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Uncertain rotating dynamical systems with cyclic geometry

E. Capiez-Lernout & C. Soize

Laboratoire de Mécanique, University of Marne-La-Vallée, Paris, France

J.-P. Lombard & C. Dupont
SNECMA Moteurs, Villaroche, France

ABSTRACT: The aim of this paper is to propose probabilistic methodologies for the dynamic analysis of the
mistuning of rotating bladed-disks with cyclic symmetry in the low frequency range. A recent nonparametric
probabilistic model of random uncertainties is used for modeling the random uncertainties in the context of the
blade mistuning. An inverse probabilistic approach, based on the identification of the dispersion parameters
controlling the nonparametric probability model with respect to the blade tolerances is constructed in order to
define the blade geometric tolerances yielding a given probability level of the dynamic amplification of the
forced response. A numerical application is presented in details.

1 INTRODUCTION

It is well known that the description of a bladed disk
using its cyclic symmetry properties is not sufficient
to predict accurately its dynamic forced response.
The blade mistuning terminology is then introduced
because the blades of a bladed disk are slightly differ-
ent from one to another one, due to the manufactur-
ing process of the blades. Such a mistuning is con-
sidered in a probabilistic context and is not without
consequence when analyzing the forced response of
the bladed disk. Indeed, the energy of the mistuned
bladed disk can be localized on a few blades, inducing
large dynamic amplifications, see for instance (White-
head 1966)... with respect to the nominal structure.
Various researches have been carried out, see for
instance (Griffin and Hoosac 1984, Mignolet et al.
2001)... in order to understand and to control this phe-
nomenon.

This paper deals with the inverse problem related
to the definition of the blade manufacturing tolerances
for a given confidence region of the dynamic amplifi-
cation factor of the blades. The nonparametric prob-
abilistic model of random uncertainties developed for
linear elastodynamics (Soize 2000, Soize 2001) is
used for modeling the blade mistuning. The main
steps concerning the resolution of such an inverse
problem (Capiez-Lernout et al. 2005) are based on (1)
the construction of a mean reduced matrix model for
each blade because the probability model related to
the nonparametric approach is implemented from re-

duced matrices; (2) the construction of the probability
model by using the maximum entropy principle with
the available information; three scalar parameters al-
lowing the dispersion of the random mass, damp-
ing and stiffness matrices to be controlled constitute
the data input of the nonparametric approach; (3)
the identification of these dispersion parameters with
respect to the geometric parameters controlling the
blade geometric mistuning. It should be noted that the
geometric mistuning is completely controlled by the
probabilistic nonparametric model of the blade un-
certainties. This nonparametric model is itself com-
pletely controlled by two scalar dispersion parameters
0pr and 0 related to the mass and the stiffness oper-
ators of the blades. The proposed estimator of these
dispersion parameters with respect to the blade geom-
etry uncertainties is weakly sensitive to the choice of
the probability model used for generating the blade
random geometry. It is important to note that the
probabilistic model of the blade random geometry
is not directly used for predicting the mistuning but
only for estimating the dispersion parameters ¢, and
Or. In Section 2, a mean reduced matrix model both
adapted to the nonparametric approach and to large
finite element models is briefly recalled. The proba-
bilistic methodology concerning the inverse problem
of blade tolerances definition is presented in Section
3. Finally, Section 4 is devoted to the numerical ap-
plication consisting in a large finite element model of
an industrial fan stage.
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2 MEAN REDUCED MATRIX MODEL

In this paper, M,,,(R), ,(R) and M, (R) are the set
of all the (m x n) real matrices, the set of all the (n x
n) real matrices and the set of all the positive-definite
symmetric (n X n) real matrices.

