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Probabilistic model for random uncertainties in steady state rolling contact

Luc Chevaliera,∗, Sylvain Cloupetb, Christian Soizea

Abstract

Wear phenomena involve a large number of physical and mechanical parameters which are not always well known or controlled during

relative movement between two bodies. Numerous industrial applications necessitate an evaluation of technological component life time and

wear modelling often fails to give accurate estimation.

We use the classical Archard’s wear model where wear is related to dissipated power. It appears that great dispersion can occur in the

estimation of dissipated power related to a lack of knowledge of certain parameters.

We present here a probabilistic approach of the contact problem resolution. We consider the specific contact problem in the case of steady

state rolling. A wear apparatus has been used to test different materials and we use the simplified model Fastsim to evaluate slip and tangential

traction in the contact zone. For each parameter of the simulation, we construct a probabilistic density function with the only information

available.

A Monte-Carlo method is implemented and the resolution of numerous cases allows the dissipated energy to be evaluated as a mean value

and a confidence region for 95% viability.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Rolling contact; Wear modelling; Probabilistic approach

1. Introduction

1.1. Industrial context and scientific goal

In the blowing machinery, roller and cam are used to con-

trol and synchronise kinematics of different components [1].

This cyclic rolling contact generates surface-wear problems,

in particular the transfer can preform. This element conveys

preforms from oven to mould where the blowing step takes

place (Fig. 1). The injected preforms are griped and trans-

ported inmould. The transfer camgoverns the gripmovement

as it is shown in Fig. 1. In industrial condition, the normal

load applied on the contact area varies between 250 and 350N

and the roller velocity is about 2 and 3m/s.

∗ Corresponding author. Tel.: +33 1 60 95 77 85; fax: +33 1 60 95 77 99.

E-mail address: luc.chevalier@univ-mlv.fr (L. Chevalier).

The aim of the global study is to implement a wear simula-

tion software which can predict cam life time. Identification

of the wear law parameters is one the scientific goal of the

study. A wear apparatus has been realised from which it is

possible to managed operational conditions representative of

industrial environment. This paper focuses on a probabilistic

approach to take into account the experimental uncertainties

in the identification process of the wear model.

1.2. Archard’s wear law

The loss of material due to the cyclic rolling contact load-

ing is modelled by the Archard’s law [2]. A similar form is

proposed by [3] and the mathematical expression is given by

Eq. (1).

W = K

H
TL (1)

0043-1648/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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Fig. 1. Photography of the cam for preform transfer.

W (m3) is the volume of wear, L (m) the sliding length of

the abrasive particle, T (N) the tangential load and H (N/m2)

is the material hardness. In Eq. (1), K is a non-dimensional

coefficient that characterised a couple of materials. Magnée

gives a microscopic interpretation of the “Archard’s factor”

K in [4]. Tangential work is calculated by the product T times

L. In an instantaneous form of this model, the wear rate (m/s)

is directly proportional to the dissipate power Pd as defined

in the Eq. (2).

Ẇ = K

H
Pd (2)

This energy is not uniformly distributed on the contact

area and it is necessary to calculate tangential surface-traction

distribution τ and the sliding velocitywg at each point on the

contact area to specify the distribution of dissipated energy

per unit surface. We define the wear depth rate u̇ (m/s) by Eq.

(3).

u̇ = dẆ

dS
= K

H
τwg (3)

During a single passage of the roller on the cam track, the

increment of the wear depth is obtained by integration over

time (t) of depth wear rate from zero to 1t= 2a(y)/V. V is

the rolling velocity and 2a(y) is the length of contact band as

shown in Fig. 2. This yields to the incremental wear depth

per roller passage δu/δn given by Eq. (4) where Pl(y) is the

dissipated power per unit length.

δu(y)

δn
= K

HV
Pl(y) (4)

Pl(y) is calculated by integration over x (rolling direction) of

tangential traction τ(x,y) times sliding velocityw(x,y). Those

Fig. 2. Elliptic contact area.

quantities are inputs for the wear simulation software. In that

way, Eq. (4) form of Archard’s model will help to simulate

wear profiles evolution.

