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The axial transmission (AT) technique is used for the evaluation of cortical bone material characteristics [START_REF] Foldes | Quantitative ultrasound of the tibia: a novel approach for assessment of bone status[END_REF][START_REF] Lowet | Ultrasound velocity measurements in long bones: measurement method and simulation of ultrasound wave propagation[END_REF][START_REF] Njeh | Assessment of bone status using speed of sound at multiple anatomical sites[END_REF]. The method takes advantage of the lateral wave propagation along the bone-soft tissue interface [START_REF] Brekhovskikh | Waves in Layered Media[END_REF]. This wave which travels at the speed of longitudinal waves of the bone is associated with the first signal monitored (Fig. 1). Experimental signals are very sensitive to material and geometrical parameters of bone [START_REF] Bossy | Effect of bone cortical thickness on velocity measurement using ultrasonic axial transmission: a 2d simulation study[END_REF].

Modelling

As a model of the AT experiment, we investigate a semi-infinite two-media configuration (Fig. 1) which consists of the superposition of a fluid (x 3 < 0) and a solid (x 3 > 0) along a plane interface. The media are at rest for t < 0. At t = 0, a cylindrical wave is generated in the fluid along a line source (S; x 2 ), where S is a point located at the coordinate x 3 = -h s . The configuration is independent of x 2 hence the analysis is conducted in the plane (O; x 1 , x 3 ). The acoustic response is calculated at the receivers P 1 and P 2 . The line defined by the source and the two receivers makes an angle α with (O; x 1 ) and corresponds to the ultrasonic probe orientation. The output parameter of the AT experiment, denoted v, can be thought of as an estimation of the longitudinal wave speed in the solid. This speed is calculated as the ratio of the distance between the receivers and a difference in times of flight as shown in Fig. 2.

The mean problem is defined as follows. The solid is homogeneous, isotropic and linearly elastic. The solid is defined by a mean mass density ρ s , a mean Young's modulus E and a mean Poisson's ratio ν. The fluid is assumed homogeneous and ideal.

The parametric method allows to introduce uncertainties on the parameters. The random variables are E = EY 1 , Y 2 and R = ρ s Y 3 modelling respectively the Young's modulus, the Poisson's ratio and the mass density of the solid. The mean value of Y 1 and Y 3 is unity. Let E{•} be the mean value. For the present theoretical study, we assume that the following information is given:

E ∈ ]0, +∞[, E{E} = E and E{ 1 E 2 } < +∞; Y 2 ∈ ]-1, 1/2[, E{Y 2 } = ν, E{ (1-Y 2 ) 2 (1+Y 2 ) 2 (1-2Y 2 ) 2 } < +∞; R ∈ ]0, +∞[, E{R} = ρ s and E{ 1 R 2 } < +∞.
Application of the maximum entropy principle [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF] yields probability densities of Y i , (i = 1, . . . , 3), Eqs. ( 9), [START_REF] Grimal | A theoretical analysis in the time-domain of wave reflection on a bone plate[END_REF] and [START_REF] Jaynes | Information theory and statistical mechanics[END_REF].

Method

Only the wave reflected at the fluid-solid interface is considered. The Cagniard-de Hoop [START_REF] Cagniard | Reflection and Refraction of Progressive Seismic Waves[END_REF][START_REF] De Hoop | A modification of Cagniard's method for solving seismic pulse problems[END_REF] method yields an explicit analytic expression for the acoustic pressure p at a receiver. The solution of Eq. ( 8) which can be found in [START_REF] De Hoop | Generation of acoustic waves by an impulsive line source in a fluid/solid configuration with a plane boundary[END_REF][START_REF] Grimal | A theoretical analysis in the time-domain of wave reflection on a bone plate[END_REF] is a convolution of the Green's function G with an input signal.

For each realization of the random vector Y = (Y 1 , Y 2 , Y 3 ) in the Monte Carlo simulation, the corresponding realization of the random variable V modelling v is calculated. Eqs. ( 14) and [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] give the mean value and the confidence interval of V for the n realizations V (θ i ).

Results

The fluid has the properties of water and the solid that of bone: ρ s = 1859 kg m -3 , E = 20.8×10 9 and ν = 0.24. Distances source-P 1 and P 1 -P 2 are 20 mm and 2 mm, respectively and h s = 2 mm. The pressure history at the source is given by Eq. ( 16) with f = 1 MHz. Settings for the parameters of the random model are

δ Y 1 = δ Y 2 = δ Y 3 = 0.1,
which is equivalent to standard deviations for the Young's modulus, the Poisson's ratio and the mass density of 21 × 10 8 Pa, 0.024 and 186 kg m -3 , respectively.

