
HAL Id: hal-00686191
https://hal.science/hal-00686191

Submitted on 8 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random uncertainties modelling for vibroacoustic
frequency response functions of cars

J.-F. Durand, L. Gagliardini, Christian Soize

To cite this version:
J.-F. Durand, L. Gagliardini, Christian Soize. Random uncertainties modelling for vibroacoustic
frequency response functions of cars. International Conference on Modal Analysis, Noise and Vibration
Engineering, Katholieke Univ Leuven, Dept Mech Engn, Sep 2004, Leuven, Belgium. pp.Pages: 3255-
3266. �hal-00686191�

https://hal.science/hal-00686191
https://hal.archives-ouvertes.fr


Random uncertainties modelling for vibroacoustic
frequency response functions of cars

J.F. Durand
 !"#$%&' ()*$

, L. Gagliardini
 +"#$
, C. Soize

 ,)*$
 !"#$

PSA Peugeot-Citroën
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Abstract

This paper deals with the numerical prediction of the vibroacoustic frequency response functions of cars.

In such a complex vibroacoustic system, the role played by data errors and model errors is important and

does not have the same consequences for stiff structural element or for flexible (soft) structural element. A

non-parametric probabilistic model of random uncertainties is introduced to study the sensitivity of these

vibroacoustic frequency response functions. The method is applied to a simplified car body with an inter-

nal acoustic cavity. The confidence region of each random vibroacoustic frequency response function is

numerically constructed. The results obtained, clearly show an important difference between the level of

uncertainties for stiff and flexible structural elements.

1 Introduction

The design of cars is nowadays mainly based on the numerical simulations. In the case of vibroacoustics

(for instance, for the booming noise), the problem of the predictability of the models are much more dif-

ficult due to the over-sensitiveness of the dynamical responses induced by structural complexity as much

as uncertainties resulting from the industrial process. This over-sensitiveness is seen as well numerically

(sensitiveness to modelling uncertainties) as in experiments (dispersion of the cars / process). Concerning

the role played by uncertainties in structural dynamic modelling, it is known that the effects increase with

the frequency. Consequently, in linear structural dynamics, numerical predictions with finite element models

can be improved by introducing a model of random uncertainties. Random uncertainties in linear structural

dynamics are usually modelled using probabilistic parametric models. Such an approach is difficult, even

impossible, for taking into account the random uncertainties of a complex structure such as a car, within an

industrial framework. Recently, a new approach that we call a non-parametric approach has been introduced

for modelling random uncertainties in linear and non-linear elastodynamics for the low-frequency range, us-

ing the entropy optimization principle. This approach allows the direct construction of a probabilistic model

of a reduced matrix model of the structure to be constructed. Such a non-parametric model does not require

identifying the uncertain parameters as usually done for parametric approach. In the present case, the non-

parametric method is applied to a structural-acoustic system in the low-frequency range, composed by the

car body and the internal cavity. This paper is limited to study sensitivity of the vibroacoustic frequency re-

sponse functions to random uncertainties in the stiffness operator of the structure (car body). The confidence

region of the random vibroacoustic frequency response functions are numerically constructed which allows

the sensitivity of stiff and flexible structural elements to uncertainties to be studied.
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2 Statement of the structural-acoustics problem in the frequency do-

main

2.1 Geometry and mechanical assumptions

The physical space  !" is referred to a cartesian reference system and we denote the generic point of  #"
as $%&'()*  +, * !-, * "

.
. We study the linear vibration of a structural-acoustic master system around a static

equilibrium state taken as natural state at rest. The master system is defined as a master structure coupled

with an internal acoustic cavity (see Figure 1).

2.1.1 Master structure /01
The master structure at equilibrium occupies a three-dimensional bounded domain / 1 of  " with a suffi-
ciently smooth boundary 23/ 1 &45 . The outward unit normal to 26/ 1 is denoted as 7 1 &8()9 1 "# , 9 1 " ! , 9 1 " "

.
.