2. Wear during rolling contact

2.1. Wear apparatus presentation

An experimental apparatus has been designed to manage

wear tests under controlled conditions. Its conception is sim-

ple: three rollers are loaded by an elasticmechanism to assure

a normal load N. The load value is chosen to give a contact

area between the steel test cylinder and the roller, represen-

tative of the cam-roller industrial problem. The specific steel

used is similar to the industrial cam material used for the

blowing machinery. Rollers are the same too. Fig. 3 presents

the wear apparatus.

The three rollers are oriented at 120◦. The same normal
load N is managed by each roller. The test cylinder rota-

tion is govern by the traction idler fixed at motor by a belt.

Rotation is only imposed at the test cylinder, friction gen-
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Fig. 3. Presentation of wear apparatus.

erates the roller rotation. Dimensions of cylinder and roller

are:

• radius roller = 40mm,

• radius of crowned outer = 1000mm,

• radius of test tube = 50mm.

Wear tests carried out at uniform rotation rate. Problem to

solve is then axisymmetric and wear profiles along y direc-

tion (cylinder direction) is representative of wear evolution

over the all cylinder. Profile measurements are realised with a

mechanical profile measurement apparatus at each time step

of the test.

The internal slack in roller induces an angular uncer-

tainty γ between the rotation axis of the roller and the cylin-

der axis (γmax = 2/1000 rad). This angular uncertainty be-

tween the roller axis and test cylinder axis induces local

slips.

2.2. Uncertainties and fluctuation during wear test

The loading mechanism has a high stiffness

(k= 690N/mm). The normal load N is applied with an

elastic spring. During the test, the wear depth evolution

has a decreasing effect on the normal load. On the other

hand, dissipated energy that occurs during the test has

an increasing effect on the contact area temperature. This

induces an increase of the temperature for the solids involved

in the contact loading. The components expansion have an

increasing effect on the normal load. Finally, we observe

fluctuations of N during a test. These are represented on

Fig. 4b. Average load is 307N and the standard deviation is

32N.

2.3. Uncertainties during wear measurement

Tests are carried out at various N values. In the following,

we will focus on N equal to 300N (the one presented Fig. 5)

and the rotation rate is equal 1000 rpm. At each time step

(markers on Fig. 4) wear profile is measured. After 450min,

the wear profiles are presented in Fig. 5 for three tests. We

observe two major differences between these three profiles:

the maximum depth of wear, the width of wear profile.

One can observe on test 1, the width of the wear zone is

14mm and the maximum depth is 0.028mm. Test 2 shows a

width of 18mm and a depth of 0.048mm. Test 3 is similar

to test 2 excluded for the depth which is more important:

0.062mm. One can also observe a profile asymmetry which

is characteristic of angular defect. Parameters (geometrical

dimension, normal load, angular positioning of roller with

respect to the test cylinder . . .) value are the supposed to

be the same for each test, but one can observe an important

dispersion on experimental results. In the following, we will

study the influence of the dispersion measured for the wear

test parameters on dissipated energy to give an explanation

to the large uncertainty for wear evolution.

3. Mean model of rolling contact

In this section, we briefly recall the theoretical basis for

the resolution of contact problem during steady state rolling.

Considering that the contact area is small in regards of the

bodies dimensions, we use the half space approximation.

Since Love [5] in 1926 who proposed the analytical solu-

tion of concentrated loading on a half infinite elastic body, it
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Fig. 4. (a) Loader mechanism, (b) fluctuations of normal load during test.

has been possible to establish relation between normal and

tangential traction and the relative displacement in the contact

area of two half-infinite bodies (Johnson [6], Kalker [7]).

It has also been established that for two identical bodies

(same material elastic constants E, υ and G=E/2(l + υ)) nor-

mal and tangential are uncoupled and relative displacements

are related to tractions by the relations of Eq. (5).

u(x, y) = 1

πG

∫∫

contact

({

1− υ

r
+ υ(x − x′)2

r3

}

τx(x
′, y′)

+ υ(x − x′)(y − y′)
r3

τy(x
′, y′)

)

dx′ dy′

v(x, y) = 1

πG

∫∫

contact

(

υ(x − x′)(y − y′)
r3

τx(x
′, y′)

+
{

1− υ

r
+ υ(y − y′)2

r3

}

τy(x
′, y′)