Computations for α = 0 is shown in Fig. 3; in this case, it can be checked that C P = V (relative error of 1.3%), where C P is the longitudinal wave speed in the solid. The sensitivity of the response to α is shown in Fig. 4. For each value of α, convergence is observed for n > 2000.

Probabilistic modelling on a simple model of the AT experiment for bone evaluation have shown that α has a strong influence on the estimation of the probability density of V . This work may serve as a basis for (i) an estimation of the precision of the method with respect to the orientation of the ultrasonic probe and (ii) the determination of an optimal orientation of the probe for better estimations of individual mechanical properties.

Introduction

La présente recherche est une contribution à la compréhension des phénomènes de propagation d'ondes impliqués dans les techniques dites de transmission axiale (TA) pour la caractérisation des matériaux. Ces techniques sont en particulier utilisées pour sonder la couche corticale des os longs [START_REF] Foldes | Quantitative ultrasound of the tibia: a novel approach for assessment of bone status[END_REF][START_REF] Lowet | Ultrasound velocity measurements in long bones: measurement method and simulation of ultrasound wave propagation[END_REF][START_REF] Njeh | Assessment of bone status using speed of sound at multiple anatomical sites[END_REF]. Elles consistent, entre autres, à exploiter la propagation d'une onde latérale (onde de tête) [START_REF] Brekhovskikh | Waves in Layered Media[END_REF] à l'interface de l'os et des tissus mous. Cette onde qui se propage à la vitesse des ondes longitudinales dans l'os correspond au premier signal enregistré au récepteur. Une valeur de la vitesse de l'onde dans l'os est déduite du temps de vol de ce signal. Le trajet de l'onde et le principe de la mesure de sa vitesse sont explicités sur la Fig. 1. La valeur estimée de la vitesse de l'onde est très sensible aux paramètres matériels et géométriques du tissu osseux [START_REF] Bossy | Effect of bone cortical thickness on velocity measurement using ultrasonic axial transmission: a 2d simulation study[END_REF]. 

Configuration et définitions

La géométrie du modèle consiste en la superposition d'un fluide et d'un solide occupant respectivement les demi-espaces x 3 < 0 et x 3 > 0 lesquels sont respectivement notés Ω 1 et Ω 2 dans la suite de l'article (cf. Fig. 1). L'interface plane entre le fluide et le solide coïncide avec le plan x 3 = 0 lequel est noté ∂Ω. Le placement d'un point P dans l'espace est spécifié au travers de ses coordonnées (x 1 , x 2 , x 3 ) relativement à un trièdre cartésien R(O; x 1 , x 2 , x 3 ), où O désigne l'origine de l'espace et (x 1 , x 2 , x 3 ) une base orthonormée de cet espace. L'axe (O; x 3 ) est choisi descendant et perpendiculaire à l'interface fluide-solide.

Le fluide et le solide sont au repos pour les instants t < 0. À l'instant initial t = 0, une onde cylindrique acoustique est générée dans le fluide par une source rectiligne parallèle à l'axe (O; x 2 ) placée à la distance h s de l'interface ∂Ω. Compte tenu de la nature de la source et de la configuration géométrique, les ondes longitudinales polarisées dans le plan (x 1 , x 2 ) ne sont pas excitées. L'analyse est donc conduite dans le plan (O; x 1 , x 3 ). Dans la suite de l'article, la coordonnée x 2 est implicite quand elle est omise dans les expressions mathématiques.

La réponse acoustique est calculée en terme de pression en deux points, appelés récepteurs, P 1 et P 2 de coordonnées respectives (x 1,1 , x 1,3 ) et (x 2,1 , x 2,3 ) relativement à R. La source et les deux récepteurs sont alignés ; la droite qu'ils définissent forme un angle α avec l'axe (O; x 1 ) lequel est orienté dans le sens trigonométrique (cf. Fig. 1). Une phase de post-traitement consiste à calculer une vitesse v, rapport de la distance entre les deux récepteurs et la différence des temps de vol de l'onde réfléchie. La modélisation probabiliste présentée en Section 4 permet d'associer à cette vitesse une variable aléatoire V . Cette grandeur est le paramètre d'intérêt de la méthode développée.

