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This paper deals with data uncertainties and model uncertainties issues in computational mechanics.

If data uncertainties can be modeled by parametric probabilistic methods, for a given mean model, a nonparametric probabilistic approach can be used for modeling model uncertainties. The first part is devoted to random matrix theory for which we summarize previous published results and for which two new ensembles of random matrices useful for the nonparametric models are introduced.

In a second part, the nonparametric probabilistic approach of random uncertainties is presented for linear dynamical systems and for nonlinear dynamical systems constituted of a linear part with additional localized nonlinearities. In a third part, a new method is proposed for estimating the parameters of the nonparametric approach from experiments. Finally, examples with experimental comparisons are given.

Introduction

In computational mechanics, random uncertainties in model predictions are due to data uncertainties and to model uncertainties.

Data uncertainties concern the parameters of the mathematical-mechanical model such as the geometrical parameters, the parameters allowing the boundary conditions to be described, the constitutive equations, etc. Therefore, data uncertainties can clearly be taken into account by the parametric probabilistic approach whose stochastic finite elements method [START_REF] Babuska | On solving elliptic stochastic partial differential equations[END_REF][START_REF] Ghanem | Ingredients for a general purpose stochastic finite elements formulation[END_REF][START_REF] Ghanem | Adaptive data refinement in the spectral stochastic finite element method[END_REF][START_REF] Ghanem | Reduced models for the medium-frequency dynamics of stochastic systems[END_REF][START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF][START_REF] Kleiber | The Stochastic Finite Element Method[END_REF][START_REF] Shinozuka | Response variability of stochastic finite element systems[END_REF][START_REF] Spanos | Stochastic finite element expansion for random media[END_REF][START_REF] Vanmarcke | Stochastic finite element analysis of simple beams[END_REF]] and other theoretical and numerical methods [START_REF] Ghanem | Reduced models for the medium-frequency dynamics of stochastic systems[END_REF] such as for stochastic eigenvalue problems [START_REF] Pradlwarter | Random eigenvalue problems for large systems[END_REF][START_REF] Shinozuka | Random eigenvalue problems in structural analysis[END_REF][START_REF] Székely | Computational procedure for a fast calculation of eigenvectors and eigenvalues of structures with random properties[END_REF] constitute very efficient tools in computational mechanics.

Model uncertainties are introduced during the construction of the mathematical-mechanical model: the constructed model cannot exactly represent a complex mechanical system due to the introduction of approximations and simplifications and because the details are unknown, or are not accurately known. Clearly, such model uncertainties are not relevant to the parametric approach because, by definition, the model uncertainties cannot be taken into account by the parameters of the mathematical-mechanical model under consideration (for instance, the thin plate theory does not allow all the types of waves to be modeled). For predictive models of complex systems, a large part of the lack of predictability is due to model uncertainties. For such a complex system: (i) If an additional smaller spatial scale is introduced in the predictive model for reducing model uncertainties, then data uncertainties increase due to the increasing of the number of parameters. (ii)

If several spatial scales (or equivalently, a hierarchy of models) are introduced, model uncertainties will always exist for the smaller spatial scale. (iii) For the smaller spatial scale introduced in the predictive model, the model uncertainties cannot be taken into account with the parametric probabilistic approach of data uncertainties. Consequently, in a predictive model of a complex system, there will always have a spatial scale for which model uncertainties will have to be taken into account for increasing the predictability. It should be noted that the objective of this nonparametric probabilistic approach is to increase the predictability of a given and fixed mean model, that is to say, is to increase the predictability without improving the mean model by introducing additional smaller spatial scales or a hierarchy of models. The proposed nonparametric approach also allows the data uncertainties to be modeled, particularly when the number of uncertain parameters becomes large. The nonparametric probabilistic approach of random uncertainties for dynamical sytems was introduced in [START_REF] Soize | A nonparametric model of random uncertainties in linear structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF]. This approach was developed thanks to the introduction of a new ensemble of random matrices that we call the "positive-definite ensemble". This ensemble, which is adapted to the operators of dynamical systems, is constructed and studied in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF] and differs from the Gaussian Orthogonal Ensemble (GOE) and from the other known ensembles of the random matrix theory [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF] which are not adapted to the mass, damping and stiffness operators of dynamical systems.

The bases of the nonparametric probabilistic approach of random uncertainties for linear dynamical systems is presented in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF][START_REF] Soize | Random matrix theory and non-parametric model of random uncertainties[END_REF] with applications to vibrations and transient elastodynamics. The case of uncertain dynamical systems in the medium-frequency range are studied in [START_REF] Soize | Uncertain dynamical systems in the medium-frequency range[END_REF]. Since the nonparametric approach consists in constructing a probability distribution of the random operators of the problem, the case of non homogeneous uncertainties cannot directly be taken into account and dynamic substructuring [START_REF] Craig | Coupling of substructures for dynamical analysis[END_REF] has to be used. The case of non homogeneous uncertainties for linear dynamical systems with an experimental validation is presented in [START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF][START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF]. Finally, the case of nonlinear dynamical systems with such a nonparametric model of random uncertainties is developed in [START_REF] Soize | Nonlinear dynamical systems with nonparametric model of random uncertainties[END_REF] and, in [START_REF] Desceliers | Nonparametric-parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF], a nonparametric-parametric approach is introduced and applied to earthquake engineering analysis of a reactor cooling system under seismic loads.

The first part of this paper is devoted to random matrix ensembles which are used for random uncertainties modeling in computational mechanics. First, for readability of the paper, the results concerning the main ensemble introduced in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF] are summarized. In addition, we present two new ensembles of random matrices useful for modeling random uncertainties with the nonparametric approach. For instance, the first one is useful for modeling uncertainties of the mass operator of a dynamical system for which the spatial distribution of the mass is uncertain but for which the total mass is given. The second ensemble, that we call the pseudo-inverse ensemble of random matrices can be used for modeling random uncertainties in the coupling operator between an elastic solid and an acoustic fluid for structural-acoustic systems.

The second part deals with a short overview with the nonparametric probabilistic approach of random uncertainties in linear and nonlinear transient dynamics presented in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF][START_REF] Soize | Nonlinear dynamical systems with nonparametric model of random uncertainties[END_REF][START_REF] Soize | Random matrix theory and non-parametric model of random uncertainties[END_REF]. Nevertheless, we present an additional experimental validation for linear transient dynamics of a non homogeneous structure submitted to a shock.

Finally, in the last part, we propose a new methodology for identification of the dispersion parameter of the nonparametric probabilistic model. Such a method is presented in the context of the experimental modal identification of a linear dynamical system.

Random matrix ensembles for uncertainties modeling in computational mechanics

The random matrix theory were introduced and developed in mathematical statistics by Wishart and others in the 1930s and was intensively studied by physicists and mathematicians in the context of nuclear physics (Wigner, Dyson, Mehta and others). An excellent synthesis of the random matrix theory can be found in the Mehta book [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF]. For physical applications, the most important ensemble of the random matrix theory, is the Gaussian Orthogonal Ensemble (GOE) for which the elements are constituted of real symmetric random matrices with statistically independent entries and which are invariant under orthogonal linear transformations. The random matrix theory has been used in other domains that in nuclear physics. In 1989, Weaver [START_REF] Weaver | Spectral statistics in elastodynamics[END_REF] show that the higher frequencies of elastodynamic structures constituted of small aluminium blocks have the behavior of the eigenvalues of a matrix belonging to the GOE. These results have clearly been validated for the very high-frequency range in elastodynamics but not at all for the frequency band of interest in structural dynamics, vibration and vibroacoustics systems which are concerned by the low-, medium-and high-frequency ranges.

In this section, we present five ensembles of random matrices which are useful for modeling data and model uncertainties in computational mechanics.

(1) The first ensemble SG + of random matrices, herein called the the normalized positive-definite ensemble, has recently been constructed (see [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF]) in the context of the development of a new approach for modeling random uncertainties in dynamical systems with a nonparametric approach.

A random matrix belonging to SG + is positive definite almost surely and its mean value is the identity matrix. This ensemble constitutes the main ensemble used for constructing the four other ensembles introduced below. Ensemble SG + differs from the GOE and from the other known ensembles of the random matrix theory. In order to improve the readability of this paper, we will recall the main results concerning this ensemble.

(2) The second ensemble SE + of random matrices, herein called the the positive-definite ensemble, has been constructed in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF], simultaneously with SG + . A random matrix belonging to SE + is positive definite almost surely and its mean value is a given positive-definite matrix. For instance, this ensemble is used for constructing probability model of positive operators such as the mass, the damping or the stiffness operators of a dynamical system.

(3) The construction of the third ensemble SE +0 has been introduced in [START_REF] Soize | A nonparametric model of random uncertainties in linear structural dynamics[END_REF] and is similar to the construction of ensemble SE + . A random matrix belonging to this ensemble is semipositive definite almost surely instead of being positive definite almost surely.

(4) The fourth one is the subset SE + lf of SE + constituted of random matrices in SE + for which a linear form on SE + is given. A particular case is the ensemble SE + tr for which the trace of the random matrices is given. This is a new ensemble that we construct below. For instance, such an ensemble is useful for modeling uncertainties of the mass operator of dynamical systems for which the spatial distibution of the mass is uncertain but for which the total mass is known.
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(5) The fifth set SE inv of random matrices, herein called the the pseudo-inverse ensemble, is a new ensemble that we construct in this paper. This ensemble is constituted of rectangular random matrices having a mean-square pseudo-inverse. For instance, such an ensemble is useful for modeling uncertainties in the coupling operator between an elastic solid and an acoustic fluid for a structural-acoustic system [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

In this paper, the following algebraic notations are used.