The displacement field in / 1 is denoted as :;()$ ,<= . &>()?  ()$ ,<= . , ? ! ()$ ,<= . , ? " ()$ ,<=
.@.
. The master structure

is assumed to be free, i.e. not fixed on any part of boundary 23/ 1 .

Figure 1: Configuration of the structural-acoustic master system

2.1.2 Internal acoustic cavity /0A
The internal acoustic cavity / A is the bounded domain filled with a dissipative acoustic fluid. The boundary
26/BA of /CA is 5 . The outward unit normal to 23/0A is denoted as 7DA>&E()9FA "# , 9FA " ! , 9FA " "

.
and we have

7GAH&%I07 1 on 23/BA . We denote the pressure field in /0A as JK()$ ,<= . .

2.2 Boundary value problem of the structural-acoustic master system

The equation of the master structure occupying domain / 1 is written [1, 2, 3] as
I = !LM 1 ?NOPIQRNOST " TC&UVWXLY<ZO in / 1 , (1)

in which
M 1 is the mass density, R6O[T is the stress tensor, :\&]()?  , ? ! , ? "

.
is the displacement field of the

structure and ^ XLY<Z &_(`V XLY<Z , V XLY<Z! , V XLY<Z"
.
is the body force field. The boundary condition can be written as

RaO[Tb(c: . 9 1 " T0&UVdefg+hijO IkJ#9 1 " O on 5 l (2)
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in which  !"#$%&' ( )*+ !"#$%&' , + !"#$%&'! , + ! # %-'.
/
is the surface force field, and 0 is the fluid pressure field at the

coupling interface. The material is assumed to be linear viscoelastic without memory which allows the

constitutive equation to be defined.

Concerning the internal acoustic fluid, a formulation in terms of pressure 01)23 ,45 / is used. The equation

governing the dynamics of the acoustic fluid is written [4, 5, 6, 7] as

5 !
6 7  !7 0

!"# 5$%6 7 & ! 0 ! '6 7 & ! 0 ( %6 7  !7 & !() 8 # 56 7 ) in 9 7 , (3)

'6 7 ) ' !"# 5 % / : 0:;<=7 ( 5 ! > ? <=7 ! %  !76 7
: )
:@<=7 on A ? (4)

where
6 7 is the mass density of the fluid,  7 is the speed of sound , % represents the coefficient due to the

viscosity of the fluid, and
) )23 ,45 / is the source term.

2.3 Finite element discretization

The finite element method [8] is used. We consider a finite element mesh of the master structure 9 B and of
the internal fluid 9 7 . The two meshes are assumed to be compatible on the coupling interface A . Let > B (
)2C B  , ? ? ? , C B*+, / be the complex vector of the D B degrees of freedom (DOF) of the structure corresponding

to the finite element discretization of the displacement field > . Let - 7 (E) 0 7  , ? ? ? , 0 7*./ / be the complex
vector of the DF7 DOF of the fluid corresponding to the finite element discretization of the pressure field

0 . Therefore, the finite element discretization of the boundary value problem in terms of > and 0 [4, 7, 9],
defined by Eqs. (1) to (4) yields the following matrix equation

012 3 B ) 5 /45 267 5
5 ! 267 589 2 3 7 ) 5 /45:; 0 > B ) 5 /- 7 ) 5 / ; ( 0<= B ) 5 /> 7 ) 5 /?; (5)

where
2 3 B ) 5 /45 is the dynamical stiffness matrix of the structure which is a symmetric )2DGB@A DFB / complex

matrix such that 2 3 B ) 5 /45 (H8 5 ! 2 B B*+, 5 !C# 5 2 D B*+, 5 ! 2 E B*., 5 ,
in which

