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Construction of a probabilistic model for the soil impedance matrix using a

non-parametric method

R. Cottereau & D. Clouteau

Laboratoire de Mécanique des Sols, Structures et Matériaux, Ecole Centrale Paris, France

C. Soize

Laboratoire de Mécanique, Université de Marne-la-Vallée, Paris, France

ABSTRACT: Construction codes demand ever increasing earthquake-resisting features for strategic buildings
such as dams and nuclear plants and the incorporation of uncertainty in the design models for these structures,
particularly in soil domains, becomes a major issue. Parametric methods and a recent non-parametric method
are considered for the construction of a probabilistic model of the soil impedance matrix, the latter supplying in-
teresting features provided that the matrices of a certain mean model can be identified. This difficulty is tackled
using a hidden state variables model, ensuring causality of the impedance and necessary positive definiteness
conditions on the generated matrices. The identification of the uncertain parameters in the soil and the difficult
task of quantifying their variability are not required and computational costs are significantly reduced.

Figure 1. unbounded domain 2 and coupling boundary I'

1 INTRODUCTION

Let Q be a three-dimensional open half space of R?
with a smooth boundary 0 (Fig. 1). Let T" be a
bounded part of 02, coupling 2 with another domain.
Let 7 be a stress field defined on I" and w the corre-
sponding displacement field. The primal formulation
of the local problem associated to € leads to the fol-
lowing linear operator equation

Zu =T, ()
where Z is the Steklov-Poincaré operator, corre-

sponding to the condensation of the dynamic stiffness
operator of the domain (2. The dual formulation leads

to ST = u , where S is the flexibility operator, for-
mally verifying S = Z~1.

Particularly important in earthquake engineering,
as well as in many other civil engineering and
aerospace engineering applications, the computation
of the impedances of unbounded domains has been
extensively studied in a deterministic framework. For
a bounded I', this operator can be approximated with
finite error by an impedance matrix [Z] (Wolf 1985).
Quantification of uncertainty on these operators has
been addressed more recently (Schuéller 1997, Mano-
lis 2002), leading to the following linear stochastic
operator equation

Z(0)u=T7(0), ?2)

where 7(6) is a stochastic field and Z(f) is the
stochastic stiffness operator. Considering uncertainty
only in a bounded volume 25 of Q (Fig. 2), Z(0) is
then a perturbation of a deterministic operator and
therefore, all realisations of Z(f) can be approxi-
mated with finite error on a common basis, leading
to

[Z(0)]u=t(6), ©)

where u is the displacement vector, t(6) is an approx-
imation of the stochastic stress vector and [Z(0)] is
the stochastic stiffness matrix.

This paper presents existing methods to compute
the soil impedance matrix (section 2), stressing the
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Figure 2. bounded uncertain domain €25 in unbounded determin-
istic domain €2 and coupling boundary I"

appeal of the non-parametric method, which requires
the construction of a probabilistic model (section 3)
based on real positive definite matrices and for which
causality is enforced. The identification of the mean
matrices for this model is then presented (section 4),
enabling application of this method in a simple case
(section 5).

2 COMPUTATIONAL METHODS

In this section two classes of computational methods
to account for the uncertainty in [Z(0)] are presented:
the classical parametric methods and a more recent
non-parametric method.

2.1 Parametric methods

The Stochastic Finite Element Method (SFEM) is a
classical tool to compute [Z(0)] (Cornell 1971). Like
its deterministic equivalent, it requires the discretiza-
tion of domains €2 and 25 and therefore the creation
of an artificial boundary, bringing along problems of
unphysical wave reflections. Using a Finite Element
Method (FEM) - Boundary Element Method (BEM)
coupling approach to model the problem (Savin and
Clouteau 2002) allows for correct consideration of the
unboundedness of domain (2 and reduces the size of
the discretized domain. However, it still implies, in
practical situations, a very large number of variables,
and in fine high computational costs.

Besides these classical drawbacks of the FEM,
these and other parametric methods require the iden-
tification of the uncertain parameters and the quan-
tification of that uncertainty, that is to say appropri-
ate probabilistic models of these uncertain parame-
ters have to be constructed, based on given statistics.
Such problems are not simple, particularly in the case
of soils, where sources of uncertainty are numerous
and measurement difficulties hinder the recollection
of accurate data (Favre 1998).