Euclidean space. Let x = (x 1 , . . . , x n ) be a vector in Ê n . The Euclidean space Ê n is equipped with the usual inner product (x, y) →< x , y >= n j=1 x j y j and the associated norm x =< x , x > 1/2 . Matrix sets. Let Å n,m (Ê) be the set of all the (n × m) real matrices, Å n (Ê) = Å n,n (Ê) be the set of all the square (n × n) real matrices, Å S n (Ê) be the set of all the (n × n) real symmetric matrices,

Å +0

n (Ê) be the set of all the (n × n) real symmetric semipositive definite matrices and Å + n (Ê) be the set of all the (n × n) real symmetric positive-definite matrices. We then have

Å + n (Ê) ⊂ Å +0 n (Ê) ⊂ Å S n (Ê) ⊂ Å n (Ê) .
Norms and usual operators. We denote:

(1) the determinant of matrix [A ] ∈ Å n (Ê) as det[A ] and its trace as tr

[A ] = n j=1 [A ] jj , ( 2 
) the transpose of [A ] ∈ Å n,m (Ê) as [A ] T ∈ Å m,n (Ê), (3) 
the operator norm of the matrix [A ] ∈ Å n,m (Ê) as

A = sup x ≤1 [A ] x , x ∈ Ê m , which is such that [A ] x ≤ A x , ∀x ∈ Ê m , (4) for [A ] and [B ] ∈ Å n,m (Ê), we denote ≪ [A ],[B ] ≫= tr{[A ] T [B ]
} and the Frobenius norm

(or Hilbert-Schmidt norm) A F of [A ] is such that A 2 F =≪ [A ],[A ] ≫= tr{[A ] T [A ]} = n j=1 m k=1 [A ] 2 jk , which is such that A ≤ A F ≤ √ n A .

Normalized positive-definite ensemble SG + of random matrices

In this section, we summarize the theory developed in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF] concerning the construction of ensemble SG + of random matrices.

Definition of ensemble SG +

This ensemble is defined as the random matrices [G n ], defined on a probability space (A, T , P ), with values in Å + n (Ê), whose probability distribution is constructed by using the entropy optimization principle [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF] for which the constraints (define as the available information) are the following:

(1) Matrix [G n ] is a symmetric positive-definite real random matrix, that is to say,

[G n ] ∈ Å + n (Ê) a.s . ( 1 
) (2) Matrix [G n ] is a second-order random variable, E{ [G n ] 2 } ≤ E{ [G n ] 2 F } < +∞ . (2) 
(3) The mean value

[G n ] of random matrix [G n ] is the (n × n) identity matrix [I n ], E{[G n ]} = [G n ] = [I n ] ∈ Å + n (Ê) . ( 3 
) (4) Random matrix [G n ] is such that E{ln(det[G n ])} = v with |v| < +∞ . (4) 
In Section 2.1.8, we will see that the constraint defined by Eq. ( 4) yields the following fundamental property for random matrices in ensemble SG + ,

E [G n ] -1 2 F < +∞ . ( 5 
)
It should be noted that Eq. ( 1) shows that random matrix [G n ] is invertible almost surely, but since the almost sure convergence does not yield the mean-square convergence, then an additional condition has to be introduced to obtain the property defined by Eq. ( 5). This is the role plays by Eq. ( 4). In addition, since for

θ ∈ A, [G n (θ)] -1 ≤ [G n (θ)] - 1 
F , then Eq. ( 5) yields

E [G n ] -1 2 < +∞ . (6) 

Dispersion parameter of a random matrix in ensemble SG +

Let δ > 0 be the real parameter defined by

δ = E{ [G n ] -[G n ] 2 F } [G n ] 2 F 1/2 = 1 n E{ [G n ] -[I n ] 2 F } 1/2 , (7) 
that allows the dispersion of the probability model of random matrix [G n ] to be fixed. In Ref. [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF],

it is proved that the dispersion of the probability model is fixed by giving parameter δ which has to be independent of n and which has to be such that

0 < δ < (n + 1)(n + 5) -1 . ( 8 
)
If Eq. ( 8) does not hold, then Eq. ( 5) does not hold. Then the constraint defined by Eq. ( 8) is important for the model.

Probability distribution of a random matrix in ensemble SG +

The probability distribution

P [G n ] of random matrix [G n ]
is defined by a probability density function

[G n ] → p [G n ] ([G n ]) from Å + n (Ê) into Ê + = [0 , +∞[,
with respect to the measure (volume element) dG n on the set Å S n (Ê) such that (see [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] for the construction of this measure),

dG n = 2 n(n-1)/4 Π 1≤i≤j≤n d[G n ] ij . (9) 
We then have

P [G n ] = p [G n ] ([G n ]) dG n , (10) 
with the normalization condition

Å + n (Ê) p [G n ] ([G n ]) dG n = 1 . (11) 

Probability density function p

[G n ] ([G n ]
) is then written ( [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF]) as

p [G n ] ([G n ]) = ½ Å + n (Ê) ([G n ]) × C G n × det [G n ] (n+1) (1-δ 2 ) 2δ 2 × exp - (n + 1) 2δ 2 tr [G n ] , ( 12 
)
in which ½ Å + n (Ê) ([G n ]) is equal to 1 if [G n ] ∈ Å + n (Ê) and is equal to zero if [G n ] / ∈ Å + n (Ê) and where positive constant C G n is such that C G n = (2π) -n(n-1)/4 n+1 2δ 2 n(n+1)(2δ 2 ) -1 Π n j=1 Γ n+1 2δ 2 + 1-j 2 , ( 13 
)
where Γ(z) is the gamma function defined for z > 0 by Γ(z) = +∞ 0 t z-1 e -t dt. Equation [START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF] shows that {[G n ] jk , 1 ≤ j ≤ k ≤ n} are dependent random variables. 

(Ê) ⊂ Å S n (Ê) is defined by Ψ [G n ] ([Θ n ]) = E exp(i ≪ [Θ n ] , [G n ] ≫) .
We then have

Ψ [G n ] ([Θ n ]) = Å + n (Ê) exp( i tr{[Θ n ] [G n ]}) p [G n ] ([G n ]) dG n , (14) 
which ( [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF]) yields

Ψ [G n ] ([Θ n ]) = det [ I n ] -i 2δ 2 n+1 [Θ n ] -(n+1)(2δ 2 ) -1 . ( 15 
)
If (n + 1)/δ 2 is an integer, then Eq. [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] shows that the probability distribution defined by Eq. ( 10) with ( 12) and ( 13) is a Wishart distribution [START_REF] Anderson | Introduction to Multivariate Statistical Analysis[END_REF][START_REF] Fougeaud | [END_REF]. In general, (n + 1)/δ 2 is not an integer and consequently, the probability distribution defined by Eq. ( 10) with ( 12) and ( 13) is not a Wishart distribution.

Second-order moments of a random matrix in ensemble SG

+ Since [G n ] = [I n ], the covariance C G n jk,j ′ k ′ of random variables [G n ] jk and [G n ] j ′ k ′ , defined by C G n jk,j ′ k ′ = E ([G n ] jk -[I n ] jk )([G A n ] j ′ k ′ -[I n ] j ′ k ′ ) , (16) 
is written [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF] as

C G n jk,j ′ k ′ = δ 2 n+1 [I n ] j ′ k [I n ] jk ′ + [I n ] jj ′ [I n ] kk ′ . ( 17 
)
In particular, the variance of random variable [G n ] jk is such that

V G n jk = δ 2 n+1 (1 + [I n ] jk ) . (18) 
2.1.6. Invariance of ensemble SG + under real orthogonal transformations

Let [Φ n ] be any real orthogonal matrix belonging to Å n (Ê) such that [Φ n ] T [Φ n ] = [Φ n ] [Φ n ] T = [ I n ]. Let [G ′ A n ] be the random matrix with values in Å + n (Ê) defined by [G ′ n ] = [Φ n ] T [G n ] [Φ n ]. We then have [G n ] = [Φ n ] [G ′ n ] [Φ n ] T . ( 19 
)
The probability density function p

[G ′ n ] ([G ′ n ]) of random matrix [G ′ n ],
with respect to the volume element dG ′ n (see Eq. ( 9)), is such that

p [G ′ n ] ([G ′ n ]) dG ′ n = p [G n ] ([G n ]) dG n , (20) 
in which p [G n ] ([G n ]
) is defined by Eq. [START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF].

Let [G n ] and [G ′ n ] be such that [G n ] = [Φ n ] [G ′ n ] [Φ n ] T . Since [Φ n ] is a real orthogonal matrix, we deduce that dG n = dG ′ n , det [G n ] = det [G ′ n ] and tr [G n ] = tr [G ′ n ].
From Eq. ( 12), we deduce that

p [G n ] ([G n ]) dG n = p [G n ] ([G ′ n ]) dG ′ n . ( 21 
)
From Eqs. ( 20) and ( 21), we deduce that

p [G ′ n ] ([G ′ n ]) dG ′ n = p [G n ] ([G ′ n ]) dG ′ n , (22) 
which proves the invariance of random matrix [G n ] under real orthogonal transformations.