2 B B*+, 5 , 2 D B*., 5 , 2 E B*+, 5 are the mass, damping and stiffness matrices of the structure in vacuo. Matrix2 B B*+, 5 is a positive-definite symmetric )2D B AID B / real matrix, 2 D B*+, 5 and 2 E B*., 5 are semipositive-definite
symmetric )2D B AID B / real matrices. In Eq. (5), 2 3 7 ) 5 /45 is the dynamical stiffness matrix of the acoustic
fluid which is a symmetric )2D=7"AJDK7 / complex matrix such that2 3 7 ) 5 /45 (H8 5 ! 2 B 7*+/ 5 !"# 5 2 D 7*./ 5 ! 2 E 7*+/ 5 ,

in which
2 B 7* / 5 , 2 D 7* / 5 , 2 E 7* / 5 are the mass, damping and stiffness matrices of the cavity with fixed coupling

interface. Matrix
2 B 7*+/ 5 is a positive-definite symmetric )2D 7 A D 7 / real matrix, 2 D 7*+/ 5 and 2 E 7*+/ 5 are

semipositive-definite symmetric )2D17CAJDK7 / real matrices.
Introducing the change of variable - 7 ( # 5FG- 7 , Eq. (5) can be rewritten as the following symmetric matrix
equation, 0H2 3 B ) 5 /45 # 5 267 5# 5 267 589 8 2 3 7 ) 5 /45:; 0 > B ) 5 /G- 7 ) 5 / ; ( 0I= B ) 5 /

8  LJK > 7 ) 5 /4; (6)
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2.4 Mean reduced matrix model of the structural-acoustic master system

The structural modes in vacuo and the acoustic modes of the cavity with fixed coupling interface are calcu-

lated by solving the two generalized eigenvalue problems, !  " # $ ! !"#   %  " # $ ! " (7)

 ! #"&' $$% !&# #  % #"(' $$% $ (8)

The eigenvectors verify the usual orthogonal properties [10, 11, 12, 13]. The structure in vacuo has six rigid

body modes corresponding to a zero eigenvalue and % structural modes (elastic modes). Since we are only

interested in the elastic deformation of the structure, the structural displacement is written as

&  ' ( ) !  '( $)*  ' ( ) " (9)

in which
 '( $

is the '*%+ ) % ) real matrix whose columns are constituted of the % structural modes associated
with the % first positive eigenvalues (the % first structural eigenfrequencies). The internal acoustic cavity has
one constant pressure mode and + , * acoustic modes. The internal acoustic pressure is written as+ # ' ( ) !  ', $)* # ' ( ) " (10)

in which
 ', $

is the '*%-# )-+ )
real matrix whose columns are constituted (1) of the constant pressure mode

associated with zero eigenvalue and (2) of the acoustic modes associated with the positive eigenvalues (the

+ , * first acoustical eigenfrequencies). It should be noted that the constant pressure mode is kept in order
to model the quasi-static variation of the internal fluid pressure induced by the deformation of the coupling

interface [4]. Using Eqs. (9) and (10), the projection of Eq. (6) yields the mean reduced matrix model of the

structural-acoustic master system,,  .  ' ( )-$ . (  / $. (  / $ / ,  . # ' ( )-$ 0 , *  ' ( )1* # ' ( ) 0 ! ,01  ' ( )
,  
. 223 # ' ( ) 0 (11)

in which  .  ' ( )-$ !  '( $ /  3  ' ( )-$  '( $ "  . # ' ( )-$ !  ', $ /  3 # ' ( )-$  ', $ " / $ !  '( $ /  45 $  ', $ "  1  ' ( )-$ !  '( $ /  6  ' ( )-$ "  
3 # ' ( )-$ !  ', $ /  7 # ' ( )-$ $

The generalized dynamical stiffness matrix
 .  ' ( )-$ of the structure is then written as .  ' ( )-$ !/, ( !  4  $ 89. (  5  $ 8  6  $ " (12)

in which, the positive-definite diagonal '*% ) % ) real matrices  4  $
,
 5  $

and
 6  $

are such that
 4  $ ! '( $:/  %  " # $  '( $

,
 5  $ !  '( $:/  ;  " # $  '( $

and where 6  $ !  '( $ /  !  " # $  '( $ $ (13)