Formulation du problème associé au modèle moyen

Le fluide au comportement linéairement élastique est caractérisé par l'inverse de la compressibilité de celui-ci, notée K et par sa densité volumique de masse, notée ρ f . La pression acoustique est notée p et la vitesse des ondes est définie par c f = K/ρ f .

Le solide a un comportement linéairement élastique. Il est supposé homogène et isotrope. Il est caractérisé par sa densité volumique de masse moyenne, notée ρ s , son module d'Young moyen et son coefficient de Poisson moyen, respectivement notés E et ν. Le vecteur déplacement est noté u de composantes u i dans R. En outre, le tenseur des contraintes de Cauchy est désigné par σ et ses composantes dans R sont σ ij (i, j = 1, . . . , 3). Dans le solide, les indices P et S sont respectivement associés aux ondes longitudinale et transverse polarisées dans la direction x 3 . Les vitesses moyennes des ondes dans le solide sont définies par

c P = E(1 -ν ) (1 + ν )(1 -2ν )ρ s , c S = E 2(1 + ν )ρ s (1)

Équations dans le fluide

Les équations de propagation d'une onde acoustique dans un fluide non dissipatif, homogène, initialement au repos et dans une théorie linéarisée des écoulements de faible vitesse sont données par

∂ i p = -ρ f ∂ t v i , i = 1, 2, 3, ∀x ∈ Ω 1 ( 2 
)
∂ t p + K∂ i v i = Kφ V (t)δ(x 1 , x 3 + h s ), ∀x ∈ Ω 1 (3) 
où la densité volumique de forces a été négligée dans l'équation du mouvement [START_REF] Lowet | Ultrasound velocity measurements in long bones: measurement method and simulation of ultrasound wave propagation[END_REF]. La vitesse des particules est notée v de composantes v i (i = 1, . . . , 3) dans R. Le terme à droite dans Éq. (3) introduit la source dont l'histoire est donnée par ∂ t φ V (t). En outre, les dérivées partielles spatiales et temporelle sont respectivement notées ∂ i (selon x i (i = 1, . . . , 3)) et ∂ t . La fonction de Dirac au point P est notée δ(x 1 , x 3 ). La convention de sommation d'Einstein sur l'indice répété est utilisée.

Équations dans le solide

Lorsque la densité volumique de forces est négligée, l'équation du mouvement dans le solide est donnée par

∂ j σ ij -ρ s ∂ t v i = 0, i, j = 1, 2, 3, ∀x ∈ Ω 2 (4) 
où v i (i = 1, . . . , 3) désigne les composantes du vecteur vitesse v dans R. D'après la loi de Hooke, le tenseur des contraintes s'écrit

σ ij = c ij kl 1 2 (∂ l u k + ∂ k u l ) (5) 
où c ij kl est le tenseur moyen de rigidité d'ordre quatre. Le matériau étant isotrope, ce tenseur vérifie

c ij kq = E 1 + ν ν 1 -2ν δ ij δ kq + 1 2 (δ ik δ j q + δ iq δ j k ) (6) 
où δ ij est le symbole de Kronecker.

Conditions à l'interface

À l'interface plane entre le fluide et le solide, on considère qu'il y a continuité de la vitesse normale et du vecteur contrainte normale. En outre, le cisaillement se produit sans frottement. Ainsi, les conditions d'interface sont les suivantes

❏v 3 (x 1 , x 3 , t)❑ = 0, ∀x ∈ ∂Ω σ 33 (x 1 , x 3 , t) = -p(x 1 , x 3 , t) ; σ 13 (x 1 , x 3 , t) = σ 23 (x 1 , x 3 , t) = 0, ∀x ∈ ∂Ω (7) 
où ❏ ❑ désigne le saut de la quantité à la traversée de l'interface. En outre, le vecteur normal à ∂Ω est choisi extérieur au domaine Ω 2 .