Algebraic representation of a random matrix in ensemble SG +

The following algebraic representation of random matrix [G n ] allows a procedure for the Monte Carlo numerical simulation of random matrix [G n ] to be defined. With this procedure, the numerical cost induced by the simulation is a constant that depends on dimension n but that is independent of the values of parameter δ. Random matrix [G n ] can be written as

[G n ] = [L n ] T [L n ] , (23) 
in which [L n ] is an upper triangular random matrix with values in Å n (Ê) such that:

(1) random variables {[L n ] jj ′ , j ≤ j ′ } are independent;

(2) for j < j ′ , real-valued random variable [L n ] jj ′ can be written as

[L n ] jj ′ = σ n U jj ′ in which σ n = δ(n + 1) -1/2
and where U jj ′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(3) for j = j ′ , positive-valued random variable [L n ] jj can be written as [L n ] jj = σ n 2V j in which σ n is defined above and where V j is a positive-valued gamma random variable whose probability density function p V j (v) with respect to dv is written as

p V j (v) = ½ Ê + (v) 1 Γ n+1 2δ 2 + 1-j 2 v n+1 2δ 2 -1+j 2 e -v . (24) 

Convergence property of a random matrix in ensemble SG + when dimension goes to infinity

It is mathematically proved [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF] that E{ [G n ] -1 2 F } < +∞ and therefore that E{ [G n ] -1 2 } < +∞. In addition, the following fundamental property is proved,

∀n ≥ 2 , E{ [G n ] -1 2 } ≤ C δ < +∞ , (25) 
in which C δ is a positive finite constant that is independent of n but that depends on δ. Equation [START_REF] Shinozuka | Random eigenvalue problems in structural analysis[END_REF] 

means that n → E{ [G n ] -1 2 } is a bounded function from {n ≥ 2} into Ê + .
In [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF], we have numerically studied the convergence velocity as a function of dispersion parameter δ. Figure 1 shows the graph of function 

n → E{ [G A n ] -1 2 } for δ A = 0.

Probability density functions of the random eigenvalues of a random matrix in ensemble

SG +
Let Λ 1 , . . . , Λ n be the positive-valued random eigenvalues of random matrix [G n ]. The joint probability density function p Λ 1 ,...,Λ n (λ 1 , . . . , λ n ) with respect to dλ 1 . . . dλ n of random variables Λ 1 , . . . , Λ n is written [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] as

p Λ 1 ,...,Λ n (λ 1 , . . . , λ n ) = ½ [0,+∞[ (λ 1 ) × . . . × ½ [0,+∞[ (λ n ) × C × (λ 1 × . . . × λ n ) (n+1) (1-δ 2 ) 2δ 2 × {Π α<β |λ β -λ α |} e -(n+1) 2δ 2 (λ 1 +...+λ n ) , (26) 
C. Soize [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF] as

p Λ 1 ,..., Λ n (λ 1 , . . . , λ n ) = ½ S n (λ 1 , . . . , λ n ) p Λ 1 ,...,Λ n (λ 1 , . . . , λ n ) S n p Λ 1 ,...,Λ n (λ 1 , . . . , λ n ) dλ 1 . . . dλ n , (27) 
in which S n is the simplex defined by

S n = {(λ 1 , . . . , λ n ) ∈ Ê n ; 0 < λ 1 < . . . < λ n < +∞} . ( 28 
)
The probability density function p Λ j (λ j ) with respect to dλ j of random variable Λ j can then be written as

p Λ j (λ j ) = except overλ j p Λ 1 ,..., Λ n (λ 1 , . . . , λ n ) dλ 1 . . . dλ j-1 dλ j+1 . . . dλ n . (29) 
An explicit calculation of p Λ j (λ j ) cannot be performed. An estimation can be constructed by using the Monte Carlo numerical simulation. Figure 2 shows the graphs of probability density functions p Λ j for j = 1, . . . n with δ = 0.5, n = 30 and with 10 000 realizations in the Monte Carlo numerical simulation. This figure shows that the dispersion of random eigenvalue Λ j increases with its rank j. 

C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in March 2004)

Ensemble SE + of random matrices 2.2.1 Definition of ensemble SE +

The ensemble SE + is defined as the set of the random matrices [A n ], defined on probability space (A, T , P ), with values in Å + n (Ê), having similar properties that the properties defined by Eqs. ( 1), ( 2) and ( 4), but for which

E{[A n ]} = [A n ] ∈ Å + n (Ê) , (30) 
in which the mean value of

[A n ] is a given matrix [A n ] in Å + n (Ê). Since matrix [A n ] is positive definite, there is an upper triangular matrix [L A n ] in Å n (Ê) such that [A n ] = [L A n ] T [L A n ] , (31) 
which corresponds to the Cholesky factorization of matrix [A n ]. Consequently, ensemble SE + is defined as the set of matrices [A n ] which are written as

[A n ] = [L A n ] T [G n ] [L A n ] , (32) 
in which matrix [G n ] is the random matrix in ensemble SG + .

Properties of a random matrix in ensemble SE +

Taking into account Eqs. (1) to ( 5), it can be deduced that random matrix [A n ] has the following properties:

(1) Matrix [A n ] is a symmetric positive-definite real random matrix, that is to say,

[A n ] ∈ Å + n (Ê) a.s . ( 33 
) (2) Matrix [A n ] is a second-order random variable, E{ [A n ] 2 F } < +∞ . (34) 
(3) The mean value of random matrix [A n ] is such that

E{[A n ]} = [A n ] ∈ Å + n (Ê) . ( 35 
) (4) Random matrix [A n ] is such that E [A n ] -1 2 ≤ E [A n ] -1 2 F < +∞ . ( 36 
)

Dispersion parameter of a random matrix in ensemble SE +

The dispersion is controlled by parameter δ defined by Eq. ( 7) and verifying Eq. ( 8), that we rewrite as δ A > 0, and which is such that

δ A = 1 n E{ [G n ] -[I n ] 2 F } 1/2 . ( 37 
)
Parameter δ A , which has to be independent of n and which has to be chosen such that

0 < δ A < (n + 1)(n + 5) -1 , (38) 
allows the dispersion of the probability model of random matrix [A n ] to be fixed. Finally, the algebraic representation of random matrix [A n ] is given by Eqs. ( 32) and ( 23)-( 24).

Probability model of a set of random matrices in ensemble SE +

Let us consider ν random matrices [A 1 n ], . . . , [A ν n ] belonging to ensemble SE + . This means that the mean values of the random matrices are known but that no information is available concerning correlation tensor between two any random matrices such as

[A ν j ] and [A ν k ].
Then, applying the maximum entropy principle, it can be proved that the probability density function

([A 1 n ], . . . , [A ν n ]) → p [A 1 n ],...,[A ν n ] ([A 1 n ], . . . , [A ν n ]) from Å + n (Ê) × . . . × Å + n (Ê) into Ê + with respect to the measure (volume element) dA 1 n × . . . × dA ν n on Å S n (Ê) × . . . × Å S n (Ê) is written as p [A 1 n ],...,[A ν n ] ([A 1 n ], . . . , [A ν n ]) = p [A 1 n ] ([A 1 n ]) × . . . × p [A ν n ] ([A ν n ]) , (39) 
which means that [A 1 n ], . . . , [A ν n ] are independent random matrices.

Ensemble SE +0 of random matrices

The ensemble SE +0 is defined as the set of the second-order random matrices [A m ], defined on probability space (A, T , P ), with values in Å +0 m (Ê), such that

E{[A m ]} = [A m ] ∈ Å +0 m (Ê) , (40) 
in which the mean value of

[A m ] is a given matrix [A m ] in Å +0 m (Ê). Since matrix [A m ] is semipositive definite, there is a rectangular matrix [L A m ] in Å n,m (Ê) such that [A m ] = [L A m ] T [L A m ] , (41) 
in which

n = m -µ rig , (42) 
where µ rig ≥ 1 is the dimension of the null space of [A n ]. The computation of this factorization will not be explained here but can be deduced from the usual decompositions [START_REF] Golub | Matrix Computations, Second Edition[END_REF]. The ensemble SE +0 is then defined as the set of matrices [A m ] which are written as

[A m ] = [L A m ] T [G n ] [L A m ] , (43) 
in which matrix [G n ] is the random matrix in ensemble SG + . Clearly, we have

E{ [A m ] 2 F } < +∞ . ( 44 
)
The dispersion is controlled by parameter δ A defined by Eq. ( 37) and verifying Eq. (38). differs from the zero matrix. The ensemble SE + lf is defined as follows. Each random matrix [ B n ] belonging to SE + lf is a second-order random matrix, defined on probability space (A, T , P ), with values in Å + n (Ê), whose mean value is

Ensembles SE

E{[ B n ]} = [B n ] ∈ Å + n (Ê) , (45) 
and which is written as

[ B n ] = b n 1 f ([ A n ]) [ A n ] , (46) 
in which the random matrix [ A n ] with values in Å + n (Ê) belong to SE + and is written as

[ A n ] = [U n ] T [ G n ] [U n ] , (47) 
where

[U n ] is an invertible matrix in Å n (Ê] such that [B n ] = b n E{ 1 f ([ A n ]) [ A n ]} , (48) 
and where the random matrix [ G n ] belongs to SG + . It should be noted that, if [U n ] verifies Eq. ( 48), then µ [U n ] verifies Eq. ( 48) for all real µ. In addition, the definition of SE + lf is consistent if, for any

[B n ] given in Å + n (Ê), Eq. (48) has at least a solution. If f ([B n ]) = tr[B n ], then SE + lf is denoted by SE + tr . Since matrix [B n ] is positive definite, there is an upper triangular matrix [L B n ] in Å n (Ê) such that [B n ] = [L B n ] T [L B n ] , (49) 
which corresponds to the Cholesky factorization of matrix [B n ]. Consequently, random matrix

[ B n
] can be rewritten as

[ B n ] = [L B n ] T [ H n ] [L B n ] , (50) 
in which the random matrix [ H n ] with values in Å + n (Ê) is a second-order random variable whose mean value is

E{[ H n ]} = [ I n ] , ( 51 
)
and which is written as

[ H n ] = b n 1 f ([ A n ]) [L B n ] -T [ A n ] [L B n ] -1 , (52) 
where [ A n ] is defined by Eq. (47).