3 Non-parametric probabilistic model of random uncertainties

As explained in Section 1, this paper is limited to study structural stiffness uncertainties. These uncertainties

are induced by data errors and by model errors. Due to the presence of model errors, the usual parametric

probabilistic approach which is perfectly adapted for modelling data errors, cannot be used for modelling

model errors. Consequently, we proposed to use a non-parametric probabilistic model of random uncertain-

ties allowing data errors and model errors to be taken into account. Such a non-parametric probabilistic has

been proposed in Refs. [14, 15, 16] and is used below.
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Let  !"  !" # , be the set of all the positive-definite symmetric  !$ ! $ # real matrices. Since "  % # defined by
Eq. (13) belongs to  #"  !" # , it can written that"  % # & " $  # $ " $  # (14)

in which
" $  # is the positive-definite diagonal  !$ ! $ # real matrix whose diagonal terms are the square roots

of the diagonal terms of
"  % #

.

The non-parametric probabilistic approach of the structural stiffness uncertainties consists in substituting the

generalized stiffness diagonal matrix
"  % #

by the full  !$ ! $ # random matrix
" %  # which is a  "  !" # -valued

random variable written as " %  # & " $  # $ "&'  # " $  # ' (15)

In Eq. (15),
"&'  # is a random matrix with values in  "  !" # whose mean value is the identity matrix and

whose probability distribution on the set  "  !" # is explicitly constructed [14, 15]. The following algebraic
representation of this random matrix

"&'  # allows realizations to be easily constructed,"&'  # & " (  # $ " (  # (
in which

" (  # is a random upper triangular  !$ !)$ # real matrix whose random elements are independent

random variables defined as follows:

(1) for )*+,)-. , the real-valued random variable
" (  # * */0 is written as

" (  # * */0 &+,  12 * */0 in which ,  &3  !$ % & #45  67 !
and where 2 * */0 is a real-valued Gaussian random variable with zero mean and variance equal

to 1;

(2) for ) &8)-. , the positive-valued random variable
" (  # * *40 is written as " (  # * *40 &-,  9: ;-< * in which ,  is

defined above and where < * is a positive-valued gamma random variable whose probability density function

.=>/? with respect to @-A is written as
. >/?  BA # &CDEFGH  BA # &

/0  "  
!IJKL %  5 *! # A

"MN H1OLBP L 5 OQR ?L #ST 5 1 '

Consequently, the mean generalized structural dynamical stiffness matrix
" ! %  2 #'# defined by Eq. (12) be-

comes a random symmetric  !$ ! $ # complex matrix "UV %  2 #'# defined by"UV %  2 #'# &34 2 ! " " % # %() 2 " # % # % " %  # ( (16)

in which
" %  # is the  W"  !" # -valued random matrix defined by Eq. (15). With such a non-parametric proba-

bilistic model, Eq. (11) is replaced by the following random matrix equation,* "UV %  2 #'# ) 2 " $ #) 2 " $ # $ 4 " ! 5  2 #'# + */X %  2 #,X 5  2 # + & * % %  2 #
4  
6 - & 5  2 #.+ (17)

in which random matrix
"UV %  2 #'# is defined by Eq. (16) and where, for fixed 2 , X %  2 # and ,X 5  2 # are

complex random vectors. For every 2 , the random linear Eq. (17) is solved by using the Monte-Carlo

numerical simulation. The random nodal displacement vector Y %  2 # of the structure and the random nodal

pressure vector Z %  2 # of the acoustic fluid are calculated by
Y %  2 # & "'( # X %  2 # ( Z 5  2 # & ) 2 "') # ,X 5  2 # ' (18)
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3.1 Confidence region of the random vibroacoustic frequency response functions

Let   !" # !  "$%&' " #  be the modulus of an observed vibroacoustic frequency response function

(either the modulus of the frequency response function in displacement at a given point in the structure or

the modulus of the frequency response function in pressure at a given point in the internal acoustic cavity).