)

dx′ dy′

w(x, y) = 1− υ

πG

∫∫

contact

1− υ

πG

p(x′ − y′)
r

dx′ dy′

(5)

G and υ are defined from the elastic coefficient of each body

by:

1

G
= 1

2G1
+ 1

2G2
;

υ

G
= υ1

2G1
+ υ2

2G2
(6)

The third relation, in case of constant curvature in the

contact area, is analogous to the one that Hertz solved and

pressure distribution p(x,y) is given to be elliptic. Contact

area is and ellipse where half length in X and Y directions

are, respectively, denoted a and b. The tangential problem

is only coupled with the normal problem by the Coulomb

friction law [8] recalled on Eq. (7).







Ew = E0 ⇒ |Eτ| ≤ µp

Ew 6= E0 ⇒ |Eτ| = µp and Eτ = − µp

| Ew| Ew
(7)

3.1. Steady state rolling contact problem

In the case of steady state rolling, the relative displacement

between the two bodies is given by Eq. (8).











wx

V
= υx − yφ − ∂u

∂x
wy

V
= υy − xφ − ∂v

∂x

(8)

υx, υy and φ are the longitudinal and transversal creep co-

efficients and the spin in the contact area (see Fig. 6), V is

the speed of the theoretical contact point when bodies are

supposed perfectly rigid.

Assuming that there is no slip on the leading edge of the

contact area, one can solve the previous system which leads

to Eq. (9).










u = (x − a(y))(υx − yφ)

v = (x − a(y))υy + x2 − a2i

2
φ

with a(y) = a

√

1− y2

b2

(9)

In the linear Kalker theory (when creeps are supposed

small or friction ratio extremely high) the above form is valid

on the whole contact area and identification with the u and

v expressions enable to determine global tangential loading

and spin momentum:

Tx = GabC11υx

Ty = GabC22υy + G(ab)3/2C23φ

Mz = G(ab)3/2C32υy + GabC33φ

(10)

Cij are given by integrals and only depends of b/a and Poisson

ratio υ. These values are tabulated as m and coefficients of

the Hertz problem. When creep values are higher (or when

friction is small) tangential traction saturates and becomes

equal to µp. In that case, a numerical resolution must be

implemented: this is done in “contact”, for example, but leads

to prohibitive CPU time when a large number of simulation

have to be done. Other authors [9–11], for example, solve
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Fig. 5. Wear profile measurements.

the contact problem with various numerical methods but all

resolutions give important CPU time. Our choice is to solve

an approach but accurate problem proposed by Kalker [7].

3.2. Kalker approximation of the rolling problem:

Fastsim

An alternative, is to use the Fastsim algorithm also devel-

oped by Kalker. Let’s examine the proposed simplifications:

the local stiffness is modelled as linear relation between tan-

gential traction and relative displacementsu and v (i.e. τx =Lu

and τy =Lv). Solving the above system leads to quasi analyt-

ical solution when spin is neglected. The L value depends of

Cij coefficient, G shear elastic modulus and ellipse dimen-

sions a and b, but we must introduce three values to make

sure the Tx and Ty components of TLK are identical in the

case of global adhesion:

L1 = 8a

3C11G
, L2 = 8a

3C22G
, L3 = πa

√
a/b

4C23G
(11)

Fig. 6. Position of roller and origin of longitudinal creep (case 1): friction in the roller generates a difference between the two bodies longitudinal velocities;

spin (case 2): angular defect ϕz leads to spin φ =ϕz/R where R is the rolling radius of the roller; transversal creep (case 3): angular defect ϕx leads to transversal

creep υy =ϕx.
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The simplified problem to solve is expressed by the fol-

lowing relations. It is easy to see that for an elliptic pressure

distribution, the slip component will lead to infinity at the

rear edge of the contact. This is in contradiction with exact

problem simulation and Kalker solves this contradiction by

using a parabolic pressure distribution. This is an approxi-

mation that increases the maximum pressure P0 for 25% but

gives good agreement in the tangential problem.











wx

VL
= vx

L1
− φy

L3
− ∂τx

∂x
wy

VL
= vy

L2
+ φx

L3
− ∂τy

∂x

(12)

The system of Eq. (12) is solved considering traction and

slip are equal to zero on the front edge of the contact. This

zero value of slip enables tractions to be calculated and one

can test if the friction saturation is obtained or not. If it is

saturated, friction law is used for tractions calculation and

derivation of the pressure expression leads to the slip values.

