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Data and model uncertainties in complex aerospace engineering systems

M. Pellissetti ', E. Capiez-Lernout 2, H. Pradlwarter !, G.I. Schuéller ' & C. Soize 2
L Institute of Engineering Mechanics, Leopold-Franzens University, Innsbruck, Austria
2 Laboratoire de Mécanique, University of Marne-La-Vallée, Paris, France

ABSTRACT: The dynamical analysis of complex mechanical systems is in general very sensitive to random
uncertainties. In order to treat the latter in a rational way and to increase the robustness of the dynamical pre-
dictions, the random uncertainties can be represented by probabilistic models. The structural complexity of the
dynamical systems arising in these fields results in large finite element models with significant random uncer-
tainties. Parametric probabilistic models capture the uncertainty in the parameters of the numerical model of
the structure, which are often directly related to physical parameters in the actual structure, e.g. Young’s modu-
lus. Model uncertainties would have to be modeled separately. On the other hand, the proposed nonparametric
model of random uncertainties represents a global probabilistic approach which, in addition, takes directly into
account model uncertainty, such as that related to the choice of a particular type of finite element. The uncertain
parameters of the structure are not modeled directly by random variables (r.v.’s); instead, the probability model
is directly introduced from the generalized matrices of a mean reduced matrix model of the structure by using
the maximum entropy principle (Soize 2001). In this formulation the global scatter of each random matrix is
controlled by one real positive scalar called dispersion parameter.

An example problem from aerospace engineering, specifically the FE model of the scientific satellite INTE-
GRAL of the European Space Agency (ESA) (Alenia 1998) is used to elucidate the two approaches. First the
analysis based on the parametric formulation is carried out; the associated results are then used to calibrate the
dispersion parameters and to construct the reduced matrices of the non-parametric model.

1 INTRODUCTION certainties to be modeled by considering the uncer-

tain physical parameters of the mechanical-numerical

Numerical models have become a vital source of in-
formation for the manufacturers of complex structural
systems. With these models the dynamical behavior
of the manufactured structural systems can be pre-
dicted beforehand. In practice, the accuracy of every
manufacturing process is limited. Consequently, the
manufactured system is different from the designed
system. These differences can have significant effects
on the dynamics of the structure. For this reason a de-
terministic model, hereafter referred to as the mean
model, is usually not sufficient for a robust prediction
of the dynamic response of the structure. The robust-
ness of the predictions is however an indispensable
prerequisite for its practical application. To increase
the robustness of the predictions, the mean model can
be extended to construct a probabilistic model.

In this paper, two probabilistic approaches for model-
ing random uncertainties are considered, namely the
parametric and the nonparametric approach.

The parametric probabilistic approach allows data un-

model as random quantities. Such uncertain parame-
ters are the geometrical parameters, the components
of the elasticity tensor or the boundary conditions.
Parametric approaches have been shown to be effi-
cient for modeling data uncertainties and are widely
used in computational mechanics (see for instance
(Ibrahim 1987, Singh and Lee 1993, Lin and Cai
1995, Schuéller (Ed.) 1997, Schuéller 2001, Schenk
and Schuéller 2003)). While some attempts have been
made to incorporate model uncertainties with the
parametric approach (cf. e.g. (Menezes and Schuéller
1997, Menezes and Brenner 1994)), it is typically fo-
cused to model the scatter in the parameters of a given
model.

On the other hand, the nonparametric approach aims
to take into account model uncertainties to begin with.
Its theoretical concepts have been developed in (Soize
2000, Soize 2001) and experimental validation has
been carried out in (Chebli and Soize 2004). In the
nonparametric probabilistic approach, the generalized

677



matrices issued from a mean reduced matrix model
of the structure are replaced by random generalized
matrices. The probabilistic description of these ran-
dom matrices is constructed by using the maximum
entropy principle under constraints defined by the
available information and yields a new class of ran-
dom matrices called the “positive definite ensemble”
(Soize 2005a, Soize 2005b). With such a formulation,
the global dispersion level of each random matrix is
controlled by a unique positive scalar which is called
the dispersion parameter.