The confidence region associated with the probability level ()* for the random function + # !  " $% ,- './ is
constructed by using the quantiles. For fixed  in

'
, let 012    be the cumulative distribution function (

continuous from the right) of random variable   ! " which is such that ! " !    #$ " #%&    ! "'( $ "
. For)  $  ! , the $ -th quantile or fractile of !*" !   is defined as

+  $ " # inf ,-$ . ! " !    #$ "/0 $ 1 %
Then the upper envelope $ !& ! " and the lower envelope $ "  ! " of the confidence region are defined by

$ !  ! " # +  ! '2&34 " ( $ "  ! " # +  5&64 " %
The estimation of $ !& ! " and $ "  ! " is performed by using the sample quantiles [17]. Let $ "  ! " #  !789: " " ( % % % ( $ ";<  ! " #   !789: ";< " be the ) * independent realizations of random variable   ! " . Let#$ "  ! "  % % %# #$ " <  ! " be the order statistics associated with $ "  ! " ( % % % ( $ " <  ! " . Therefore, if fix( = ) is the
integer part of the real number = , one has the following estimation

$ !  ! "*> #$ + $  ! " ( % ! # fix  ,) *  ! '?&34 "-" ( $ "  ! "*> #$ + &  ! " ( % " # fix  ,) *  5&64
"-" %

4 Vibroacoustics of a simplified car

4.1 Mean model of the structural-acoustic master system

The mean model is constituted of a simplified car body and an internal acoustic cavity. We are interested in

studying the frequency response functions in the low-frequency band
@ # $ A ) ( ' )B) %CD = , for given external

loads induced by the engine. The finite element model of the structure has ! AEFBG ' DOF corresponding toHBI;) G
solid finite elements (see Figure 2). The internal acoustic cavity contains the seats. The finite element

model of the internal acoustic cavity has
HBH AJK

DOF corresponding to ! A ! F ) acoustic fluid finite elements (see
Figure 3). It should be noted that the two meshes are compatible on the fluid-structure coupling interface.

Figure 2: Finite element model of the structure
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Figure 3: Finite element model of the internal acoustic cavity

4.2 Random vibroacoustic frequency responses of the structural-acoustic master
system with random uncertainties

The random Eq. (17) is solved by using the Monte Carlo numerical simulation performed with a number

of realizations  ! . The random displacement field of the structure and the random pressure field inside the

internal acoustic cavity are then computed by using Eq. (18).

0 200 400 600 800 1000
1.8

1.85

1.9

1.95

2
x 10

−6

Figure 4: Graph of function  !  ! conv
" #$ !

%
related to the convergence of the random structural generalized

coordinates. Horizontal axis:  ! , Vertical axis: conv
" #$ !

%
. Four lower thin solid lines are for #$ &  %

= (90,5),

#$ &  %
= (137,10), #$ &  %

= (230,24), #$ &  %
= (269,35), three upper thick solid lines are for #$ &  %

= (303,51),

#$ &  %
= (342,68), #$ &  %

= (380,51)

In this numerical application, the value of the dispersion parameter
 
controlling the uncertainties of the

stiffness matrix of the structure is such that
 
=0.08.

The convergence of the random solution is analyzed in studying the graph of the function  !  ! conv  #$ !
%
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defined by

conv   !" #
$ %  

" #

! ! ! "  

#$%&'('  
  &"#$%

!
$ '(' ! ! &

in which exponent
&

is either ) for the structure or ' for the fluid and where
 

  &"#$%  $ ' ( ( ( '  
  &"#$% ! ! $

are the " # realizations of the vector-valued random variable
 

  & $
. Figure 4 displays the graph of the

function " # ( conv
)  !" #

$
for the structure. Figure 5 displays the graph of the function " # )( conv

*  !" #
$
for

the internal acoustic cavity.

0 200 400 600 800 1000
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
x 10

10

Figure 5: Graph of function " # )( conv
*  !" #

$
related to the convergence of the random acoustic generalized

coordinates. Horizontal axis: " # , Vertical axis: conv
*  !" #

$
. Four upper thin solid lines are for  !" '  $

= (90,5),

 !" '  $
= (137,10),  !" '  $

= (230,24),  !" '  $
= (269,35), three lower thick solid lines are for  !" '  $

=(303,51),

 !" '  $
= (342,68),  !" '  $

= (380,51)

From these two figures (see Figures 4 and 5), it can be deduced that a reasonable mean-square convergence

of the random structural-acoustic system is reached for " # % * +,+
realizations, " % - . +

structural modes

and  % . +
acoustic modes. The confidence region of each random vibroacoustic frequency response

function is constructed with the following values of the parameters: number of realizations for the Monte

Carlo numerical simulation " # % / +,+
, number of structural modes " % - . +

, number of acoustic modes

 % . +
.