Properties of a random matrix in ensemble SE +

lf It can easily be deduced that second-order random matrix

[B n ] with values in Å + n (Ê) with E{[B n ]} = [B n ] ∈ Å + n (Ê), is such that f ([B n ]) = b n a.s , (53) 
E [B n ] -1 2 < +∞ . ( 54 
)
As previously, the dispersion of random matrix [B n ] is controlled by δ B such that

δ B = 1 n E{ [G n ] -[I n ] 2 F } 1/2 , ( 55 
)
in which δ B has to be independent of n and such that 0 < δ B < (n + 1)(n + 5) -1 .
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Algorithm for the construction

In this subsection, we present an algorithm for constructing matrix [U n ]. We introduce the invertible

matrices [V n ] and [W n ] in Å n (Ê) such that [V n ] = [U n ] [L B n ] -1 , [W n ] = [V n ] [V n ] T . (56) 
Therefore, Eqs. (48) can be rewritten as

[W n ] -1 = b n E [G n ] f ([ A n ]) , ( 57 
)
in which

[ A n ] = [U n ] T [ G n ] [U n ] , [U n ] = [V n ] [L B n ] . ( 58 
)
The construction of a solution [U n ] of Eqs. ( 56)-( 57) is performed with the following iterative algorithm.

• Initialization: [W (0) n ] = [ I n ].
• Calculations for iteration (j) for which matrix [W (j) n ] is known.

1. Calculation of [V (j) n ] such that [W (j) n ] = [V (j) n ] [V (j) n ]. 2. Calculation of [U (j) n ] = [V (j) n ] [L B n ].

Calculation of

[B (j) n ] = b n E{[ A (j) n ]/f ([ A (j) n ])} [R (j+1) n ] = b n E{[G n ]/f ([ A (j) n ])} with [ A (j) n ] = [U n ] T [ G n ] [U (j) n ]. 4. Convergence test with ε (j) = [B n ] -[B (j) n ] / [B n ] : If ε (j) ≤ ε 0 then [U n ] = [U (j)
n ] and go to 8.

If ε (j) > ε 0 then go to 5.

Calculation of [W

(j+1) n ] = [R (j+1) n ] -1 . 6. Loading [W (j+1) n ] in [W (j) n ].
7. Go to 1.

End

Normalized case

We consider the normalized case defined by [B n ] = [ I n ] with n = 6 and f = tr. Then, 

[ B n ] = [ H n ],
(j) = [B n ] -[B (j) n ] / [B n
] as a function of the iteration number j. Figure 3 displays the graphs of functions j → log 10(ε (j) )

for δ B = 0.1, 0.3 and 0.5. It can be seen that for the three values of the dispersion parameter, convergence is reached with 7 iterations with a relative error less than 10 -12 . For δ B = 0.5, matrix [U n ] obtained at convergence by the iteration algorithm is written as

[U n ] =       
0.9992 0 0 0 0 0 -0.0023 1.0015 0 0 0 0 -0.0003 -0.0012 1.0008 0 0 0 -0.0040 0.0004 0.0020 0.9998 0 0 -0.0013 -0.0021 0.0004 -0.0024 0.9987 0 0.0004 -0.0010 0.0008 0.0011 -0.0016 0.9999

       .
In this case, [U n ] is a lower triangular matrix.

Ensemble SE inv of random matrices 2.5.1. Decomposition of a rectangular matrix

Let [A m,n ] be a rectangular real matrix in Å m,n (Ê) for which its null space is reduced to {0}, that is to say such that

[A m,n ] x = 0 =⇒ x = 0 . ( 59 
)
Then, rectangular matrix [A m,n ] can be written as

[A m,n ] = [U m,n ] [T n ] , (60) 
in which the rectangular matrix [U m,n ] and the symmetric square matrix [T n ] are such that

[T n ] ∈ Å + n (Ê) and [U m,n ] ∈ Å m,n (Ê) such that [U m,n ] T [U m,n ] = [ I n ] . (61)

Construction of the decomposition of a rectangular matrix

The construction of the decomposition defined by Eq. ( 60) can be performed by using the singular value decomposition [START_REF] Golub | Matrix Computations, Second Edition[END_REF]. Nevertheless, we give below a direct construction which is similar to the construction used to construct the decomposition Í Ì of a compact operator [START_REF] Guelfand | Les Distributions, Tome 4, Applications de l'Analyse Harmonique[END_REF].

For a given rectangular matrix [A m,n ] ∈ Å m,n (Ê) with a null space reduced to {0} (see Eq. ( 59)), let [B n ] be the positive-definite square matrix such that

[B n ] = [A m,n ] T [A m,n ] ∈ Å + n (Ê) . (62) 
It should be noted that [B n ] is a positive-definite symmetric matrix because the null space of matrix

[A m,n ] is reduced to {0}. Since [B n ] belongs to Å + n (Ê), matrix [B n
] is diagonalizable and can be written as

[B n ] = [Φ n ] [Σ n ] [Φ n ] T , ( 63 
) in which [Σ n ] ∈ Å + n (Ê)
is the diagonal matrix of the positive eigenvalues of matrix [B n ] and where

[Φ n ] ∈ Å n (Ê)
is the matrix of the corresponding eigenvectors which is an orthogonal matrix, that is to say such that

[Φ n ] [Φ n ] T = [Φ n ] T [Φ n ] = [ I n ]. Consequently, [Σ n ] 1/2
is the matrix of the singular values of matrix [A m,n ] and we define the matrix [T n ] by

[T n ] = [B n ] 1/2 = [Φ n ] [Σ n ] 1/2 [Φ n ] T ∈ Å + n (Ê) . ( 64 
) Since matrix [T n ] belongs to Å + n (Ê), it is invertible and the matrix [U m,n ] in the decomposition [A m,n ] = [U m,n ] [T n ]
can then be constructed by the following equation,

[U m,n ] = [A m,n ] [T n ] -1 ∈ Å m,n (Ê) . ( 65 
)
The construction of the decomposition is then complete. It should be noted that

[U m,n ] T [U m,n ] = [T n ] -T [A m,n ] T [A m,n ] [T n ] -1 = [T n ] -T [B n ] [T n ] -1 = [B n ] -1/2 [B n ] [B n ] -1/2 = [ I n ].

Definition of ensemble SE inv

Let [A m,n ] be a rectangular real matrix in Å m,n (Ê) with a null space reduced to {0} whose decomposition (see Section 2.5.1) is

[A m,n ] = [U m,n ] [T n ] , ( 66 
) in which [U m,n ] ∈ Å m,n (Ê) and [T n ] ∈ Å + n (Ê). Since symmetric matrix [T n ] is positive definite,
there is an upper triangular matrix with values in Å m,n (Ê), whose mean value is

[L T n ] in Å n (Ê) such that [T n ] = [L T n ] T [L T n ] , (67 
E{[A m,n } = [A m,n ] ∈ Å m,n (Ê) , (68) 
and which is written as

[A m,n ] = [U m,n ] [ T n ] , (69) 
in which the matrix [U m,n ] ∈ Å m,n (Ê) is such that [U m,n ] T [U m,n ] = [ I n ] , (70) 
and where the random matrix [ T n ] with values in Å + n (Ê) is written as

[ T n ] = [L T n ] T [G n ] [L T n ] , (71) 
with [G n ] a random matrix in ensemble SG + . Finally, from Eqs. ( 2), ( 6) and (71), it can be deduced that

E{ [ T n ] 2 } = C 0 < +∞ , E{ [ T n ] -1 2 } = C 1 < +∞ , (72) 
in which C 0 and C 1 are two finite positice constants. (1) Random matrix [A m,n ] is a second-order random variable and we have the following inequalities,

E{ [A m,n ] 2 F } = E{ [T n ] 2 F } < +∞ , ( 73 
) 0 < C 2 ≤ E{ [A m,n ] 2 } ≤ C 3 < +∞ , ( 74 
)
in which C 2 = 1 C 1 [U m,n ] 2 and C 3 = C 0 [U m,n ] 2
with C 0 and C 1 are the constants defined in Eq. ( 72).

(2) The mean value of random matrix [A m,n ] is such that

E{[A m,n ]} = [A m,n ] ∈ Å m,n (Ê) . (75) (3) The left pseudo-inverse [A m,n ] -1ℓ ∈ Å n,m (Ê) of random rectangular matrix [A m,n ] is defined by [A m,n ] -1ℓ = { [A m,n ] T [A m,n ] } -1 [A m,n ] T ∈ Å n,m (Ê) . (76) Since [A m,n ] -1ℓ = [ T n ] -1 [U m,n ] T , we deduce that E [A m,n ] -1ℓ 2 ≤ C 1 [U m,n ] T 2 < +∞ , ( 77 
)
in which C 1 is the constant defined in Eq. ( 72).

(4) As previously, the dispersion of random matrix [A m,n ] is controlled by δ A such that

δ A = 1 n E{ [G n ] -[I n ] 2 F } 1/2 , ( 78 
)
in which δ A has to be independent of n and such that 0 < δ A < (n + 1)(n + 5) -1 .

Foundations of the nonparametric probabilistic approach of random uncertainties in mechanical systems

In this part, we explain the main ideas and the foundations of the nonparametric probabilistic approach of data uncertainties and model uncertainties in mechanical systems.

Mathematical-mechanical modeling of a physical mechanical system

Let us consider a Physical Mechanical System (PMS). This means that the PMS is the mechanical system for which a predictive model has to be constructed. The mathematical-mechanical modeling of this PMS leads us to a Boundary Value Problem (BVP). The weak formulation of such a BVP introduces several linear operators (such as the mass, damping and stiffness operators of a fixed elastic system occupying a three-dimensional bounded domain). Let 0 be one of these operators which is assumed to be an unbounded operator in a real Hilbert space À and having an inverse in À. By assumption, the unknown field of this BVP is with values in an admissible space Î which is a Hilbert space such that Î ⊂ À. It is assumed that the functions belonging to admissible space Î can reasonably approximate any state of the PMS. Let exp be the operator corresponding to 0 for the PMS. This operator is unknown.Only an "approximate" model 0 of exp can be constructed.