In this paper, the parametric approach is used to con-
struct a reference solution of the probabilistic re-
sponse. This solution is used to calibrate the non-
parametric model, from which response predictions
are derived. A test example from aerospace engineer-
ing involves the frequency response analysis of the
INTEGRAL satellite of the European Space Agency.

2 PARAMETRIC PROBABILISTIC APPROACH
FOR DYNAMICAL SYSTEM WITH RANDOM
UNCERTAINTIES

2.1 Mean finite element model of the dynamical sys-
tem

Based on the theory of the linear viscoelasticity with-
out memory, the mean finite element matrix equation
of the structure is written for all w in band . ,

(—?M] +iw[D] + [K])u(w) = f(w) , (1)

in which u(w) and f(w) are the ™ vectors of the

DOFs and of the external forces, respectively. In the
above equation and in the sequel an underscore de-
notes mean matrices and vectors. Since the struc-
ture has a free boundary, the mean mass matrix [M]
is a positive-definite symmetric (m x m) real ma-
trix and the mean damping and stiffness matrices are
positive semidefinite symmetric (m x m) real matri-
ces. Furthermore, it is assumed that the kernel of the
mean matrices [D] and [K] is identical, constituted
of r rigid-body modes with 0 < r < 6 denoted as

2.2 Parametric model of random uncertainties

LetX = (Xy,...,X,) be the random #-valued vec-
tor whose components are independent Gaussian r.v.’s
and describe mechanical parameters such as geomet-
rical parameters of the structure, coefficients of the
elasticity tensor, mass density etc. Clearly, the ran-
domness propagates to the finite element mass, damp-
ing and stiffness matrices. The random finite element
model is then written as

(= MP] 4 i [D™] + [K™]) U™ (o) = )
2
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in which UP*(w) is the  ™-valued vector of the DOFs
and where [MP*] = [M(X)], and [D*] = [D(X)],
[K*] = [K(X)] are the random finite element mass
and damping, stiffness matrices with values in the set
of the positive-definite symmetric (m x m) real ma-
trices and in the set of the positive semidefinite sym-
metric (m X m) real matrices.

3 NONPARAMETRIC APPROACH FOR DY-
NAMICAL SYSTEMS WITH RANDOM UN-
CERTAINTIES

The main idea of the nonparametric approach (Soize
2000, Soize 2001) consists in replacing the general-
ized matrices of a mean reduced matrix model of the
structure by random matrices.

3.1 Mean reduced matrix model

Since we are interested in the elastic motion of the
structure, we then introduce the (m x n) real matrix
[®] whose columns are the n << m eigenvectors ¢
related to the n strictly positive lowest eigenfrequen-
cies )\, = w?. The mean reduced matrix model is

written as
u(w) = [Qlqw) 3)

in which q(w) is the " vector of the generalized co-
ordinates solution of the mean reduced equation

( _wz [Mred] + tw [Qred} + [Kred] ) ﬂ(w) = f(w)(

in which F(w) = [®]Tf(w) is the " vector of
the generalized forces and where the mean re-
duced mass, damping and stiffness matrices [M 4] =
(|7 (0] [®], [Dyy) = [0]7 [D][0] and [Kny] =
[@]T [K] [®] are positive-definite symmetric (n X n)
real matrices.

3.2 Construction of the nonparametric model of
random uncertainties

For linear elastodynamics in the low frequency range
the nonparametric model of random uncertainties
yields the random matrix equation (Soize 2000, Soize
2001),

(—w M +iw D] + (KT Q(w) = l"(af)5 :

red red
in which [M{'], [Di'] and [K%y'] are positive-
definite symmetric (n x n) real-valued matrices cor-
responding to the random reduced mass, damping and
stiffness matrices and where Q(w) is the . "-valued
random vector of the random generalized coordinates.
The ™-valued random vector U™ (w) is thus recon-
structed by

U (w) = [2"]Q(w) (6)