The structure considered is a three dimensional ro-
tating fan stage modeled by a bladed disk with N
blades. The bladed disk is rotating around a fixed axis
with the constant velocity €2 and is submitted to exter-
nal forces. The vibration analysis is carried out in the
rotating frame related to the reference configuration
in the low-frequency band B. The centrifugal terms
are taken into account in the stiffness terms. Gyro-
scopic coupling due to rotating motion is not taken
into account. It is assumed that the uncertainty level
is the same for each blade and that the random uncer-
tainties are statistically independent from one blade
to another one. The construction of a mean reduced
matrix model for each blade is thus required in order
to model the random uncertainties with the nonpara-
metric probabilistic approach. The mean reduced ma-
trix model of the structure is based on the Craig and
Bampton decomposition method (Craig and Bampton
1968) for each blade with an additional reduction for
the disk (Benfield and Hruda 1971). The efficiency of
this dynamic substructuring method has been proved
for mistuned industrial bladed disks (Seinturier et al.
2002).

The matrix equation related to the mean finite ele-
ment model of the bladed disk is written as

(- +iwD + K)ue) = f@), )

in which u(w) and f(w) are the C" vectors of the DOF
and of the external loads and where [M], [D] and [K]
are the mean finite element mass, damping and stiff-
ness matrices of the bladed-disk which are positive-
definite matrices. The projection basis resulting from
the substructuring method is written with the follow-
ing block decomposition as

| _ |- ] Joun=| [s%cj] Ej] e

In Eq. (2), uf, uy and u? are the c™, CNm and CN ™
vectors of the n{ internal DOF of the disk, of the N ny,
coupling interface DOF and of the /V n; internal DOF
of the blades. The vectors q¢ and " are the C"* and
the C™"* vectors of the generalized coordinates of the
disk and of the blades. The block decompositions of
matrices [S”] and [®°] with respect to the blades are
constituted of matrices [S%,] = [57]d;, and [®%] =
[®7] 6,1, where subscript jk is related to blade j and
blade k. Matrix [®7] is the matrix in M, ,,, (R) whose
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columns are the eigenvectors related to the n; first
eigenvalues of blade j with fixed coupling interface.
The matrix [S’] is the matrix in M, ,,.. (R) represent-
ing the static boundary functions of blade j. The ma-
trices [®%°] and [®%°] correspond to the block decom-
position of matrix [®*¢] with respect to the internal
DOF and the coupling interface DOF of the disk. This
matrix [@¢] is the matrix in My, +nt.n, (R) whose
columns are the eigenvectors of the sub-system re-
lated to the DOF of the disk and extracted from the as-
sembled system of the mean finite element matrices of
the disk with the mean reduced matrices of the blades.
The integer Ny is such that N; = N ng, in which n,
is the number of loaded disk modes related to the ny
first eigenvalues of the disk for a given circumferen-
tial wave number. It should be noted that such eigen-
vectors can be calculated by using the cyclic sym-
metry of the disk (Ohayon and Soize 1998). Using
Eqgs. (1,2) yields the mean reduced matrix equation

)| 3 | = 121710, ®

where [Areq(w)] = —w® [Mted} +iw [Dred] + [Kreg] is
the mean reduced dynamic stiffness matrix of the
bladed disk such that, for E representing M, D or K,

[Ered} - [E]T [E] [ﬂ] > [Ered] € MXI,,JFNd(R)- (4)

Introducing the block decomposition associated with
Eq. (3) yields

Al (w A (w
[Ared(w)] = [[Ap(‘(*))f; %Ab%w;% ) 5

in which [A%(w)] is the generalized dynamic stiff-
ness matrix of the disk constructed with eigenvectors
matrix [®%<] and where the block jk of [A°(w)] is
such that [A®(w) 4] = [A? (w)] §;1, in which [A’(w)] =
—w M) +iw[DI] + [K] is the generalized dynamic
stiffness matrix of each blade with fixed coupling in-
terface and constructed with eigenvectors matrix [®7].

3 MISTUNING ANALYSIS OF THE BLADED
DISK WITH RANDOM UNCERTAINTIES

The nonparametric probabilistic model of random un-
certainties, whose theory has been completely devel-
oped in linear elastodynamics for the low-frequency
range (Soize 2000, Soize 2001) and has been ex-
tended and validated for modeling non homogeneous
random uncertainties (Soize and Chebli 2003) and for
mistuning problematics (Capiez-Lernout and Soize
2004), is used.