Mean reduced model

The reduced model is deduced from the BVP by using the Ritz-Galerkin projection on a finite dimension subspace À n of Î. Let {φ α } α≥1 be an Hilbertian basis in À whose functions φ α are in space Î. Then À n is spanned by {φ 1 , . . . , φ n } (for instante the eigenmodes). Therefore, the projection of operator 0 on À n is represented by the real square matrix [A 0,n ] in Å n (Ê). The mean reduced model is defined as the reduced model constructed by using the nominal values of the parameters. Matrix [A 0,n ] corresponding to the nominal mean reduced model is rewritten as

[A 0,n ].

Updating the mean reduced model using experimental data

Let [A exp,n ] be the matrix of the projection of exp on À n (that is to say using the Hibertian basis {φ α } α≥1 ). Therefore, [A exp,n ] is a matrix in Å n (Ê) which is assumed to be experimentally identified (indirect experimental identification). The biais [B 0,n ] between the PMS and the mean reduced model is defined by

[B 0,n ] = [A 0,n ] -[A exp,n ].
For complex system, it is difficult to develop an accurate predictive model and consequently, the norm [B 0,n ] of biais [B 0,n ] is not small. Therefore, the biais has to be reduced in updating the nominal parameters of the model.

The model updating yields the updated matrix

[A n ] in Å n (Ê) of nominal matrix [A 0,n ].
The biais

[B n ] = [A n ] -[A exp,n ] has a norm [B n ] < [B 0,n ] which is generally not sufficiently small.
Then, a probabilistic model of uncertainties has to be introduced.

Parametric probabilistic approach

The parametric probabilistic model consists in introducing random variables and stochastic fields as parameters in the BVP in order to model data uncertainties. The statistical reduction methods (such as the truncated Karhunen-Loeve of stochastic fields (see for instance [START_REF] Ghanem | Stochastic Finite Elements: A spectral Approach[END_REF])) allow the stochastic reduced model to be constructed. In such a stochastic reduced model, [A n ] becomes a random matrix [A n (X)] in which X is an Ê m -valued random variable whose support D m of its probability measure (probability distribution) P X is such that D m ⊂ Ê m and where

x → [A n (x)] is a mapping from Ê m into Å n (Ê). Clearly, the range of mapping x → [A n (x)] is a subset Ë par,n of Ë n such that Ë par,n ⊂ Ë n ⊂ Å n (Ê) , (79) 
in which Ë n is a subset of Å n (Ê) for which any matrix in Ë n is assumed to be invertible in order to simplify the developments. For instance, subset Ë n will be 

Ë n = Å + n (Ê).
[A par,n ] = [A n (X)] . (80) 
Then, the mean-square error between the parametric probabilistic model of random uncertainties and the experimental data is given by

E{ [A par,n ] -1 -[A exp,n ] -1 2 } = D m [A n (x)] -1 -[A exp,n ] -1 2 P X (dx) = Ë par,n [a n ] -1 -[A exp,n ] -1 2 P par ( da n ) , (81) 
in which da n is the volume element on set Ë par,n and where P par is the probability measure on Ë par,n defined as the image of P X on D m by the mapping x → [ A n (x)] and which is such that

E{ [ A par,n ] -1 2 } = D m [A n (x)] -1 2 P X (dx) = Ë par,n [a n ] -1 2 P par ( da n ) < +∞ . (82) 
In general, D m and probability measure P X on D m are given. Due to the model uncertainties, the mean-square error defined by Eq. ( 81) is generally not sufficiently small.

3.5.Introduction of the nonparametric probabilistic approach

The problem is then to introduce a nonparametric probabilistic approach of data and model uncertainties allowing the mean-square error defined by Eq. ( 81) to be reduced. The nonparametric probabilistic approach of random uncertainties consists in substituting random matrix [A par,n ] by a random matrix [A nonpar,n ] such that

E{[A nonpar,n ]} = [A n ] , E{ [ A nonpar,n ] -1 2 } < +∞ . ( 83 
)
The probability measure P nonpar on Ë n of random matrix [A nonpar,n ] is then directly constructed by using the random matrix theory (see Section 2). Then, the mean-square error between the nonparametric probabilistic model of random uncertainties and the experimental data is given by

E{ [A nonpar,n ] -1 -[A exp,n ] -1 2 } = Ë n [a n ] -1 -[A exp,n ] -1 2 P nonpar ( da n ) , (84) 
in which da n is the volume element on set Ë n .

3.6.Capability of the nonparametric probabilistic approach

Since Ë par,n ⊂ Ë n , we can take P nonpar = P par in which the support of probability measure is Ë par,n .

In this case, we have [A nonpar,n ] = [A par,n ] which proves that the nonparametric model has the capability to take into account data uncertainties. In addition, since the support of P nonpar is Ë n with Ë par,n ⊂ Ë n , the nonparametric model allows a larger class of random matrices to be constructed and consequently, has, a priori, the capability to take into account the model uncertainties. For instance, let us assume that the model uncertainties are sufficiently high for that [A exp,n ] ∈ Ë par,n but, as we explained above, we have [A exp,n ] ∈ Ë n with Ë par,n ⊂ Ë n (see Fig. 4). Equation (81)

shows that the mean-square error cannot be reduced even if probability measure P par could be arbitrary chosen. On the other hand, since [A exp,n ] belongs to Ë n , Eq. (84) shows that there are probability measures P nonpar on Ë n which allow the mean-square error to be reduced. For instance, if δ 0 is the Dirac measure on Å n (Ê), then the probability measure P nonpar ( da n ) = δ 0 ([a n ]-[A exp,n ]) leads the error to be zero because [A exp,n ] belongs to Ë n . Of course, P nonpar cannot be arbitrary chosen on Ë n but has to be constructed using the matrix theory introduced in Section 2. Consequently and intuitively, there is a probability measure P nonpar on Ë n verifying the properties defined by Eq. ( 83), such that

Ë n [a n ] -1 -[A exp,n ] -1 2 P nonpar ( da n ) < Ë par,n [a n ] -1 -[A exp,n ] -1 2 P par ( da n ) , (85) 
which means that

E{ [A nonpar,n ] -1 -[A exp,n ] -1 2 } < E{ [A par,n ] -1 -[A exp,n ] -1 2 } . ( 86 
)

Nonparametric model of random uncertainties for linear and nonlinear transient dynamics

In this part, for complex dynamical systems, we summarize the nonparametric probabilistic approach of data uncertainties and model uncertainties, that we introduced in [START_REF] Soize | A nonparametric model of random uncertainties in linear structural dynamics[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF][START_REF] Soize | Nonlinear dynamical systems with nonparametric model of random uncertainties[END_REF][START_REF] Soize | Random matrix theory and non-parametric model of random uncertainties[END_REF][START_REF] Soize | Uncertain dynamical systems in the medium-frequency range[END_REF][START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF] and for which the foundations have been given in Section 3. The continuous aspects are presented in [START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynam-C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in[END_REF]. In order to limit the developments, the presentation will be limited to the discrete cases.

Introduction of the mean finite element model

We consider a nonlinear dynamic system constituted of a three-dimensional damped fixed structure around a static equilibrium configuration considered as a natural state without prestresses and subjected to an external load. The basic finite element model of this nonlinear dynamic system is called the "mean finite element model" (the underlined quantities refer to this "mean finite element model") and leads to the following nonlinear differential equation,

[ Å ] ÿ(t) + [ ] ẏ(t) + [ Ã ] y(t) + f NL (y(t), ẏ(t)) = f(t) , (87) 
in which y = (y 1 , . . . , y m ) is the unknown time response vector of the m DOFs (displacements and/or rotations); ẏ and ÿ are the velocity and acceleration vectors respectively; f(t) =
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(f 1 (t), . . . , f m (t)) is the known external load vector of the m inputs (forces and/or moments); [ Å ], [ ] and [ Ã ] are the mass, damping and stiffness matrices of the linear part of the model, which are positive-definite symmetric (m×m) real matrices; (y, z) → f NL (y, z) is a nonlinear mapping from Ê m × Ê m into Ê m modeling additional nonlinear damping and restoring forces such that f NL (0, 0) = 0. The linear case can be derived from Eq. (87) in taking f NL = 0.