© 2005 Millpress, Rotterdam, ISBN 90 5966 033 1



3.2.1 Probability model of the random matrices
The nonparametric probabilistic approach requires
the normalization of the mean reduced matrices such
that [M.eq] = [Ly|" [Las), [Dreg] = [Lp]" [Lp)] and
(Kl = [Li|" [Lg], in which [Ly,], [Lp] and [Ly]
are diagonal (n x n) real matrices. Each random ma-
trix is written as

[Mg};f} = [LM]T [GM } [Lkﬂ (7
[Drey | [Lp]" [Gp] [Lp)] ®)
nep;r} = [LK]T [GK } [LK] : ©)

The probability distribution of random matrices [G ],
[Gp| and [Gg] is derived from the maximum en-
tropy principle issued from the information theory
(Shannon 1948) with the available information (Soize
2000). It can be shown that random matrices [G ],
[Gp] and [Gg] are independent r.v.’s whose disper-
sion level can be controlled by the positive real pa-
rameters 0,7, 0p and dx which are independent of the
dimension n.

The formal probabilistic description of the ran-
dom positive-definite symmetric real matrix [G] is de-
scribed in (Soize 2000, Soize 2001). For numerical
calculations, i.e. Monte Carlo simulation, the follow-
ing procedure has been proposed to generate realiza-
tions of the random matrix [G],

[G] = [Le]" [La] (10)

In the above equation [L¢] is an (n x n) upper tri-
angular random matrix resulting from the Cholesky
factorization such that,

() rv’s {[L¢]jj,j < j'} are independent;

(2) for j < 7/, real-valued r.v. [L¢];; can be writ-
ten as [L¢;y = 0, Uj; in which o, = §(n + 1)7%/2
and where Uj; is a real-valued Gaussian r.v. with zero
mean and variance equal to 1;

(3) for j = j', positive-valued r.v. [L¢];; can be
written as [L¢l;; = 0,+/2V; in which o, is de-
fined above and where V/ is a positive-valued gamma
random variable whose probability density function
pv, (v) with respect to duv is written as,

1

peni—l e , (11)
[(an,;)

py;(v) = r+(v)
s
where a, ; = 25 + 5.

4 IDENTIFICATION OF THE DISPERSION PA-
RAMETERS FOR THE NONPARAMETRIC
APPROACH

In this section the identification of the dispersion pa-
rameters d,;, 0p and Ox is outlined, based on the
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parametric probabilistic model. Let AP* and AP be
the non zero first random eigenvalues related to the
real random generalized eigenvalue obtained with the
parametric and the nonparametric model of random
uncertainties. The probability density functions of
random eigenvalues A} and AT™*" denoted as pyrr(A)
and pAnlpar()\) are then compared in the least square

sense. The function J(d/, df) is introduced,

 lpam(0nr, k) — papel] 2

J(Onr,0x) = ol

(12)
in which the norm || f|| .2 is given by

Il = ([ 1rra)™ . a3

The identification is then carried out such that param-
eters 0, and O are solution of the equation

5mi§n J(O0n,0k) - (14)

Dispersion parameter dp is identified separately by
using the identification method proposed in (Capiez-
Lernout and Soize 2004). Let [DP<] be the random re-
duced dissipation matrix from the parametric proba-
bilistic model. The dispersion parameter d is written

as
B W' (n + 1)
v \/trqgred])utr([gmd]a -

where W' = E{||[Dry) — [Dyeq][[7}
and [|[A]||r = tr([A][A]").

5 METHODOLOGY OF RESOLUTION FOR
ANALYZING THE RANDOM RESPONSE

5.1 Convergence analysis of the stochastic system

A stochastic convergence analysis allows to specify
the number n of modes related to the mean finite el-
ement model of the satellite to be kept and to specify
the number n, of realizations used in the Monte Carlo
numerical simulation. The convergence is monitored
by defining the following sequence |||U™*||| such that

o = £{ [ joe@ipds} L as)
weB

in which |[U"*(w)||*> denotes the Hermitian norm of
random vector U™ (w). The norm |||U™"||| is esti-
mated with the function (n,,n) — Conv(n,,n) such
that,