© 2005 Millpress, Rotterdam, ISBN 90 5966 033 1



3.1 Nomparametric probabilistic model of random
uncertainties

Since the blade is reduced by using the Craig and
Bampton method, it can be shown that the reduced
matrix equation of tuned blade j with free coupling
interface is written as

W) Wl ][] g
A ()] [Anggg(w)} F), ©

in which for blade j, ul, and ¢’ are the vectors of the
coupling interface DOF and of the generalized co-
ordinates. Matrix block [A’(w)] corresponds to the
dynamic part of the mean reduced matrix model for
blade 5 with fixed coupling interface. For each blade,
it is assumed that random uncertainties mainly affect
the dynamics of the blade with fixed coupling inter-
face. Consequently, the nonparametric probabilistic
approach is implemented with respect to the matrix
[A’(w)] and is written as

_ Q'(w)
U(w) [ﬂ] l: Qb(w) :| ’ (7)
in which Q7 is the C"i-valued vector of the ran-
dom generalized coordinates of the disk and where
Q’ = (Q°...,Q ") is the C -valued vector of the
random generalized coordinates of the blades. Ran-
dom vector (Q¢, Q") is the solution of the random
reduced matrix equation

[A'w)] (A W) } {Qd(w) } g

A [AW) ]| Q) |~ HH).®
in which the block jk of [A’(w)] is such that
[A(W)j4] = [A(w)]dj, and where [A7(w)] is the
random reduced dynamic stiffness matrix of blade j
defined by [A/ (w)] = —w? M| + iw[D’] + [K].
The available information for random matrices [M],
[D’] and [K7] is

M)} = (M), E{[D]} = [D]

K]} = K] ©)
[MI], [D],[KC7] are M (R)-valued , (10)
MRS < +oo, E{IDTHIFY < +oo

(I IEY < +oo (1)

in which £ is the mathematical expectation and where
[I[A]||F denotes the Frobenius norm of matrix [A].
The use of the maximum entropy principle with
the available information allows the probability dis-
tribution of each random matrix to be constructed
(Soize 2000, Soize 2001) and it can be proved that
(M), [ D], K], 5 €{0,..., N — 1} are independent
random variables.

Proceedings EURODYN 2005, Structural Dynamics

3.2 Identification of the dispersion parameters in
the context of geometric mistuning

For each blade j, the probability distribution of each
random matrix depends only on dimension n, and on
a positive parameter §/ called the dispersion parame-
ter. Consequently, for a given blade j, there are three
positive numbers 87, 67, and &7 which are the disper-
sion parameters controlling the dispersion level of the
three independent random matrices [M’], [D’] and
[IC7]. Since we are interested in studying the effects
of mistuning due to blade manufacturing tolerances,
the dispersion parameters have to be quantified with
respect to the geometric tolerances. Such an identifi-
cation is achieved in constructing a blade random ge-
ometry model which respects the tolerances specifi-
cations. The random geometry model allows the ran-
dom mass matrix [MP*®7] and the random stiffness
matrix [KP*®7] to be constructed for blade j. Tt can
be shown (Capiez-Lernout et al. 2005) that the iden-
tification of dispersion parameters 7, and 67 yields

W (my+1)
\/“’([MjP) + tr((MI])2 (12)

J
ou

i \/ W (n, + 1)
® tr([KK)2) + tr([K'])?

in which ¢r denotes the trace and where W}v})l’j and
Wl are defined by

(13)

Wi = g{]|[@)7 [MP¥) (@] — [MI]]12}, (14)
Wi = g{]|[@)7 (KPR [@7] - [KI][[2). (15)

The Monte Carlo numerical simulation is used for
computing &9, and 0% . Once the dispersion param-
eters are identified, the stochastic equation defined by
Eq. (8) is solved with the Monte Carlo numerical sim-
ulation.