Introduction of the mean reduced model

The generalized eigenvalue problem associated with the mean mass and stiffness matrices of the mean finite element model is written as

[ Ã ] = λ [ Å ] . Since [ Ã ] is a positive-definite matrix, we have 0 < λ 1 ≤ λ 2 ≤ . . . ≤ λ m and the associated elastic modes { 1 , 2 , . . .} are such that < [ Å ] α , β >= µ α δ αβ and < [ Ã ] α , β >= µ α ω 2
α δ αβ in which ω α = λ α is the eigenfrequency of elastic mode α whose normalization is defined by the generalized mass µ α . The mean reduced model of the dynamic system whose mean finite element model is defined by Eq. ( 87) is obtained in constructing the projection of the mean finite element model on the subspace H n of Ê m spanned by { 1 , . . . , n } with n ≪ m. Let [ Φ n ] be the (m×n) real matrix whose columns are vectors { 1 , . . . , n }. The generalized force F n (t) is an Ê n -vector such that

F n (t) = [ Φ n ] T f(t).
The generalized mass, damping and stiffness matrices

[ M n ], [ D n ] and [ K n ] are positive-definite symmetric (n × n) real matrices such that [ M n ] αβ = µ α δ αβ , [ D n ] αβ =< [ ] β , α > and [ K n ] αβ = µ α ω 2
α δ αβ , in which, generally, [ D n ] is a full matrix. Consequently, the mean reduced model of the nonlinear dynamic system is written as the projection y n of y on H n can be written as y n (t) = [ Φ n ] q n (t) in which the vector q n (t) ∈ Ê n of the generalized coordinates verifies the mean nonlinear differential equation,

[ M n ] qn (t) + [ D n ] qn (t) + [ K n ] q n (t) + F n NL (q n (t), qn (t)) = F n (t) , ∀t 0 , (88) 
where, for all q and p in Ê n ,

F n NL (q, p) = [ Φ n ] T f NL ([ Φ n ] q, [ Φ n ] p) . ( 89 
)

Nonparametric probabilistic approach of random uncertainties

The principle of construction of the nonparametric probabilistic approach of random uncertainties for the linear and nonlinear dynamic systems whose mean finite element model is defined by Eq. ( 87), is given in Section 3. It consists in substituting the generalized mass, damping and stiffness matrices of the mean reduced model (see Eq. ( 88)) by random matrices [M n ], [D n ] and

[K n ].
If the nonlinear forces are uncertain, a usual parametric model can be used for these nonlinear forces. In this case, a nonparametric-parametric mixed formulation can be constructed (see [START_REF] Desceliers | Nonparametric-parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF]).

The construction of the probability model of random matrices [M n ], [D n ] and [K n ] defined on probability space (A, T , P), is based on the available information deduced from the fundamental properties of a dynamical system and from additional properties required in order that a secondorder stochastic solution exists (see [START_REF] Soize | A nonparametric model of random uncertainties in linear structural dynamics[END_REF][START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF]). It can then be deduced that random matrices [M n ],

[D n ] and [K n ] have to be such that

[M n ] , [D n ] , [K n ] ∈ Å + n (Ê) a.s. , (90) 
E{[M n ]} = [ M n ] , E{[D n ]} = [ D n ] , E{[K n ]} = [ K n ] , (91) 
E [M n ] -1 2 F < +∞ , E [D n ] -1 2 F < +∞ , E [K n ] -1 2 F < +∞ , (92) 
Since matrices 30)-( 32)),

[M n ], [D n ] and [K n ] are in Å + n (Ê), there are upper triangular matrices [L M n ], [L D n ] and [L K n ] in Å n (Ê) such that [M n ] = [L M n ] T [L M n ] , [D n ] = [L D n ] T [L D n ] , [K n ] = [L K n ] T [L K n ] . (93 
[M n ] = [L M n ] T [G M n ] [L M n ] , [D n ] = [L D n ] T [G D n ] [L D n ] , [K n ] = [L K n ] T [G K n ] [L K n ] , ( 94 
)
in which random matrices [G M n ], [G D n ] and [G K n ] are in ensemble SG + defined in Section 2.1.
The parameters δ M , δ D and δ K allowing the dispersion of random matrices [M n ], [D n ] and [K n ] to be controlled are defined by Eq. ( 37) and have to verify Eq. ( 38). The probability distribution of each

random matrix [G M n ], [G D n ] or [G K n ]
is defined in Section 2.1.3 and its algebraic representation is defined in Section 2.1.7.

The stochastic transient response of the nonlinear dynamic system with the nonparametric probabilistic approach of random uncertainties, whose mean reduced model is defined by Eq. ( 88), is the 

[M n ] Qn (t) + [D n ] Qn (t) + [K n ] Q n (t) + F n NL (Q n (t), Qn (t)) = F n (t) , ∀t ≥ 0 , (95) 
with the initial conditions, Q n (0) = 0 and Qn (0) = 0.

Stochastic solution as a second-order stochastic process

For any T > 0, it is proved (see [START_REF] Soize | Nonlinear dynamical systems with nonparametric model of random uncertainties[END_REF]) that, under reasonable assumptions concerning the nonlinear damping and restoring forces, and if

T 0 f(t) 2 dt < +∞, then for all t in [0 , T ], we have E{ Y n (t) 2 } ≤ C 1 < +∞ , E{ Ẏn (t) 2 } ≤ C 2 < +∞ . ( 96 
)
in which C 1 and C 2 are positive constants that are independent of n and t.

Construction of the stochastic solution

The stochastic solution of Eq. ( 95) is constructed using the Monte Carlo numerical simulation, the realizations of random matrix

[A n ], in which [A n ] represents random matrices [M n ], [D n ] or [K n ],
being constructed by using Eqs. ( 94) and ( 23) with properties defined in Section 2.1.7. It should be noted that the numerical cost is low with such a method because Eq. ( 95) corresponds to a stochastic reduced model with n ≪ m.

Example of transient response of a nonlinear stochastic dynamical system

In this section, we consider the stochastic transient response of the nonlinear dynamical system studied in [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF], corresponding to Eq. ( 95) and that we present herein below as a simple example for illustrating the nonlinar case. A much more complex dynamical system is analyzed in [START_REF] Desceliers | Nonparametric-parametric model for random uncertainties in nonlinear structural dynamics -Application to earthquake engineering[END_REF]).

The nonlinear dynamical system under consideration is defined in Figure 5 and is composed of a linear thin plane in bending mode with a nonlinearity due to a nonlinear restoring force induced system with random uncertainties is calculated by using the Monte Carlo numerical simulation method with 500 realizations. For given generalized mass, damping and stiffness matrices , the nonlinear evolution problem defined by Eq. ( 95) is solved by using the Newmark implicit step-bystep integration scheme and an additional numerical iteration procedure for solving the nonlinear algebraic equations at each time step. The value of the time-step size is ∆t = 1/2000 s and the number of time steps is 8000. Convergence with respect to the dimension n of the reduced model can be analyzed in studying the function

n → |||Q n ||| in which |||Q n ||| = E{ T 0 Q n (t) 2 dt 1/2
is the mean-square norm. Using the usual estimation of the mathematical expectation operator E, convergence with respect to the dimension n and the number n s of realizations used in the Monte Carlo numerical method, is studied by constructing the following function, For the underlying linear dynamical system, since the energy of the impulse input is concentrated in the [0, 60]Hz frequency band and since there are 8 eigenfrequencies in this frequency band,

Conv(n s , n) = 1 n s n s k=1 T 0 Q n (t, θ k ) 2 dt 1/2 . (97) 

C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in March 2004)

then the dynamics of the transient output is modal type and is concentrated in the same [0, 60]Hz frequency band. For the nonlinear dynamic system, the energy of the impulse input, which is always concentrated in the [0, 60]Hz frequency band, is spread out over the [0, 200]Hz broad frequency band due to the nonlinearity in the dynamical system. This energy is sufficient for exciting the eigenmodes whose eigenfrequencies belong to the [60, 200]Hz frequency band. These modes are sensitive to random uncertainties and it should be noted that the size of the confidence region increases in the [60, 200]Hz frequency band when frequency is increasing. This means that, for the nonlinear dynamic system studied in the example presented, the role plays by random uncertainties increases in the upper part of the frequency band which is not directly excited by the impulse input. In this section, we present an example devoted to the transient response of a linear stochastic dynamical system with non homogeneous random uncertainties. A comparison with experimental results is given. All the numerical and experimental results are taken from [START_REF] Duchereau | Transient dynamics induced by shocks in stochastic structures[END_REF]. The design, the geometry, the dimensions of the plates and of the complex joint, the thicknesses of the plates, the excitation and observation points of the linear dynamical system are defined in Figure 9. This dynamical system is constituted of two Dural plates connected together through a complex joint constituted of 2 smaller Dural plates tightened by 2 lines of 20 bolts. Uncertainties in plates 1 and 2 are very low. In opposite, uncertainties in the complex joint are very high. This is the reason why uncertainties in this dynamical system are non homogeneous. The methodology used for implementing the nonparametric probabilistic approach of random uncertainties in such a dynamical system consists in using a dynamic substructuring method [START_REF] Craig | Coupling of substructures for dynamical analysis[END_REF], for which every substructure gets its own uncertainty level which is described by using the nonparametric probabilistic approach presented in Section 3 (for the details, see [START_REF] Duchereau | Transient dynamics induced by shocks in stochastic structures[END_REF]). This dynamical system is in free-free conditions and is excited in bending modes by an impulsive load which is a point force over the [1000 , 1200]

Example of transient response of a linear stochastic dynamical system with non homogeneous random uncertainties and experimental comparison

Hz frequency band, applied to node 5 in plate 2(see Figure 9) and whose experimental signals in frequency and in time domains are displayed in Figure 10. The damping ratios of the mean finite element model, deduced from the measurements, is 0.0021.

Let δ M , δ D and δ K be the dispersion parameters of the nonparametric probabilistic approach for mass, damping and stiffness uncertainties of each substructure (plate1, plate 2 and complex joint). The mass of the mean model has been updated with experiments and consequently, there are practically no mass uncertainties in each substructure. Consequently, the mass dispersion parameters for plates 1 and 2 are such that δ plates M = 0 and for the complex joint is such that δ CJ M = 0. In order to evaluate the role played by the non homogeneity of damping and stiffness uncertainties through the three substructures, which are assumed to be larger in the complex joint than in plates 1 and 2, a sensitivity analysis with respect to the dispersion parameters has been carried out. Since the impulsive load excites the superior elastic modes belonging to [1000 , 1200] Hz frequency band, the damping and stiffness model uncertainties are not zero for plates 1 and 2. The results presented below correspond to dimensions n 1 = 50 for plate 1, n 2 = 67 for plate 2 and n CJ = 8 for the complex joint. For observation 2 located in plate 1 while the excitation is applied in plate 2 (see Figure 9), Figure 11 shows the experimental SRS compared with the confidence region constructed with nonparametric probabilistic approach. The thick dashed line represents the mean model. The solid lines are relative to the 21 experimental configurations. The gray region is the 95% confidence region of the stochastic response, computed with the nonparametric probabilistic approach of random uncertainties. The comparison of the developed probabilistic model with the experiments shows the capability of the nonparametric probabilistic approach to predict the shock-induced transient response in the medium-frequency ranges. In spite of a rather large number of DOFs used in the mean finite element model, significant errors appear between experiment and numerical prediction although the mean finite element model of the complex joint has been updated using experiments (compare the dashed line with the solid lines in Figure 11). These errors are mainly due to the simplified model used for modeling the complex joint, that is to say, are due to model uncertainties mainly located in the complex joint.