N

Comvlnem? = == 3 [ Um™(0,6))|P do
j=1 7B

N “—

an
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5.2 Confidence region of the random response

The confidence regions of the random response
related to a given probability level o are con-
sidered. The exponents " or P* are omitted in
this section, since the expressions apply in gen-
eral. Let jobs be the observation node. Let u; (w)
be the deterministic vector and let U;, (w) be the
random vector related to the three translational
DOFs of node jos. We then introduce the scalar
w;, (w) = 201ogy, (|[u; (w)]]) and the random vari-
able W, (w) = 20logy,(||Uj,.(w)|]). The mean
value W} (w) of the random response is introduced
such that

Wi, (w) = 20 logyo(IE{]|Uj, W)II}) - (18)
Let w fixed in . . The quantile function Qw; (o;w)

of random variable W, (w) is defined such that

Qw,, (yw) =inf Fy, (wjw)>a (19)

in which Fyy,  (w;w) is the cumulative density func-

tion of random variable W, (w). Let Wjﬂbs(ﬁl;w) <
. < W, (0,,;w) be the ordered statistic associ-
ated with W, (f;w) < ... < W, (0n,;w). The
unbiased estimation of cumulative density function
Fy,  (w;w) is defined as

FWJobsms (w;w) = Z Ho(w - Wjobs(ek;w)) )
k=1

1
s
(20)

in which H is such that H°(z) = 1 if z > 0 and
H%x) = 0 if not. Let wj,, + and wj, — be the a-
quantile and the (1 — «)-quantile. Using Eqs (19) and
(20) yields
ky = fix(ns ),

u}johsa"'(w) = M/jobs(ek’+;w) y

Wi (@) = Wi (0w), ko =fix(ng (1 - a)),

in which fix(x) is the integer part of real .

6 NUMERICAL EXAMPLE

6.1 Mean finite element model of the free satellite

The mean finite element model of the satellite is a
three dimensional mesh with 120 000 DOFs (see Fig-
ure 1). Let jex be the x-translational DOF of the satel-
lite structure subjected to a deterministic load. The
force vector is then written as f(w) = ia(w)M g,
in which the vector g = (g1,...,¢,) is such that
g, = Ojuck» Yk € {1,...,m}, where the concentrated
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Figure 1. Finite element model of the satellite (provided by
ESA/ESTEC).

mass M = 3.82610% kg and where a(w) is a pre-
scribed acceleration such that a(w) = 9.81m.s™2
if w < 157rad.s™ and a(w) = 7.84m.s 2 if w >
157 rad.s~'. Mean reduced damping matrix [D,.4] is
such that [D, 4los = 2 \/A_afa dap, in Which € is the
modal damping ratio related to eigenmode éa such
that £ = 0.015 if w, < 188.5rad.s™" and { =
0.025ifw,, > 188.5rad.s7*.

6.2 Description of the parametric probabilistic
model

The uncertain parameters of the satellite are modeled
by 1318 independent, Gaussian r.v.’s with coefficients
of variation between 4 and 12 %. The randomness
of the dissipation is introduced from the mean re-
duced damping matrix [D,.,]. Modal damping ratios
are modeled by independent r.v.’s. Random matrix
[DP%] is such that [Dis]as = 2 VAR =, 8o, in which
=, 1s the random modal damping ratio whose proba-
bility distribution is Lognormal with 40 % of standard
deviation around its mean value £ o

6.3 Estimation of the dispersion parameters for the
nonparametric probabilistic approach

The probability distribution A +— p,rr(A) is estimated
with ng, = 1500 realizations, cf. Figure 2. The mini-
mization of function J(d,/, 0k ) yields 6y, = 0.14217
and dx = 0.13487. The approximate pdf’s from
the two approaches match reasonably well. Figure 3

© 2005 Millpress, Rotterdam, ISBN 90 5966 033 1



x10

800 950 1000 1050 1100 1150

Figure 2. Identifi cation of dispersion parameters &, and dx:
Graph of the probability distributions A — p /\‘I“'</\) for the para-
metric approach (thin line) and A — p Ar;mr()\) for the nonpara-
metric approach (thick line) with dispersion parameters such that
Op = 0.14217 and dx = 0.13487.

shows the estimation of dp with respect to the num-
ber ng of realizations used for the Monte Carlo simu-
lation. It is seen that a good convergence is observed
for ny, = 300 and yields 6p = 0.4166.