3.3 Random dynamic magnification factor

Let [K’] be the mean finite element stiffness ma-
trix of blade j. The elastic energy of blade j re-
lated to the mean dynamical system is written as
¢/(w) = tw(w)*[K’]w/(w), in which w is the vec-
tor of the DOF related to tuned blade j. Due to the
cyclic symmetry, we have e’(w) = ... = eV} (w)
denoted as e(w). The similar quantity related to the
stochastic dynamic system is defined as E’(w) =
+U/(w)* [K7] U/ (w), in which U7 is the random vec-
tor of the DOF related to mistuned blade j. For w
fixed in B, the random dynamic analysis is carried
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out by introducing the random dynamic magnification
factor over frequency band B B, such that

E(w)

B, =max max

y €
weB j=0,..,N—1

s = max ¢(w).(16)

=00

We are interested in estimating the probability
P(Bs > b.), in which b. is a given amplification
level. A second-order convergence analysis of ran-
dom variable B, with respect to parameters n, and ny,
is carried out. We introduce the mapping (nq,np) +—
[l|Bol]| with |[|Bxl||* = E{B2%}. This function
||| Bo||] is estimated by C(ns, n4,np) such that

1 &
C*(ng,ng,mp) = — > B (), 17
(25,10, T00) nS;oo() (17)
in which 6,,...,0,, are the n, realizations of the
Monte Carlo numerical simulation.

4 APPLICATION TO AN INDUSTRIAL FAN
STAGE

4.1 Description of the structure

The structure considered is a wide chord supersonic
fan geometry called SGC1. The fan has 22 blades.
The finite element model of the bladed disk is shown
in Fig. 1.

Figure 1. Finite element mesh of the bladed disk.

It is constructed with 31812 solid elements and is
constituted of n = 473814 DOF. Each sector con-
tains 8133 nodes which corresponds to 22947 DOF.
The structure is characterized by the following pa-
rameters n; = 16197, ny. = 414 and n;i = 6036. The
structure is in rotation around its revolution axis with
the constant velocity 2 = 45007pm. Since the dy-
namic analysis is carried out in the rotating frame of
the structure, the rigid-body motion due to the rotation
of the structure corresponds to a fixed boundary con-
dition at the inner radius of the structure. The bladed
disk is made of titanium. Figure 2 displays the eigen-
frequencies of the tuned bladed disk with respect to
the circumferential wave number.
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Figure 2. Graph of the tuned eigenfrequencies with respect to
the circumferential wave number .

The mistuned forced response of the structure sub-
jected to a third engine order excitation in the low-
frequency band B = [515, 545] Hz is analyzed. A
hysteretical damping model with the mean loss fac-
tor = 0.002 is added to the bladed disk.

4.2 Identification of the dispersion parameters

In the context of the blade manufacturing, the toler-
ances are specified for profiles at a given height from
the base of the blade. For a given profile, the leading
edge (LE) of the blade profile is assumed to be fixed in
order to define the tolerances parameters (see Fig. 3).
Let dL and da be the parameters controlling the
length and the angular position of the chord such that
dL € [—dLy,;dLy], do € [—day, dayy], in which
dL,,, dLy , doy, and day, are positive scalars.

Figure 3. Description of the tolerance parameters. Chord of the
nominal profile (dashed line) - Chord of the manufactured profile
(solid line) - Localisation of the trailing edge (TE) (gray zone).

A random blade geometry model is constructed in
order to identify the dispersion parameters of the non-
parametric model used for modeling the blade mis-
tuning. For its construction, it is assumed that the
coupling interface between the disk and the blades re-
mains deterministic. Let x be the vector in R*™ defin-
ing the position of the nodes belonging to the nomi-
nal mesh of the blade. Let then x be the vector in
R3" defining the position of the nodes belonging to
the mesh of the manufactured blade. In the proba-
bilistic context of tolerancing, vector x is modeled by