Calcul de la pression acoustique

Le champ acoustique aux récepteurs est la somme d'une onde réfléchie à l'interface fluide-solide et d'une onde directe propagée dans le fluide. Cette dernière n'est pas considérée ici car dans l'intervalle de temps qui nous intéresse seule l'onde latérale est arrivée aux récepteurs. La pression aux récepteurs correspondant à l'onde réfléchie est calculée à l'aide de la méthode de Cagniard-de Hoop [START_REF] Cagniard | Reflection and Refraction of Progressive Seismic Waves[END_REF][START_REF] De Hoop | A modification of Cagniard's method for solving seismic pulse problems[END_REF]. Cette méthode fournit dans ce cas des solutions analytiques exactes dans le domaine temporel (en particulier, elle ne fait pas d'approximation du type champ lointain ou hautes fréquences). Les solutions prennent la forme

p R (t, x) = ∂ t φ V (t) * G(t, x) (8) 
où G(t, x) désigne la fonction de Green de l'onde réfléchie et le symbole * le produit de convolution. L'expression de la fonction de Green n'est pas reproduite ici et le lecteur pourra se reporter aux références [START_REF] De Hoop | Generation of acoustic waves by an impulsive line source in a fluid/solid configuration with a plane boundary[END_REF] et [START_REF] Grimal | A theoretical analysis in the time-domain of wave reflection on a bone plate[END_REF]. En un récepteur donné, le temps de vol de l'onde est défini comme l'instant où le premier maximum local de la pression est atteint, ce qui correspond à la première annulation de la fonction ∂ 2 t φ V (t) * G(t, x). Ainsi on peut calculer une vitesse v, rapport de la distance entre deux récepteurs et la différence des temps de vol des ondes réfléchies.

Modélisation probabiliste

La construction de la modélisation probabiliste développée dans le présent travail concerne les paramètres mécaniques caractérisant le solide. La méthode dite paramétrique permet d'introduire une incertitude sur les données au moyen de variables aléatoires. Dans le cadre de cette étude théorique, on suppose disponibles certaines informations, détaillée ci-dessous, sur le module d'Young, le coefficient de Poisson et la masse volumique. Dans la Section 3, la valeur moyenne des paramètres que l'on considère comme incertains a été désignée en utilisant la notation soulignée. Les lois de probabilité des variables aléatoires associées aux paramètres incertains sont basées sur le principe du maximum d'entropie [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF]. En outre, les variables aléatoires introduites sont considérées indépendantes les unes des autres.

Incertitude sur le module d'Young

Le module d'Young est modélisé par la variable aléatoire E. Les informations disponibles sont : (1) son support donné par ]0, +∞[ ; (2) sa moyenne E{E} = E ; (3) l'espérance mathématique de l'inverse de son carré laquelle est finie E{ 1 E 2 } < +∞. L'information (1) résulte des conditions thermodynamiques imposées au module d'Young. L'information (3) est nécessaire pour que le problème aux limites ait une solution stochastique qui soit du second ordre. Cette condition est vérifiée en imposant la condition E{log(E)} = c 1 avec c 1 < +∞. On introduit la variable aléatoire Y 1 de moyenne unité qui vérifie E = EY 1 . La densité de probabilité de la variable aléatoire E vérifie alors f E (E) dE = f Y 1 (y 1 ) dy 1 . L'écart type de la variable aléatoire Y 1 est donc donné par σ Y 1 = σ E /E. En utilisant le principe du maximum d'entropie, la densité de probabilité de la variable aléatoire Y 1 s'écrit alors [START_REF] Soize | A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] 

f Y 1 (y 1 ) = 1 ]0,+∞[ (y 1 ) 1 
δ 2 Y 1 1/δ 2 Y 1 1 Ŵ(δ -2 Y 1 ) y 1/δ 2 Y 1 -1 1 exp - y 1 δ 2 Y 1 (9) où Ŵ(x) = +∞ 0 t x+1 x t dt est la fonction Gamma. Étant donné que Y 1 est de moyenne unité, la variable σ Y 1 = δ Y 1 est telle que 0 δ Y 1 1/ √ 2.
Dans l'expression [START_REF] De Hoop | Generation of acoustic waves by an impulsive line source in a fluid/solid configuration with a plane boundary[END_REF], la fonction indicatrice est notée 1 B (y) laquelle est égale à 1 si y ∈ B et à 0 sinon. Le paramètre δ Y 1 dépend de c 1 mais il n'est pas utile de le ré-exprimer en fonction de c 1 . On conserve le paramètre δ Y 1 qui correspond à un reparamètrage du niveau de dispersion de la variable aléatoire Y 1 et donc de E.