Identification of the dispersion parameters of the nonparametric probabilistic approach for linear dynamical systems with data uncertainties and model uncertainties

In this section, we present a methodology for the experimental identification of the dispersion parameters of the nonparametric probabilistic approach in linear structural dynamics.

Experimental modal analysis

Let us consider r realizations S(θ 1 ), . . . , S(θ r ) of a complex structure S. The modal properties of each realization S(θ α ) are experimentally identified by using the usual experimental modal analysis [START_REF] Ewins | Modal testing: theory and practice[END_REF][START_REF] Mcconnell | Vibration testing. Theory and practice[END_REF]. Let m in be the number of measured DOFs and m out be the number of excited DOFs which are assumed to be the same for all the realizations S(θ 1 ), . . . , S(θ r ). The Frequency Response Function (FRF) [h exp (ω, θ α )] of the MIMO system with the m in inputs and the m out outputs associated with structure S(θ α ) is experimentally identified over the frequency band B =]0 , ω max ],

B -→ Å m out ,m in ( ) : ω → [h exp (ω, θ α )] . (98) 
From the measured FRF ω → [h exp (ω, θ α )] identified over frequency band B, the experimental modal analysis allows the following information to be constructed: 

The diagonal matrix

[ M exp n (θ α )] ∈ Å + n (Ê) of the generalized masses such that [ M exp n (θ α )] jk = µ exp k (θ α ) δ jk in which µ exp k (θ α )
is the generalized mass of elastic mode k and where δ kk = 1 and δ jk = 0 for j = k.

The diagonal matrix

[ K exp n (θ α )] ∈ Å + n (Ê) of the generalized stiffnesses such that [ K exp n (θ α )] jk = µ exp k (θ α ) ω exp k (θ α ) 2 δ jk . 5. The matrix [ D exp n (θ α )] ∈ Å + n (Ê)
of the generalized dampings. In general, this matrix is not diagonal but is full. If the diagonal terms are only experimentally identified, then we have

[ D exp n (θ α )] jk = 2 ξ exp k (θ α ) µ exp k (θ α ) ω exp k (θ α ) δ jk , in which ξ exp k (θ α )
is the modal damping rate of elastic mode k.

Finally, from the experimental modal analysis perfomed for each structure S(θ α ), it can be deduced the experimental reduced matrices,

[ M exp n (θ α )] ∈ Å + n (Ê) , [ D exp n (θ α )] ∈ Å + n (Ê) , [ K exp n (θ α )] ∈ Å + n (Ê) , (99) 
relative to the n -valued vector of the experimental generalized coordinates Q exp (ω, θ α ) such that

Z exp (ω, θ α ) ≃ [Ψ exp n (θ α )] Q exp (ω, θ α ) = [h exp (ω, θ α )] f exp (ω) , (100) 
in which Z exp (ω, θ α ) ∈ m out is the frequency response of the m out output DOFs induced by the complex vector f exp (θ α ) ∈ m in of the m in input DOFs, and where vector Q exp (ω, θ α ) has to verify the following matrix equation,

(-ω 2 [ M exp n (θ α )] + iω [ D exp n (θ α )] + [ K exp n (θ α )]) Q exp (ω, θ α ) = F exp (ω, θ α ) , (101) 
with

F exp (ω, θ α ) = [Ψ exp n (θ α )] T f exp (ω)
is the n -valued vector of the experimental generalized forces.

The mean finite element model

In the frequency domain, the mean reduced model of structure S constructed from its mean finite element model (see Section 4.2) is written as

y(ω) = [Φ n ] q(ω) , (102) 
in which y(ω) ∈ m is the complex vector of the m DOFs of the mean finite element model, where q(ω) ∈ n is the complex vector of the n generalized coordinates of the mean reduced model and where [Φ n ] ∈ Å m,n (Ê) is the matrix of the n elastic modes of vibration associated with the n first eigenfrequencies 0 < ω 1 ≤ . . . ≤ ω n and which are computed with the mean finite element model.

Vector q(ω) has to verify the following matrix equation

(-ω 2 [ M n ] + iω [ D n ] + [ K n ]) q(ω) = F n (ω) , ∀ω ∈ B , (103) 
in which F n (ω) ∈ n is the complex vector of the generalized external forces and where the mean

reduced matrices [ M n ], [ D n ] and [ K n ] are such that [ M n ] ∈ Å + n (Ê) , [ D n ] ∈ Å + n (Ê) , [ K n ] ∈ Å + n (Ê) .
It should be noted that the number m of DOFs of the mean finite element model is such that m ≫ m out and m ≫ n.

Nonparametric probabilistic model

The nonparametric probabilistic model of random unceratinties associated with the mean reduced model defined by Eqs. ( 102) to ( 104) is constructed as explained in Section 4.3 and is then written as

Y(ω) = [Φ n ] Q(ω) , (105) 
(-ω 2 [M n ] + iω [D n ] + [K n ]) Q(ω) = F n (ω) , ∀ω ∈ B , (106) 
in which the random reduced matrices with values in Å + n (Ê) are written as

[M n ] = [L M n ] T [G M n ][L M n ] , [D n ] = [L D n ] T [G D n ][L D n ] , [K n ] = [L K n ] T [G K n ][L K n ] , (107) 
where random matrices

[G M n ], [G D n ] and [G K n ] are in ensemble SG + defined in Section 2.1 and
where the upper triangular matrices

[L M n ], [L D n ] and [L K n ] in Å n (Ê) are such [M n ] = [L M n ] T [L M n ] , [D n ] = [L D n ] T [L D n ] , [K n ] = [L K n ] T [L K n ] . (108) 
The probability distribution of each random matrix

[G M n ], [G D n ] or [G K n ] is defined in Section 2.
1.3 and its algebraic representation is defined in Section 2.1.7. These probability distributions depends on the dispersion parameters δ M , δ D and δ K which are defined by Eq. ( 37) and which are the parameters which have to be identified using the experimental data.

Transformation of the experimental reduced matrices

In order to identify the dispersion parameters δ M , δ D and δ K of the nonparametric probabilistic The m -valued random vector Y(ω) of the DOFs of the stochastic dynamical system is defined by Eq. ( 105). If all these m DOFs were measured, then the m -valued vector Y exp (ω, θ α ) could be measured for each realization S(θ α ) of structure S. In point of fact, only a small number of DOFs can be measured and this is the m out -valued vector Z exp (ω, θ α ) introduced in Eq. ( 100) with m ≫ m out . Consequently, there is a matrix [P ] ∈ Å m out ,m (Ê) constituted of 0 and 1 such that

Z exp (ω, θ α ) = [P ] Y exp (ω, θ α ) . (109) 
Taken into account Eq. (105), the vector of the generalized coordinates associated with Y exp (ω, θ α )

is then Q exp (ω, θ α ) ∈ n such that Y exp (ω, θ α ) = [Φ n ] Q exp (ω, θ α ) . (110) 
Substituting Eq. (110) into Eq. (109) yields

Z exp (ω, θ α ) = [P ] [Φ n ] Q exp (ω, θ α ) . (111) 
From Eqs. (100) and (111), we deduced that

[Ψ exp n (θ α )] Q exp (ω, θ α ) = [P ] [Φ n ] Q exp (ω, θ α ) . ( 112 
)
By construction, the matrix

[Ψ exp n (θ α )] T [Ψ exp n (θ α )] ∈ Å n (Ê) is invertible. Introducing the left pseudo-inverse [Ψ exp n (θ α )] T [Ψ exp n (θ α )] -1 [Ψ exp n (θ α )] T ∈ Å n , m out (Ê) of [Ψ exp n (θ α )] ∈ Å m out ,n (Ê),
Eq. (112) yields 

Q exp (ω, θ α ) = [S exp n (θ α )] Q exp (ω, θ α ) , (113) 
] jj ; σ A )} = log{2} -log Γ 1 2σ 2 A + 1 -j 2 - 1 2σ 2 A + 1 -j 2 log{2σ 2 A } + 1 σ 2 A -j log{[L exp,α n ] jj } - 1 2σ 2 A [L exp,α n ] 2 jj . ( 132 
)
The estimator of parameter σ A defined by the maximum likelihood method [START_REF] Pradlwarter | Random eigenvalue problems for large systems[END_REF] is the random 

The mean value m σ r and the standard deviation σ σ r of estimator σ r are usually defined by

m σ r = E{ σ r } , σ 2 σ r = E ( σ r -m σ r ) 2 . ( 135 
)
Let m δ r and σ δ r be the mean and the standard deviation of the estimator δ r of δ A which is such that δ r = σ r √ n + 1. We then have

m δ r = m σ r √ n + 1 , σ δ r = σ σ r √ n + 1 . ( 136 
)
The estimation of σ A is given as the realization σ r (θ) = s r ([L 

Then, the estimation of δ A is given by σ r (θ) √ n + 1. is obtained for σ A = σ r (θ) and is directly determined in calculating the graph of this function in the neighborhood of σ 0 A = δ 0 r (θ)/ √ n + 1 in which δ 0 r (θ) is defined by Eq. ( 127) and which constitutes a reasonable estimation of δ A .