© 2005 Millpress, Rotterdam, ISBN 90 5966 033 1



the R*™-valued random vector X such that

X=x+)Y &ba, (18)
a=1

in which b,,, @ € {1,...,7} are r deterministic vec-

tors of R*™ and where &, , o € {1,...,r} are r inde-

pendent random variables. For convenience the cho-
sen basis vectors b,, are the blade eigenmodes with
fixed coupling interface. The probability distribution
of random variable &, is chosen as uniform and its
support is calculated in order to respect a given set
{dLy, dLyr,d,, dagys}t of tolerances. In addition,
such a probability model allows the blade random
shape to be regular. It should be noted that the con-
struction of such a blade random geometry model re-
mains arbitrary and does not correspond to any given
manufacturing process. It is important to note that
the random dynamic magnification factor is strongly
sensitive to the choice of the probability model which
is constructed with the nonparametric approach and
which does not directly depend on the probabilistic
model of the geometry: this nonparametric model de-
pends only on the dispersion parameters which are es-
timated as a function of the geometric tolerances by
using the blade random geometry model. Let n, be
the number of realizations used in the Monte Carlo
numerical simulation and let d,; and 0; be the sta-
tistical estimators of dispersion parameters d,; and
dx defined by Egs. (12,13). The Fig. 4 displays the
graphs ng +— 6y and ng — 0k for dL,, = 0.55 mm,
dLy = 0.75mm, do, = day; = 0.55°. A reasonable
convergence is obtained with n, = 300 realizations
and yields §); = 3107° and 0;x = 3.51072.

65}
5]
a5} o004
4

35} uns(’

e SIR—

2]

15

(@) s — Oar (b) s — g

Figure 4. Stochastic convergence of the dispersion parameters
with respect to the number of Monte Carlo realizations.

A sensitivity analysis of the dispersion parameters
is then performed with respect to the tolerances. For a
set of tolerances such that dov,,, = day, = 0.55° and
dL = dL,, = dL,;, the Fig. 5 shows the graphs of
dL + 0y, dL +— 0. For a set of tolerances such that
do = do,, = days and dL,, = 0.55mm, dLy; =
0.75mm, the Fig. 6 shows the graphs of da +— 0y,
do— 0.
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Figure 5. Identification of the dispersion parameters for da,, =
day = 0.55° and dL € [0, 1mm)].
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Figure 6. Identification of the dispersion parameters for dL,, =
0.55mm ., dLy = 0.75mm and da € [0, 1.1°].

It is then deduced that the dispersion parameters are
more sensitive to the tolerances related to the angular
position of the chord than to the tolerances related to
the length of the chord.

4.3 Stochastic convergence analysis for the random
reduced model

For 8, = 07, = 0 and 0% = 0.05, Fig. 7 presents
the convergence analysis of random variable ||| B|||
with respect to parameters n, and n, allowing the
dimension of the random reduced model to be con-
trolled and with respect to the number n of realiza-
tions of the Monte Carlo numerical simulation.

S

6 8 M0 1 i % 1 00 200 300 40 500 600 700

() ns—C?(ns,20,10) (b)ny—C%(500,n4,ns)

Figure 7. Stochastic convergence analysis of the random reduced
matrix model.

The Fig. 7(a) displays the graph ng —
C%(ng,ng,my) for ng = 10 and n, = 20. A
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reasonable convergence is obtained for n, = 350.
For n, = 500, the Fig. 7(b) shows the graph
ny — C%(500,n4,m) for ng > 7 (solid line), for
ng = 5 (black dashed-dotted line), for ny, = 4 (gray
dashed-dotted line), for n, = 3 (black dotted line)
and for ny = 2 (gray dotted line). It is deduced that
parameters ny and n, have to be chosen such that
ng="7and n, = 7.

4.4 Probabilistic analysis of the blade mistuning
due to geometric uncertainties.

The random mistuning analysis is carried out for the
complete bladed disk. Assuming the uncertainty level
to be homogeneous from one blade to another one
yields &, = 0y, 05, = 0p and 0} = Ik, for all
j€{0,..., N —1}. The mass and the stiffness disper-
sion parameters are identified with respect to a given
set of tolerances. In the context of blade tolerancing,
there is no uncertainty on the damping of the blades
and the damping dispersion parameter is chosen as
0p = 0. The Monte Carlo numerical simulation is per-
formed with n, = 1500 realizations.