Incertitude sur le coefficient de Poisson

Le coefficient de Poisson est modélisé par une variable aléatoire Y 2 de loi de probabilité définie à partir des informations suivantes : (1) son support est donné par ]-1, [START_REF] Foldes | Quantitative ultrasound of the tibia: a novel approach for assessment of bone status[END_REF] résulte des conditions thermodynamiques imposées au coefficient de Poisson. On suppose que l'information (2) est toujours connue. L'information (3) résulte des conditions d'existence du moment d'ordre 2 du carré de la variable aléatoire modélisant la quantité proportionnelle à c 2 P . Les informations (1) et (3) conduisent à un moment d'ordre 2 fini du carré de la variable aléatoire modélisant la quantité proportionnelle à c 2 S . En utilisant le principe du maximum d'entropie, la densité de probabilité construite s'écrit

1/2[ ; (2) sa moyenne E{Y 2 } = ν ; (3) l'espérance mathématique E{ (1-Y 2 ) 2 (1+Y 2 ) 2 (1-2Y 2 ) 2 } est égale à c 2 , où c 2 < +∞. L'information
f Y 2 (y 2 ) = 1 ]-1,1/2[ (y 2 ) exp -λ 0 -λ 1 y 2 -λ 2 1 -y 2 (1 + y 2 )(1 - 2y 2 ) 2 (10) 
où les paramètres λ 0 , λ 1 et λ 2 sont les valeurs pour lesquelles la fonction convexe H définie par

H (λ 0 , λ 1 , λ 2 ) = λ 0 + λ 1 ν + λ 2 c 2 + 1/2 -1 exp -λ 0 -λ 1 y 2 -λ 2 1 -y 2 (1 + y 2 )(1 -2y 2 ) 2 dy 2 (11) 
atteint son minimum. On introduit le paramètre δ Y 2 tel que δ Y 2 = σ Y 2 /ν, où σ Y 2 est l'écart type de la variable aléatoire Y 2 . On obtient un modèle du coefficient de Poisson caractérisé par le même type de données que le module d'Young, c'est-à-dire caractérisé par sa moyenne et un paramètre contrôlant sa dispersion.

Incertitude sur la densité volumique

La densité volumique est modélisée par une variable aléatoire R de loi de probabilité définie à partir des informations suivantes : (1) son support donné par ]0, +∞[ ; (2) sa moyenne E{R} = ρ s ; (3) l'espérance mathématique de l'inverse de son carré laquelle est finie E{ 1 R 2 } < +∞.

L'information (1) est toujours vérifiée. En imposant E{log(R)} = c 3 avec c 3 < +∞, l'information (3) est vérifiée. On introduit la variable aléatoire Y 3 de moyenne unité laquelle vérifie R = ρ s Y 3 . La densité de probabilité de la variable aléatoire R vérifie alors f R (ρ) dρ = f Y 3 (y 3 ) dy 3 . On a donc pour l'écart type σ Y 3 = σ R /ρ s . En utilisant le principe du maximum d'entropie, la densité de probabilité de la variable aléatoire Y 3 s'écrit alors

f Y 3 (y 3 ) = 1 ]0,+∞[ (y 3 ) 1 δ 2 Y 3 1/δ 2 Y 3 1 Ŵ(δ -2 Y 3 ) y 1/δ 2 Y 3 -1 3 exp - y 3 δ 2 Y 3 (12) où δ Y 3 = σ Y 3 est tel que 0 δ Y 3 1/ √ 2.
Le paramètre δ Y 3 dépend de c 3 mais il n'est pas utile de ré-exprimer δ Y 3 en fonction de c 3 . On conserve le paramètre δ Y 3 qui correspond à un re-paramétrage du niveau de dispersion de la variable aléatoire Y 3 et donc de R.

Simulation numérique de Monte Carlo

Une estimation des moments et de la loi de probabilité de la variable aléatoire V modélisant la vitesse v est obtenue via une simulation numérique de Monte Carlo : n tirages aléatoires du vecteur Y = (Y 1 , Y 2 , Y 3 ) sont effectués ; les réalisations sont notées θ 1 , . . . , θ n .

La simulation numérique de Monte Carlo permet alors d'obtenir n réalisations de la pression acoustique associée à l'onde réfléchie calculée en utilisant la méthode de Cagniard-de Hoop. La pression obtenue lors de la réalisation θ j est donnée par

P R (t, x, θ j ) = ∂ t φ V (t) * G(t, x, θ j ) (13) 
où G(t, x, θ j ) est la fonction de Green associée au modèle probabiliste.

Les n réalisations de la vitesse aléatoire, notées V (θ 1 ), . . . , V (θ n ), sont obtenues en utilisant la procédure explicitée en Section 3.4.