842

The propagation of the uncertainty from the param-
eters to the response of the system is then usually per-
formed via Monte-Carlo simulations, leading to pro-
hibitive costs, particularly when uncertainty on sev-
eral parameters has to be considered. Also, since the
correlation between these parameters is difficult to as-
sess, physically unsound systems can be computed.

2.2 Non-parametric method

Recently, Soize introduced a non-parametric method
(Soize 2000) where the application of the maximum
entropy principle (Jaynes 1957) to the reduced matrix
model of a system leads to a probabilistic model using
only the information available. This method is based
on the direct construction of a probabilistic model of
the generalized mass, damping and stiffness matri-
ces, obviating the identification of the uncertain local
parameters and the construction of their probabilis-
tic model. Coarse statistical studies on the parameters
are therefore not needed and physically unsound re-
sults are avoided, as long as the physics were correctly
introduced in the model. The non-parametric method
also accounts for modelling errors.

In the case of bounded uncertain domains (let it be
), the stiffness matrix can be written as a quadratic
function of frequency in terms of a positive definite
matrix of mass and positive matrices of damping and
stiffness.

(Za, (w;0)] = [K(0)] +iw [C(O)] - [M(9)].  (4)

This ensures causality of the corresponding model
in the time domain, since equation (3) with the
impedance in the form of (4) is related to a second
order differential equation in the time domain. The
mean matrices of the probabilistic model are identi-
fied with the matrices of the deterministic model.

In the case of a bounded uncertain domain )5 in-
side an unbounded deterministic domain 2, the same
FEM-BEM coupling approach can be used, intro-
ducing the uncertainty in €25 by means of the non-
parametric method. This leads to a flexibility matrix
in the form:

[S(0)] = [Urr] — [Urs] [Zs5(0)] [Us] " [5(0)] [Uar(]é)

with

1

[Zss(0)) = ([Uss) + [Us) " [Zs(0)] [Us)) - (6)

where [Urs], [Urr], [Uss] and Usr are matrices fol-
lowing from the discretization of, respectively, the
traces on boundary I' of operators U and U and
the restrictions on domain €25 of the same operators.
These operators are defined, if (x,y) — U%(zx,y)
is Green’s function of the deterministic domain €2,
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x +— f,(x) a volumic load function defined on 25 and
x — fs(x) a surfacic load function defined on T, by

W)@ = [ Uen@i, o

ULf,) (@) = /F UC(e.y) fu(0)dS,.  (®)

[Us] derives from the same operator as [Uss] but is
projected on a different basis of functions. [Z;(6)] be-
ing the impedance of domain €, it can then be ex-
panded as in (4), and the non-parametric method can
be used to generate the matrices of mass, stiffness
and damping, and ultimately condensation on I" using
(5)-(6) to generate [S(0)] and [Z(6)]. Although some
difficulties have to be addressed (Soize and Chebli
2003), such as the existence of rigid body modes
which take down the positive definiteness of matri-
ces of damping and stiffness, this approach is feasible.
Unfortunately, the computational cost is not a priori
lower than that of the SFEM-BEM method. All inter-
nal degrees of freedom (DOFs) of the Finite Element
model are considered, when all is needed is their trace
on boundary I'.

The construction of a probabilistic model directly
for the soil impedance would add to the advantages of
the non-parametric method an important reduction in
computational costs. As [Z(6)] cannot be a priori ex-
panded as in (4) in the case of an unbounded domain,
a causal reduced model of the soil impedance has to
be constructed and the identification of the mean ma-
trices for this model has to be performed.

3 PROBABILISTIC MODEL FOR THE SOIL
IMPEDANCE

The non-parametric method is based on the possibility
of generating the analytical probability density func-
tion of a frequency independent real positive definite
(or positive) matrix given its mean and a certain dis-
persion parameter. To be able to apply this method,
the model for the soil impedance matrix must then be
composed only of such matrices and, as stated in sec-
tion 2.2, causality has to be enforced in order to bound
unphysical results. Three methods are described here-
after, beginning with the Kramers-Kronig relations,
widely used in experimental physics.