This calculation is managed within the conditions the wear

apparatus.

3.3. Mean problem and results

We present the results of the steady state rolling contact

problem for the case of two steel bodies (Young modulus

E= 200,000MPa, Poisson’s ratio υ = 0.3). Under a normal

force N (N= 300N) the Hertz relations gives the pressure

distribution on the elliptic contact area (ellipse dimensions

2a= 0.27mm and 2b= 3.1mm). In the present case, the as-

pect ratio of the ellipse is close to 10; the small dimension a

is in the V direction (V=m/s).

To solve the tangential problem we consider the mean

values of friction coefficient µ= 0.1 and longitudinal creep

υx = 0.001. Transversal creep υy and spin φ mean values are

taken to zero. The Fastsim algorithm gives the solution plot-

ted on Fig. 7. It can be seen that a large proportion of the

elliptical area is saturated and slip occurs (Fig. 7a–c) shows

the traction τx distribution and the slipwx assuming pressure

distribution is parabolic.

Comparison with the exact solution obtained with ‘con-

tact’, for example, is sufficiently satisfactory. Consequently

we will use Fastsim in the following. It is worth noting that,

in special case where υy =φ = 0, an analytical solution can

be managed which helps the choice of the discretisation of

the contact zone in X and Y direction. We choose a (50× 50)

2500 elements discretisation. Dissipated power in the contact

is equal to 0.073W, in that case. Fig. 8 shows the distribution

of this power on the contact area. It worth noting that since

the steady state rolling velocity V, is in the X direction we

can sum the dissipation along this direction and plot the dis-

sipated power Pl per unit of Y direction length. Pl is directly

related to the wear depth rate by Archard’s law. Considering

the K/HV wear factor, the Archard’s law enables to evalu-

ate the depth rate u̇, which will have the same aspect than

Pl along y axis. Assuming linearity for a small time, one can

Fig. 7. (a) Dimensionless area with saturated element are marked with (s);

(b) traction τx; (c) slip wx in the contact area for the mean rolling problem.

identify theK/HV factor from comparing depth umeasured with

depth ucalculated. Unfortunately, this test gives large dispersion

on the identified factor. In the next section, we will see that

even if the factor K/HV is representative of the two bodies in

contact, dispersion of test parameters can strongly affect the

dissipated power and only a probabilistic approach can lead

to an accurate identification of the wear law parameters.
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Fig. 8. (a) Dissipated power distribution on the contact area (right), (b) Pl
vs. y co-ordinate (left).

4. Probabilistic approach of rolling contact

To manage the probabilistic approach, the description of

the dispersion of each parametermust be described by a prob-

abilistic density function. In our case, parameters are normal

loadN, friction ratioµ, longitudinal creep and angular defect

between the roller axis and the cylinder axis. These param-

eters have very different origins and it is logical to consider

that they are mutually independent. For each parameter, pdf

allows numerous realisations of the random variable. The

simulation presented in the previous section can be managed

for each realisation. The construction of the probabilistic den-

sity function is briefly summarised below.

4.1. Maximum entropy principle

Considering a real-valued random variable X, associated

with the probabilistic density function (pdf for short) pX(x),

one can define the entropy by Eq. (13).

S(X) = −
∫

[−∞,+∞]

pX(x)log(pX(x)) dx (13)

The maximum entropy principle (see [12–14] for appli-

cations) is a tool that allows the estimation of the pdf to be

constructed by searching themaximumof S(X) under the only

available information. For example, the support of the pdf,

the mean value, the standard deviation or higher moments. A

Lagrange multiplier λi will be associated to each constraint

defined by the available information. These constraints are

written in the Eq. (14) form.

E{gi(X)} =
∫

[−∞,+∞]

gi(x)pX(x) dx

= fi, i = 1, . . . , m (14)

fi and gi(X) are given functions and are related to the means

of fi. For instance, if gi(x) = x, fi is the mean value of X. It can

be shown that the multipliers Xi are obtained by minimising

the strictly convex function H(λi) defined by Eq. (15).

