellipticity of stochastic

partial differential operators to be obtained.

References

[1] P. G. Ciarlet, Mathematical Elasticity, Volume 1: Three Dimensional Elasticity, North-Holland, Amsterdam, 1988.

[2] C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, Journal of the
Acoustical Society of Amererica 109(5) (2001) 1979-1996.

[3] J.L. Doob, Stochastic Processes, John Wiley and Sons, New York, 1953 (Wiley Classics Library Edition Published
1990).

[4] C. Soize, Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators,
Computer Methods in Applied Mechanics and Engineering, submitted in March 2004.

8