0.45

0.35

200 400 600 800 1000 1200 1400

Figure 3. Identifi cation of dispersion parameter dp: Graph of
ng — 0p

6.4 Convergence analysis of the stochastic system

A Monte-Carlo simulation has been performed with
n, realizations and observing the function n, +—
20 log,o (Conv(ns,n)) for n < 294 and n, < 1500.
The convergence analysis showed that with ny = 750
and n = 150 the resulting approximation is adequate.

Proceedings EURODYN 2005, Structural Dynamics

6.5 Confidence region comparison related to the
random elastic response of the free satellite

To simplify the notations, indicial exponents "*" and
Pa are omitted. We consider the random response of
the free satellite at node jqps (see figure 1) in low-
frequency band . The numerical calculations are car-
ried out with n = 150 and ny = 1500. Figures 4

100 20 40 60 80 100
Figure 4. Confi dence region of random displacement related to
node jobs (in dB) over a low-frequency band = [5, 100] H z
and obtained with the nonparametric probabilistic approach:
deterministic response of the mean model (thick dashed-dotted
line), mean of the random response for the stochastic model (thin
dotted line), lower and upper envelopes of the confi dence re-
gion corresponding to a probability level equal to 0.98 (dark gray
filled zone).

-100

20 40 60 80 100

Figure 5. Confi dence region of random displacement related to
node jobs (in dB) over a low-frequency band = [5, 100] Hz
and obtained with the parametric probabilistic approach: deter-
ministic response of the mean model (thick dashed-dotted line),
mean of the random response for the stochastic model (mid thin
dotted line), lower and upper envelopes of the confi dence re-
gion corresponding to a probability level equal to 0.98 (dark gray
filled zone).

and 5 display the graphs related to the confidence re-
gion of the random displacements of node jqps ob-
tained for a probability level equal to 0.98 and con-
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structed with the quantile method. The thick dashed-
dotted line shows the graph v — w, (v), in which
v = w/(2m). The thin dotted line corresponds to
Vi I/V;ibs(y). The confidence region corresponds to
the gray filled zone whose envelopes are delimited by
the mappings v — w;,, (v) and v — w, (v). Figure 4
refers to the nonparametric, figure 5 to the paramet-
ric approach. Clearly, the respective confidence re-
gions may be compared for frequencies lower than
30 H z, which justifies the relevance of the identifica-
tion procedure of the dispersion parameters. But fig-
ure 4 shows that for frequencies greater than 30 H z,
the mean of the random response obtained with the
nonparametric approach is very different from the re-
sponse of the mean model. Furthermore, there exist
frequencies for which the response of the mean model
is outside from the confidence region. On the con-
trary, this phenomenon is not present for the random
response obtained with the parametric probabilistic
model described by figure 5. These differences are
explained by the ability of the nonparametric prob-
abilistic model to represent model uncertainties.

7 CONCLUSION

Although the dispersion level related to the random
uncertainties of the satellite is the same for both prob-
abilistic approaches, the random forced responses do
not look similar. Since the two approaches focus on
different facets of the problem, a direct compari-
son is not meaningful. Within the frequency band
(0,30 Hz], for which the model uncertainties are
very small (the data uncertainties being preponder-
ant), both parametric and nonparametric approaches,
which allows data uncertainties to be modeled, yield
similar results (see Figures 6 and 7). For higher fre-
quencies, however, figures 4,5, shows that the con-
fidence regions cannot be compared. The parametric
approach, as applied to this problem, models data un-
certainties, while the nonparametric approach mod-
els both data and model uncertainties. Within the fre-
quency band [30, 100 Hz] (for the free satellite), the
results show that the satellite structure is more sensi-
tive to model uncertainties than to data uncertainties.
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