H(λ0, λ1, . . . , λm) = λ0 +
m
∑

i=1

fiλi +
∫ ∞

−∞
1[a,b](x)

× exp(−λ0 −
m
∑

i=1

λigi(x)) dx (15)

[a,b] is the support of the pdf of randomvariableX and l[a,b](x)

the function equal to 1 if x belongs to [a,b] and 0 elsewhere.

The pdf expression is then given by Eq. (16).

px(x) = l[a,b]exp(−λ0 −
m
∑

i=1

λigi(x)) (16)

Well known case of a random variable defined on the real

line, with given mean value and standard deviation leads to a

Gaussian law. In the next paragraph, wewill construct the pdf

associated to the random parameters for the wear problem.

4.2. Probability density functions for the random

parameters

In the first section, it has been shown that loading fluc-

tuation occurs during the wear test. The mean value of the

normal load N is denoted mN and equals 307N for our case.

Dispersion is characterised by the standard deviation σN dur-

ing the test which is equal to 32N. Of course N cannot take

negative values but no maximum values can arbitrarily be de-

fined. Finally, the available information known to construct

the pdf PN(n) is resumed in Eq. (17).































l =
∫ ∞

0

pN (n) dn

mN =
∫ ∞

0

npN (n) dn

σ2N + m2
N =

∫ 1

0

n2pN (n) dn

(17)

Minimising H(λN0, λN1, λN2) yields to λN0 = 50.40,

λN1 =−0.299, λN2 = 4.8810
−4. With these three values, one
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Fig. 9. (a) Probabilistic density function for load N, (b) 1000 realisations of

random variable N following the pdf.

can plot pdf pN(n) of the random variableN (Fig. 9). For large

values of n, this pdf looks like the Gaussian function but is

strictly equal to 0 for negative values of n.

The random friction ratio µ can identically be treated

because experimental measurements allow mµ = 0.1 and

σµ = 0.02 to be statistically estimated. Considering the lon-

gitudinal creep υx, the treatment is slightly different because

υx can only take values between 0 and 1. The available in-

formation is then mυx = 0.001 and συx = 0.0004 and leads

to the constraints of Eq. (18).































l =
∫ 1

0

pυx (u) du

mυx =
∫ 1

0

upυx (u) du

σ2υx
+ m2

υx
=
∫ 1

0

u2pυx (u) du

(18)

Minimising H(λυx,0, λυx,1, λυx,2) yields to: λυx0 =−3.982,

λυx1 =−5.861103, λυx2 = 2.95710
6.

Other dispersion may occur because of the angular os-

cillation of the rolling body (Fig. 10a). Standard value for

the amplitude γmax of the oscillation is about 0.002 rad. Any

value of γ can be reached in the range [−2/1000, 2/1000] but

Fig. 10. (a) Maximum angular position for the rolling boy axis, (b) dis-

plays realisations of the vector-valued random variable (ϕx, ϕz) following a

uniform probabilistic density function.

every angular position can also be reached. Consequently the

pdf of the random variable (ϕx, ϕz) is uniform on the disc K

limited by Eq. (19).

ϕ2x + ϕ2z = γ2max (19)

The maximum entropy principle enables us to determine

the pdf associated to this parameter. This pdf writes as shown

on Eq. (20).

p(ϕx,ϕz)(ξx, ξz) = 1k(ξx, ξz)
1

πγ2max
with (ξx, ξz)∈ R2 (20)

Fig. 10b displays realisations of the vector-valued random

variable (ϕx, ϕz) from Eq. (20), it can be deduced that the ran-

dom transversal creep and the random spin have zero mean

values but the pdf is not uniform (Fig. 11). Standard devia-

tions are respectively equal to 0.001 rad and 0.05 rad/m. This

means that a uniform pdf on a disc does not yield a uniform

distribution in the Cartesian co-ordinates of the position of a

realisation of these co-ordinates.
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Fig. 11. Bar representation of pdf distribution of the random transversal

creep (a), and the random spin (b), constructed with the realisations display

in Fig. 10b.