Efficiency and convergence of the two estimators

The biais and the efficiency of the estimators δ 0 r and δ r of parameter δ A , respectively defined in Sections 5.5.4 and 5.5.5, can be analyzed [START_REF] Anderson | Introduction to Multivariate Statistical Analysis[END_REF] 

Conclusions

This paper proposes a nonparametric probabilistic approach for taking into account data and model uncertainties in linear dynamical systems for which the mean model is given and fixed. The objective of such a nonparametric probabilistic approach is to increase the predictability of a given and fixed mean model, that is to say, is to increase the predictability without improving the mean model by introducing additional smaller spatial scales or a hierarchy of models. In such a nonparametric probabilistic approach, data and model uncertainties can be introduced by using the random matrix theory. In this context, several useful sets of random matrices have been introduced and allow uncertainties to be modeled in computational mechanics. Non homogeneous uncertainties can be modeled with such a nonparametric approach using dynamic substructuring methods. For this nonparametric approach, the information used does not require the description of the local parameters of the mathematical-mechanical model. The parametric approaches existing in literature are very useful when the number of uncertain parameters is not too large and when the probabilistic model can be constructed for the set of parameters considered. The nonparametric approach proposed is useful when the number of uncertain parameters is high and/or when the probabilistic model is difficult to construct for the set of parameters considered. In addition, the parametric approaches do not allow the model uncertainties to be taken into account (because a parametric approach is associated with a fixed model exhibiting some parameters), whereas the nonparametric approach proposed allows the model uncertainties to be taken into account for a given and fixed mean model. For some nonlinear dynamical systems constituted of a linear system with additional localized nonlinearities, the nonparametric model is only applied to the linear part of the reduced model. This nonparametric model of random uncertainties can simultaneously be used with the usual parametric model of random uncertainties which allows random uncertainties on nonlinear damping and restoring forces to be taken into account. In this case, a nonparametric- experimental data, a methodology and two estimators are proposed. The first one is very easy to construct and the second one, which is based on the maximum likelihood method, is more efficient.
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 77 Figure 7 displays the graphs of functions n s → log 10 { Conv(n s , n)} from {1, 2, . . . , 500} into Ê, for n = 10, 20, 30, 50, 100. Convergence with respect to n and n s is obtained for n = 50 and n s = 300. Figure 8 corresponds to the transient response of the nonlinear dynamical system with random uncertainties. This figure corresponds to the base 10 logarithm of the random normalized response spectrum for the considered observation (vertical axis) as a function of the base 10 logarithm of the frequency in Hertz for the [1 , 200] Hz frequency band. The mid irregular thin solid line represents the deterministic response of the mean finite element model. The mid smoothed thin solid line represents the mean value of the model with random uncertainties. The lower and upper thick solid lines represent the lower and upper envelopes of the confidence region corresponding to a probability level of 0.95; this confidence region is estimated by using the Chebychev inequality.
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 8 Fig. 8. Random normalized response spectrum in dB versus frequency in Hertz (log scale). Deterministic response of the mean model (mid irregular thin solid line). Mean value of the model with random uncertainties (mid smoothed thin solid line). Lower and upper envelopes of the confidence region (lower and upper thick solid lines). Extreme value statistics (lower and upper thin solid lines).
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 9 Fig. 9. Geometry of the linear dynamical system
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 10 Fig. 10. Impulsive load defined as a point force applied to node 5: frequency domain representation (top figure), time domain representation (down figure).
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 8 results displayed below correspond to the following values of the damping and stiffness dispersion parameters for plates 1 and 2: δ plates D = 0.3 and δ plates K = 0.15, and for the complex joint: δ CJ D = 0.8 and δ CJ K = 0.The experimental data base is made with 29 accelerometers for 21 experimental configurations corresponding to 21 random distributions of bolt-prestresses having the same mean values. The experimental results are expressed in terms of Shock Response Spectra (SRS) calculated for the acceleration reponses, normalized with respect to g = 9.81m.s -2 and denoted by s(ω) with a fixed damping ratio 0.001. For a given observation, the results given by the nonparametric probabilistic approach of random uncertainties are displayed by an SRS confidence region described with an upper (S + (ω)) and a lower (S -(ω)) envelope of the SRS related to a given probability level P c = 0.95. Let m 1 (ω) = E{s(ω)}, m 2 (ω) = E{s 2 (ω)} and σ(ω) = m 2 (ω) -m 2 1 (ω) be the moments estimated by the usual mathematical statistics. Three curves are defined: (1)S 0 (ω) = 10 log 10 (m 1 (ω)), which is related to the mean function of the stochastic response, (2) S + (ω) = 10 log 10 m 1 (ω) + σ(ω) √ 1-P c , which is the the upper envelope of the SRS, and (3) S -(ω) = 2 S 0 (ω) -S + (ω), which is the lower envelope of the SRS. The calculations are carried out using 1000 realizations in the Monte-Carlo numerical method. A convergence analysis with respect to the dimension of the reduced stochastic model of each substructure has been performed.
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 11 Fig. 11. Shock Response Spectrum at observation point 2 in plate 1 with a point force excitation applied in plate 2.
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 12 The n first eigenfrequencies 0 < ω exp 1 (θ α ) ≤ . . . ≤ ω exp n (θ α ) of the elastic modes lying in frequency band B. The matrix [Ψ exp n (θ α )] ∈ Å m out ,n (Ê) of the n elastic modes of vibration associated with the n first eigenfrequencies ω exp 1 (θ α ), . . . , ω exp n (θ α ).

  model using experimental data, we have to construct experimental realizations of random reduced matrices [M n ], [D n ] and [K n ]. It should be noted that experimental realizations [ M exp n (θ α )], [ D exp n (θ α )] and [ K exp n (θ α )] cannot directly be used as realizations of random reduced matrices [M n ], [D n ] and [K n ] because these two sets of matrices do not correspond to the same basis (i.e. to the same generalized coordinates). We then have to transform the experimental reduced matrices utilizing an adapted change of basis in order to get experimental realizations of the random reduced matrices.
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 1213 Fig. 12. Graphs of functions r →δ A (horizontal thin solid line), r →m δ 0 r (thin solid line) and r →m δ r (thick solid line).

  parametric model of random uncertainties has to be considered. Concerning this nonparametric model, the probability distribution of each random generalized matrix of the linear part of the random reduced model depends only on two parameters: the mean generalized matrix associated with the mean finite element model and corresponding to the design model, and a scalar parameter δ whose value has to be fixed by the designer in the interval [0 , 1[ in order to give the dispersion level attached to the random generalized matrix. It seems clear that parameter δ is a global parameter resulting from expertise or identification. Concerning the identification of parameter δ A knowing C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in March 2004)
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	Eqs. (23)-(24) and the Monte Carlo numerical simulation with 100 realizations. It can be seen that
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  ,...,Λ n (λ 1 , . . . , λ n ) dλ 1 . . . dλ n = 1. Presently, we are interested in the probability density function of each random eigenvalue for the order statistics. Let Λ 1 ≤ Λ 2 ≤ . . . ≤ Λ n be the order statistics of the random eigenvalues Λ 1 , . . . , Λ n . Then, the joint probability density function p Λ 1 ,..., Λ n (λ 1 , . . . , λ n ) with respect to dλ 1 . . . dλ n of random variables Λ 1 , . . . , Λ n is written

	in which C is a constant of normalization defined by the equation	+∞ 0 . . .	+∞ 0	p Λ 1
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  .5.4. Properties of a random matrix in ensemble SE inv From Subsections 2.5.1 to 2.5.3, it can easily be deduced that the random matrix [A m,n ] with values in Å m,n (Ê), belonging to ensemble SE inv , and defined in Subsection 2.5.3, has the following properties:
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  (t), indexed by Ê + , with values Ê m , such that Y n (t) = [ Φ n ] Q n (t) in which the stochastic process Q n (t), indexed by Ê + , with values Ê n , is such that

C. Soize -Computer Methods in Applied Mechanics and Engineering (CMAME) (accepted in

March 2004) 

stochastic process Y n

in which the matrix [S exp n (θ α )] ∈ Å n (Ê) is given by

Substituting Eq. (113) into Eq. ( 101) yields

The left multiplication of Eq. ( 115) by [S exp n (θ α )] T yields 

Experimental identification of the dispersion parameters of the nonparametric probabilistic model

The problem solved in this section is the experimental identification of the dispersion parameters δ M , δ D and δ K of the nonparametric probabilistic model using experimental data and two types of estimators: (1) the natural estimator deduced from Eq. ( 37) and (2) the estimator constructed with the maximum likelihood method. 

Experimental realizations of the normalized factorized random matrix

Since [A n ] belongs to ensemble SE + , from Section 2.2, we deduced that random matrix

and where random matrix [G n ] belonging to ensemble SG + is written (see Eq. ( 23)) as

We then introduce the matrix

] is then given by the equation,

Matrix [G exp n (θ α )] can then be written as 

Probability density function of random matrix [L n ]

Let σ A be the parameter defined in Section 2.1.7 such that

Therefore, it is equivalent to identified σ A or δ A . From Section 2.1.7 and since the random variables

in which From Eq. ( 37), the natural estimator δ 0 r of δ A is the random variable

which is defined by

The mean value m δ 0 r and the standard deviation σ δ 0 r of estimator δ 0 r are usually defined by

The estimation of δ A is given as the realization δ

) of random variable δ 0 r and can then be written as

Estimation of δ A by the maximum likelihood method

From Eq. (120), we deduce that it is equivalent to estimate δ A or σ A . The unknown parameter which has to be estimated can then be chosen as σ A . The likelihood function is the random variable