Figures 6 to 11 are relative to the confidence region prediction of the random frequency response functions.

On each figure, the horizontal axis is the frequency axis in Hertz, the vertical axis is (1) " +*+(,-.  +  0  & $+$
for structural displacements, (2) " +*+(,-.  +  0  & $/0 1 #/1 , $

for internal acoustic pressures, (3)  +*+(,-.  +  0  & $+$
for energies. The thick solid line is the graph of the response of the mean model, the thick dashed line is the

mean value of the random frequency response and the grey region is the confidence region for a probability

level 123 % + ( 4 . .
Figure 6 displays the structural frequency response function for the structural normal displacement at a point

located on the car roof. This is a flexible (soft) structural element. It can be seen a large confidence region

for frequencies greater than 60 Hz. It can be concluded that such a soft structural element is sensitive to

random uncertainties.

Figures 7 and 8 display the structural frequency response function for the structural 5 - and 2 -displacements
at a point located in a stiff structural element. It can be seen a narrow confidence region for all the frequency

band. It can be concluded that such a stiff structural element is less sensitive to random uncertainties.
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Figure 6: Confidence region of the random frequency response function for the structural normal displace-

ment at a point located on the car roof: mean model prediction (thick solid line), mean response of the

stochastic model (thick dashed line), confidence region (grey region)
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Figure 7: Confidence region of the random frequency response function for the structural  -displacement at
a point located in a stiff structural element: mean model prediction (thick solid line), mean response of the

stochastic model (thick dashed line), confidence region (grey region)
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Figure 8: Confidence region of the random frequency response function for the structural  -displacement at
a point located in a stiff structural element: mean model prediction (thick solid line), mean response of the

stochastic model (thick dashed line), confidence region (grey region)
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70

80

90

100

Figure 9: Confidence region of the random frequency response function for the internal acoustic pressure at

a point located at the right passenger ear: mean model prediction (thick solid line), mean response of the

stochastic model (thick dashed line), confidence region (grey region)

3264 PROCEEDINGS OF ISMA2004



50 100 150 200
120

125

130

135

140

145

150

155

160

Figure 10: Confidence region of the random frequency response function for the total acoustic energy of

the internal cavity: mean model prediction (thick solid line), mean response of the stochastic model (thick

dashed line), confidence region (grey region)
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Figure 11: Confidence region of the random frequency response function for the total elastic energy of the

structure: mean model prediction (thick solid line), mean response of the stochastic model (thick dashed

line), confidence region (grey region)

Figure 9 displays the acoustic frequency response function for the internal acoustic pressure at a point located

at the right passenger ear. It can be seen large fluctuations of the confidence region as function of the

frequency. It can be concluded that the sensitivity of the acoustic pressure to random uncertainties depend

on the frequency .

Finally, Figure 10 displays the total acoustic energy of the internal cavity and Figure 11 displays the total

elastic energy of the structure. These two figures show that the confidence regions of the acoustic and

elastic energies have a small sensitivity to random uncertainties. These conclusions concerning the global
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quantities do not hold for local quantities. Since the structure is strongly heterogeneous, the sensitivity to

random uncertainties depends on the local stiffness of the observed part of the structure. It seems that there is

no so easy conclusion concerning the local response inside the acoustic cavity as a function of the frequency.

5 Conclusion

The confidence region of each random vibroacoustic frequency response function has been studied by using

a non-parametric probabilistic model of random uncertainties in the structural stiffness matrix. The results

obtained clearly show the role played by the random uncertainties on the vibration levels in the different

structural parts and for the acoustic levels inside the cavity. The sensitivity of the flexible structural elements

to random uncertainties is much more greater than for stiff structural elements.
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