4.3. Probabilistic modelling of dissipation

It should be noted that loadN, creepυx,υy andφ are global

parameters but that friction ratio µ is a local one. During one

of the 1000 calculations, for a 50× 50 spatial discretisation

of the contact area, 2500 realisations of the random variable

µ are performed. One presents a typical result of one resolu-

tion of the steady state rolling problem using a probabilistic

description of friction ratio µ. As shown in Fig. 12, this pro-

duces a quite “chaotic” traction and slip distribution in the

contact area that is certainly more representative of the real

distribution.

It is still possible to sum the dissipated power along the

rolling direction to have an evaluation of the dissipated power

per unit length Pl. In Fig. 13, we can see that the distribution

of dissipated power per unit length is more similar of exper-

imental wear profiles than the smooth chart of Fig. 8b. For

this realisation, the global dissipation, as well as the mean

distribution of Pl, are a little smaller than the mean value

obtained by the determinist simulation of the mean problem.

Fig. 12. ‘Chaotic’ distribution of traction (a), and slip (b) issued of a Fastsim

simulation with probabilistic modelling of the friction ratio.

Fig. 13. Dissipated power per unit length issued from probabilistic descrip-

tion of the friction ratio over the contact area.
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This can be due to a lower normal load or a small longitudinal

creep of this specific realisation. This way to treat the contact

problem, will lead to the definition of the confidence region

of the solution with respect to the measured dispersion of the

probabilistic parameters of the mechanical problem.We now

present the results of this approach.

5. Results and discussion

In this section,wewill examine the result of aMonte-Carlo

simulation [15] of the steady state rolling contact problem.As

presented above, we carried 1000 numerical simulations with

Fastsim: one presents the convergence of the description and

show the construction of a probability density function for the

randomdissipated powerwhich is the result of the simulation.

An iterative method could be used in order to follow the wear

evolution. Presently, we limit the development to the random

dissipated power per unit length.

5.1. Monte-Carlo numerical simulation: convergence

Convergence of the Monte-Carlo numerical simulation

can be shown by the calculation of the mean value and the

standard deviation of the random global dissipated power.

In Fig. 14, both terms are plotted versus the number of re-

alisations managed. We can see that convergence is man-

aged for 300 realisations. The mean value of the dissipated

power appears to be equal to 0.127W which is clearly dif-

ferent from the dissipated power value obtained by solving

the mean problem. Let us recall that the dissipated power

found was equal to 0.073Wwhich is 42% less than the mean

value of the probabilistic approach. This difference is due to

transversal creep υy and spin φ. Even if the mean values of

these two terms are equal to zero, the non-zero values that

can be positive or negative during the test, all lead to a higher

dissipation than the mean value.

Fig. 14. Evolution of mean value and standard deviation vs. the number of

realisation.

This is not the case for other variables as the normal load

N, for example; when N is lower than the mean value, the

dissipation is also lower. This is also the case for friction

ratio or longitudinal creep.

5.2. Mean dissipation and confidence range

The small number of realisation (about 300) is enough to

obtain convergence for first and second order moments of the

random dissipated power Pd, but is not enough to obtain con-

vergence for the higher moments. With 1000 realisations one

can construct a estimation of the probability density function

of the random variable Pd.

Fig. 15a shows a bar chart built from the choice of a num-

ber of class (here 30 classes) in the interval [PMin
d , PMax

d ].

PMin
d and PMax

d are minimum and maximum values taken by

Pd over the 1000 realisations. We can count the number of

realisations that give a Pd value for each class. This number

reported to the 1000 values enables the determination of the

probability to have a realisation belonging to this class.

Fig. 15. Probability density function of the dissipated power (a) representa-

tion fromMonte-Carlo simulation with 30 class (b) identified from the mean

value and standard deviation calculated from the Monte-Carlo simulation.
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Fig. 16. Dissipated power pdf identified from the Monte-Carlo simulation

managed with no transversal creep and spin.

When the number of realisation grows up, this chart be-

comes a continuous probabilistic density function (Fig. 15b).

One can see the difference with the Gaussian function that

have the same mean value and same standard deviation than

the probabilistic variable Pd.

As a comparison, we show on Fig. 16, the density function

obtained by the same Monte-Carlo approach without taking

into account the influence of υy and φ dispersion. In that

case, the mean value of Pd is 0.068W which the same order

of magnitude than the mean model value.