3.1 Kramers-Kronig relations

Initially developped for electromagnetic problems to
link the real and imaginary parts of the complex sus-
ceptibility (Kramers 1927) and of the complex refrac-
tion index (Kronig 1926), the Kramers-Kronig rela-
tions have later been recognized a wider range of ap-
plication. Being built solely on causality, they have to
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be verified by the frequency response function (FRF)
of any physical system, [S] in the present case, and
state that

w{is - 27 [~ B, ©
or, equivalently,
S{[S()]} %P/jc dec (10)

where R{[S(w)]} and I{[S(w)]} are respectively the
real and imaginary parts of [S(w)], and P refers to
Cauchy’s principal part.

In many applications, S{[S(w)]} can be measured
experimentally and equation (9) can then be used to
reconstruct [S(w)], but numerically, S{[S(w)]} is of
no easier access than R{[S(w)]} or [S(w)], for which
the Kramers-Kronig relations are of no help to con-
struct the probability model of [S(w)].

3.2 Hardy functions decomposition

Another method to enforce the causality of the
impedance is to expand it, if possible, on a basis
of causal functions, like that of the Hardy functions
(Pierce 2001). h is said to be a Hardy function on the
upper half plane if and only if it is the Laplace trans-
form of some causal function f. Functions w — e,,(w)
forn e N

s () (559)

form an orthonormal basis of the space of Hardy func-
tions. Therefore any causal matrix can be sought on a
basis of Hardy functions.

— 3 Zu(0)] ()

n>0

(11)

[Z(w;0)] (12)

Unfortunately, very little is known on the a pri-
ori properties of the [Z,,(0)], for n > 0, such as pos-
itive definiteness, impeding application of the non-
parametric method. Also the number of terms re-
quired, in the right-hand side of (12), to obtain a cor-
rect approximation of [Z(w; )] might be important.

3.3 Hidden state variables

Ultimately, [Z(w)] is sought as the condensation on
I' of a mechanical system governed by a second or-
der differential equation with constant coefficients. As
this is in general untrue, if such a structure is to be re-
tained to ensure causality, hidden variables have to be
introduced, which will be linked only indirectly to the
internal DOFs of the system (Chabas and Soize 1987).
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The system is therefore discretized in nr DOFs on the
boundary I' and n;, hidden state variables. This last
number has to be accurately chosen so that the model
can account for the variations of the FRF. The total
number of DOFs of the discretization is n = np + ny,.
The impedance of this system can be expanded as in
(4) in terms of real n x n positive definite matrices
of mass [M ], damping [C4] and stiffness [K 4]. The
impedance [A(w)] can be block decomposed in

_ [ [Zrr(@)] - [Zon(w)]
AW = (Zon@)]" [Znn()]]” (13)

where [Z,5(w)] = [Kup) + iw [Cop] — w? [Mags], for
((Jz,[)’) in {F. h}z, []\/{FF], [C[‘[‘] and [KFF] are np X nr
real positive definite matrices, [Mry,], [Cry] and [Kty]
nr X ny, real matrices and [My;], [Chy) and [Kpp)
np, X ny, real positive definite matrices. Condensation
on [" then leads to

(Z(w)] = [Zrr(w)] = [Zra(@)] [Zmn(@)] " [Zrn(w)]"

Assuming, as usually done, that [C),;] is diagonal-
ized by the eigenvectors solutions of the generalized
eigenvalue problem [Kj,] ¢ = A [Mps] 0, [Z(w)] can
be written

O [Zrn ()] Yuf [Zen(w)]”
[Z(w)] = [Zor ()] = D 5 , .
—~ Wiy +iweg + ki

In other words, the boundary impedance of this me-
chanical system has the form

[N(w)]

2] =gt

(14)

where w +— [N(w)] and w — d(w) are two polynomi-
als of frequency w with constant coefficients (matri-
cial for N and scalar for d). The orders of d and N
verify degd = 2n;, and deg N = degd + 2.

This formulation ensures the causality of [Z(w)]
as (3) then corresponds in the time domain to a dif-
ferential equation with constant coefficients, and the
impedance is computed using only the real posi-
tive definite matrices [M 4], [C4] and [K 4]. The non-
parametric method can then be applied to this model
to obtain a probabilistic model of the soil impedance
matrix, provided that the mean matrices [M4] =
E{[M,]}, [Ca] = E{[Cal} and [Ka] = E{[KA)}

can be identified.