0.9
0.8
07
0.6
0.5
04
0.3
0.2
0.1

072 - 0.4 0‘.6 0.‘8 1‘
Figure 8. Graph of the function do — P(Bo, > b..) forb. = 1.2
(black solid line), b. = 1.3 (gray solid line), b, = 1.4 (black
dashed line), b, = 1.5 (gray dashed line), b. = 1.6 (black dotted
line), b, = 1.7 (gray dotted line).

Figure 8 displays the graphs da +— P(By > b,) for
several values of b, = 1.2 (black solid line), b, = 1.3
(gray solid line), b. = 1.4 (black dashed-dotted line),
b. = 1.5 (gray dashed-dotted line), b. = 1.6 (black
dotted line) and b, = 1.7 (gray dotted line). It is
seen that this graph has a maximum which allows
two types of specifications to be considered. One
of these specifications consists in defining tolerances
of the blade with high precision, whereas the other
one consists in intentionally mistuning the blade. For
example, the confidence region defined by P(B., >
1.7) < 0.1 is obtained for parameter dav < 0.48° or
da > 1.04°.
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5 CONCLUSIONS

‘We have presented a methodology allowing the blade
geometric tolerances of a mistuned bladed disk for a
given confidence region of the random dynamic mag-
nification factor to be specified. Such a methodol-
ogy uses a nonparametric probabilistic model of ran-
dom uncertainties for modeling the mistuning of the
blades and requires to relate the dispersion parameters
of the nonparametric probabilistic approach to the tol-
erance parameters of the blades. The efficiency of this
methodology is proved through a complex numerical
model of a bladed disk.

REFERENCES

Benfield, W.A. & Hruda, R.F. 1971. Vibration analysis of
structures by component mode substitution. 4744 Jour-
nal Vol. 9 (No. 7):1255-1261.

Capiez-Lernout, E. & Soize, C. 2004. Nonparametric model-
ing of random uncertainties for dynamic response of mis-
tuned bladed-disks. ASME Journal of Engineering for
Gas Turbines and Power Vol. 126 ( No. 3):610-618.

Capiez-Lernout, E., Soize, C., Lombard, J.-P., Dupont, C.,
& Seinturier, E. 2005. Blade manufacturing tolerances
definition for a mistuned industrial bladed disk. ASME
Journal of Engineering for Gas Turbines and Power (In
press) Vol. 127 ( No. 3):.

Craig, R.RJr. & Bampton, M.C.C. 1968. Coupling
of substructures for dynamic analyses. AIAA Jour-
nal Vol. 6 (No. 7):1313-1319.

Griffin, J.H. & Hoosac, T.M. 1984. Model development
and statistical investigation of turbine blade mistuning.
ASME Journal of Vibration, Acoustics, Stress, and Reli-
ability in Design 106204-210.

Mignolet, M.P., Lin, C.C., & LaBorde, B.H. 2001. A novel
limit distribution for the analysis of randomly mistuned
bladed disks. ASME Journal of Engineering for Gas Tur-
bines and Power 123 388-394.

Ohayon, R. & Soize, C. 1998. Structural acoustics and vibra-
tion. Academic press.

Seinturier, E., Dupont, C., Berthillier, M., & Dumas,
M. 2002. A new aeroelastic model for mistuned
bladed disks. AIAA paper 2002-1533.43rd AIAA/-
ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference.

Soize, C. 2000. A nonparametric model of random
uncertainties for reduced matrix models in struc-
tural dynamics. Probabilistic Engineering Mechan-
ics Vol. 15 ( No. 3):277-294.

Soize, C. 2001. Maximum entropy approach for mod-
eling random uncertainties in transient elastodynam-
ics. Journal of the Acoustical Society of Amer-
ica Vol. 109 ( No. 5):1979-1996.

Soize, C. & Chebli, H. 2003. Random uncertainties model
in dynamic substructuring using a nonparametric prob-
abilistic model. ASCE Journal of Engineering Mechan-
ics Vol. 129 ( No. 4):449-457.

Whitehead, D.S. 1966. Effects of mistuning on the vibration
of turbomachine blades induced by wakes. Journal of
Mechanical Engineering Science Vol. 8 (No. 1):15-21.

© 2005 Millpress, Rotterdam, ISBN 90 5966 033 1