Considering the chart of Fig. 15, it is possible to de-

fine a confidence region where probability to find a reali-

sation is higher than Pc (for example, Pc = 95%). The upper

and lower bounds of this confidence region are obtained by

Eq. (21).

p+
d = ζ(1− Pc) andP−

d = ζ(Pc) (21)

ζ(p) is the fractile defined for a probabilistic variable X with

a distribution function Fx(x), by:

ζ(p) = inf{x, FX(x) < p} (22)

This can simply be done by counting the realisations or-

dered by dissipated power values until the density function

reaches Pc for the upper bound and (1−Pc) for the lower

bound. In the case of the pdf of dissipated power presented in

Fig. 15, the boundaries are P+
d = 0.012W and P−

d = 0.29W.

It appears that the mean value 0.127W is included but not

centred (centred value should be 0.152W) on the confidence

interval. Finally, if we consider the confidence domain am-

plitude in comparison with the value obtained by solving

the mean problem, it appear that dissipated power can reach

two or three times the expected value classically calculated

by a mean determinist model. This conclusion is sufficient

to justify the use of the probabilistic approach for contact

problem.

Fig. 17. Dissipated power per unit length. (a) All probabilistic chart, (b)

mean distribution of Pl and minimal and maximal boundaries of the confi-

dence region for a confidence probability Pc = 95%.

5.3. Mean wear: dissipation per unit length

In this last section, we will examine the dissipated

power per unit length Pl(y) which is associated to the wear

depth. Fig. 17a shows all the distributions of Pl(y) for

the 1000 realisations. The statistical treatment presented

above for the scalar variable Pd can be done for each dis-

crete value Pl(yi) and gives the mean profile and the confi-

dence region for 95% viability. It worth noting that, in that

case, the confidence region is nearly centred on the mean

profile.

This can seem contradictory with the conclusion on Pd
but one must notice that in all realisation we have a large

number of case where spin values leads to non symmetric

Pl(y). All those cases give high values of Pd and the confi-

dence region is larger over the mean value of this variable.

Fig. 17b clearly shows an important dispersion that lead to a

large uncertainties of the wear evolution. This explains that

“identical” combination of the wear apparatus lead to very

different evolution during the test.
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Identification of an Archard’s wear factor can easily be

done from a mean measured profile. The measured disper-

sion on wear profiles can help to concluded on the nature of

the factor ‘K’ whether it is a determinist coefficient or also

a probabilistic one. Considering microscopic approach [16]

explains that ‘K’ is a function ofmaterial asperity’s geometry,

the question can be studied.

6. Conclusions

On this simple study, we showed how a probabilistic ap-

proach can lead to evaluation of the wear dispersion observed

during wear tests. A simplified contact model is used in order

to managed a large number of simulation an make statistical

analysis of the dissipated power.

This work is the first step to the realisation of a wear simu-

lation tool, and the comparison between dissipated power per

unit length and wear depth profiles enables a simple wear law

identification. Considering the dispersions on experimental

results this seems to be the only possible approach.

It is worth noting that if wear occurs during a long time,

contact geometry might be changed and the radius of contact

profiles have to be updated during simulation. Such a scheme

has been used successfully in [17], [18] or [1]. Recently [19]

have proposed a semi-hertzian approach in case of important

geometrical modification which will be used in the next step

of this work.
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matériaux, tome 2, Hermés 401–450 (1993) 159–166.

[17] Z.L. Li, J.J. Kalker, Computation of wheel-rail conformal contact,

in: Proceedings of the Fourth World Congress on Computational

Mechanics, BuenosAires, July, 1998.

[18] W. Kik, J. Piotrowski, A fast approximate method to calculate nor-

mal load at contact between wheel and rail, and creep forces during

rolling, in: Proceedings of the Second Mini-Conference on Con-

tact Mechanics and Wear of Rail/Wheel Systems, Warsaw Technical

University, Budapest, July, 1996, pp. 29–31.

[19] J.B. Ayasse, H. Chollet, ‘Determination of the wheel rail con-

tact patch in semi-Hertzian conditions, Vehicle Syst. Dynam.

(2002).