4 IDENTIFICATION OF THE MEAN MODEL

As for the non-parametric method applied to reduced
Finite Element uncertain models, where the mean ma-
trices are identified with the matrices of the determin-
istic model, the mean matrix of the soil impedance
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Figure 3. The real part of the x-sway element of the impedance
matrix of a homogeneous half space without heterogeneity (+)
and with bounded heterogeneity (— all Monte-Carlo trials and
— mean of these trials)

stiffness [N/m]

0 2 4 6 8 10
frequency [Hz]

Figure 4. The imaginary part of the x-sway element of the

impedance matrix of a homogeneous half space without hetero-

geneity (+) and with bounded heterogeneity (- all Monte-Carlo

trials and — mean of these trials)

will be assimilated to the soil impedance matrix of
the domain 2 without the uncertain domain ;. Al-
though not mathematically sound, this hypothesis is
physically appealing and the computations performed
with the parametric SFEM-BEM method described in
section 2.1 sustain it (Fig. 3-4).

The identification of the mean matrix of the soil
impedance with the soil impedance matrix of de-
terministic soil consists in finding %], @] and
M which minimize

e= Y lliZwo)] - [Zo(wa)lll (15)
(=1

where the wy, for 1 > ¢ > L, are the frequencies at
which the deterministic impedance [Z(w;)] has been
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computed and [Z(w,)] is the condensation on I of the
mean matrix [A(w)] = [K4] + iw [Ca] — w? [M4],
given by (13)-(14). This optimization problem is in
general nonlinear in the parameters.

Before studying the general case of identifying the
mean impedance matrix for n;, hidden state variables,
the simple case where the half space with the uncer-
tain domain €25 is modeled by a mass - spring - dash-
pot system is presented.

4.1 No hidden state variables (n;, = 0)

In that case, [Z(w)] = [Zrr(w)] and the minimization
problem becomes linear in the parameters. An exact
solution for [K 4], [C] and [M,] can then be found.

[&] _ ﬁ%[Zo(w)] —w?W’R [Zo(w)}7 (16)

wt — (w?)°

B wS [Zy(w)]

[Ca] = ———, (17)

w?

W R ([Zy(w)] — w*R [Zo(w)]

e ™
where w! :L Zle wi, W o= ZzL:1 Wy,
R[Z(w)] = 2 ®{[Zo(wo)l}, @*R[Zp(w)] =

25:1 W%E{ [Zo(we)]} and
S weS{ [Zo(we)]}-

wS [Zo(w)]

4.2 ny, hidden state variables (ny, > 0)

With the introduction of hidden variables, the mini-
mization of (15) becomes a non-linear problem. Many
different methods exist for the resolution of such
problems (Heylen et al. 1997), most of these depend-
ing on an initial value that has to be guessed to be-
gin the optimization process. This initial value can be
sought using a linearized form of (15):

€= N (we)] — d(we) [Zo(we)]ll (19)

where, for 1 < ¢ < L, [N(wy)] and d(wy) are defined
as in (14) - (14) for [Z(wy)].The identification on a
basis of orthogonal polynomials (Pintelon et al. 2004,
Bultheel and Van Barel 1995) is particularly adapted.
The minimization process is then completed by a clas-
sical non-linear optimization problem starting from
the value computed through minimization of (19).
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5 EXAMPLE

The application of the non-parametric method to com-
pute the probabilistic model of the soil impedance
matrix is performed in four steps:

1. Deterministic [Zy(w,)] is computed using classi-
cal computational tools;

2. The mean matrices [ﬂ, M and []W 4| of the
probabilistic model are identified using the re-
sults of section 4;

3. Given a dispersion parameter, the maximum
entropy principle gives the probability density
function of matrices [K 4], [C'a] and [M4];

4. Using Monte-Carlo trials, the realisations of ma-
trix [Z(w)] are computed and the moments de-
rived.

Using this methodology, for the case of a superfi-
cial foundation on a homogenous half space (the re-
sults for a parametric method are shown in Fig. 3 and
4), with a dispersion factor 6 = 0.1 for all matrices,
and considering no hidden variables, the following
means and typical deviations can be computed for 500
Monte-Carlo trials.

(K4, =2.17+0.12 x 10" N/m,
[C4l,, = 3.56 +0.18 x 109 N/(m.s),
[Ma],, = 0.60 = 0.30 x 107 N/(m.s?)

(20)

These values have to be compared to the values ob-
tained with the parametric method.