L'estimation de la valeur moyenne de la vitesse est donnée par

E{V } ≃ 1 n n j =1 V (θ j ) (14) 
Les réalisations obtenues par la simulation numérique de Monte Carlo permettent aussi d'évaluer l'intervalle de confiance ]V -, V + ] auquel la variable aléatoire V a la probabilité P c d'appartenir, où P c est une valeur fixée. En d'autres termes, pour P c fixé, on a

P(V -< V V + ) = P c (15) 
Cet intervalle de confiance est alors estimé à l'aide de la méthode des quantiles [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF].

Résultats et discussion

Le fluide est assimilé à de l'eau dont la densité volumique est 1000 kg m -3 et dans lequel la célérité des ondes vaut 1490 m s -1 . Le solide, qui représente l'os, a un module d'Young moyen de 20,8 × 10 9 Pa, un coefficient de Poisson moyen de 0,24 et une densité volumique de masse moyenne de 1859 kg m -3 . La source est située à une hauteur h s = 2 mm de la surface du solide. La distance entre la source et le premier récepteur est fixée à 20 mm ; la distance entre les deux récepteurs est fixée à 2 mm. La Fig. 2 représente l'histoire de la pression aux deux récepteurs P 1 (20, -2) et P 2 (22, -2) (les coordonnées sont exprimées en mm). Les temps de vol obtenus à ces récepteurs sont respectivement de 8,41 × 10 -6 s et 8,96 × 10 -6 s. Les maxima sont indiqués par une croix sur les courbes. L'histoire de la source utilisée pour décrire la pression est donnée par La réponse calculée pour α = 0 est donnée Fig. 3. Cette réponse fournit un test de l'implémentation du modèle probabiliste. En effet, par construction, l'égalité C P = V doit être vérifiée dans ce cas, où C P est la variable aléatoire modélisant la vitesse des ondes longitudinales. L'écart maximum observé entre les densités de probabilités de C P et V est de 1,3 % et s'explique par la variation de la forme du signal entre les récepteurs lorsqu'on est en champ proche.

φ V (t) = exp -4 × (t -0,5 × T ) 2 T 2 × sin(2πf t) (16) 
La sensibilité de la réponse à la valeur α est présentée sur la Fig. 4. Pour chaque valeur de α, la convergence du moment d'ordre 2 est observée pour un nombre de tirages supérieur à 2000. Sur cette figure, nous avons représenté non seulement la valeur de v en fonction de α mais aussi son intervalle de confiance pour lequel on a choisi P c = 95 %. Les valeurs moyennes de la vitesse calculée et la largeur de l'intervalle de confiance sont des fonctions décroissantes de α.

Conclusion

A notre connaissance, cette Note présente la première modélisation probabiliste, basée sur un modèle mécanique, d'un problème de caractérisation d'un tissu biologique par ultrasons. La pertinence de cette approche repose sur la nature statistique des informations disponibles pour les milieux biologiques.

Les calculs probabilistes réalisés sur un modèle simple de l'expérience de transmission axiale pour la caractérisation de l'os montrent que l'angle d'inclinaison α de la sonde a une forte influence sur l'estimation de la densité de probabilité de la vitesse longitudinale V . Les implications pratiques de ce type de résultat sont (i) une quantification de la part de dispersion due aux imprécisions de la technique de mesure ; (ii) la mise en évidence d'une position de la sonde favorable à une meilleure discrimination des propriétés mécaniques osseuses individuelles.
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Cette Note présente la modélisation probabiliste de l'expérience de TA. Le problème se ramène à l'étude probabiliste de la réflexion d'une onde acoustique à l'interface entre un fluide et un solide, tous deux semi-infinis et séparés par une interface plane. Le fluide représente les tissus mous et le solide, l'os[START_REF] Camus | Analysis of the axial transmission technique for the assessment of skeletal status[END_REF][START_REF] Bossy | Effect of bone cortical thickness on velocity measurement using ultrasonic axial transmission: a 2d simulation study[END_REF]. Les incertitudes de la modélisation probabiliste portent sur les paramètres mécaniques du solide. Pour tenir compte des conditions expérimentales, on introduit un angle α qui paramètre la position de la sonde ultrasonore (US) par rapport à la surface de l'os (cf. Fig.1).L'approche probabiliste développée dans le présent travail est une bonne candidate pour rendre compte des variations physiologiques des propriétés mécaniques de l'os. Cette étude doit contribuer à une meilleure interprétation de la dispersion des vitesses US mesurées.