(K4, =218 +0.13 x 10" N/m,
[Cal,, = 3544020 x 10°N/(m.s), . (21)
[My],, = 0.60+ 1.10 x 107 N/(m.s2)

The only significant difference lies in the mass typ-
ical deviation, and is due to the simplicity of the
model used (no hidden variables). Considering each
Monte-Carlo trial of the impedance matrix indepen-
dently, the identification in terms of mass, damping
and stiffness matrices for the parametric method leads
in some cases to a non positive definite matrix of
mass. Since these realisations are out of reach for
the non-parametric method, the results are necessar-
ily condensed closer around the mean value. Hidden
state variables are required in order to take into ac-
count more precisely the physics of the impedance
matrix, and therefore account for its variations using
only positive definite matrices. When considering a
layered half space, this need for more DOFs will be-
come even more critical.
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6 CONCLUSIONS

The non-parametric method presented in this paper
allows for the construction of a probabilistic model of
the soil impedance matrix in an objective manner. It
does not require a previous identification of the uncer-
tain parameters and the construction of a probabilistic
model for each of them, as statistical data is usually
scarcely available, and it accounts for modelling er-
rors. Compared to other possible implementations of
the non-parametric method in unbounded domains, it
achieves a dramatic reduction in computational time.

ACKNOWLEDGEMENTS

This work has been supported by Electricité de France
Research & Development, to which the authors are
very thankful.

REFERENCES

Bultheel, A. & Van Barel, M. 1995. Vector orthogonal poly-
nomials and least squares approximation. SIAM Jour-
nal of Matrix Analysis and its Applications Vol. 16 (No.
3): 863-885.

Chabas, F. & Soize, Christian 1987. Modeling mechanical
subsystems by boundary impedance in the finite ele-
ment method. La Recherche Aérospatiale (english edi-
tion) 5 59-75.

Cornell, A. C. 1971. First order uncertainty analysis of soils
deformation and stability. Proceedings of the first Inter-
national Conference on Applications of Statistics and
Probability to Soil and Structural Engineering: Hong-
Kong: 129-144.

Favre, J.-L. 1998. Errors in geotechnics and their impact on
safety. Computers & Structures Vol. 67 (No. 1):37-45.

Heylen, Ward, Lammens, Stefan, & Sas, Paul 1997.
Modal analysis theory and testing. Leuven, Belgium:
Katholieke Universiteit Leuven.

Jaynes, E. T. 1957. Information theory and statistical mechan-
ics. Physical Review Vol. 106 (No. 4): 620—630.

Kramers, H. A. 1927. La diffusion de la lumiére par les
atomes. Atti del Congresso Internazionale dei Fisici: Vol-
ume 2: 545-557.

Kronig, R. de L. 1926. On the theory of dispersion of x-rays.
Journal of the Optical Society of America Vol. 12 (No.
6): 547-557.

Manolis, G. D. 2002. Stochastic soil dynamics. Soils Dynam-
ics and Earthquake Engineering 22 3-15.

Pierce, L. B. 2001. Hardy functions. Junior paper: Princeton
University. http://www.princeton.edu/ Ibpierce/.

Pintelon, R., Rolain, Y., Bultheel, A., & Van Barel, M. 2004.
Frequency domain identification of multivariable sys-
tems using vector orthogonal polynomials. Proceedings
of the 16th International Symposium on Mathematical
Theory of Networks and Systems.

Savin, E. & Clouteau, D. 2002. Coupling a bounded do-
main and an unbounded heterogeneous domain for elas-
tic wave propagation in three-dimensional random me-
dia. International Journal for Numerical Methods in En-
gineering 24 607—-630.

846

Schuéller, G. 1. 1997. A state-of-the-art report on compu-
tational stochastic mechanics. Probabilistic Engineering
Mechanics Vol. 12 (No. 4):197-321.

Soize, Christian 2000. A nonparametric model of random un-
certainties for reduced matrix models in structural dy-
namics. Probabilistic Engineering Mechanics 15277—
294.

Soize, C. & Chebli, H. 2003. Random uncertainties model
in dynamics substructuring using a nonparametric
probabilistic model. Journal of Engineering Mechan-
ics Vol. 128 (No. 4):449-457.

Wolf, J. P. 1985. Dynamic soil-structure interaction. Engle-
wood Cliffs, N. J.: Prentice-Hall, Inc.

© 2005 Millpress, Rotterdam, ISBN 90 5966 033 1



