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SUMMARY

A method is developed in this paper to accelerate the convergence in computing the solution of
stochastic algebraic systems of equations. The method is based on computing, via statistical sampling,
a polynomial chaos decomposition of a stochastic preconditioner to the system of equations. This
preconditioner can subsequently be used in conjunction with either chaos representations of the
solution or with approaches based on Monte Carlo sampling. In addition to presenting the supporting
theory, the paper also presents a convergence analysis and an example to demonstrate the significance
of the proposed algorithm.

1. Introduction

In many problems of science and engineering the quest for accuracy in predicting the behavior
of the associated physical systems has motivated the adoption of stochastic equations as viable
representative models [4, 11, 12]. In many of these models, the governing equations take the
form of partial differential equations with coefficients represented as stochastic processes or
variables [4, 2]. In discretizing these equations, linear algebraic systems ensue with entries
that consist of generally correlated random variables [4, 10]. A general and standard approach
for estimating the solution of these stochastic equations is obtained through a Monte Carlo
simulation logic that involves solving the full equations once for each realization in a statistical
sample associated with the random system, and thus synthesizing a corresponding sample of
the random solution [9]. The iterative solution of these equations would normally involve
developing a different preconditioner for each of the samples. Consequently, if the number of
samples is large and/or there are additional computational loops such as a frequency loop,
a time loop, an equilibrium iteration loop for non linear problems, then the numerical effort
associated with the construction of the preconditioners can become prohibitive. The main idea
of this paper is to propose, as an initial step (outside the principal loops), the construction of an
algebraic representation of a random preconditioner, called the stochastic preconditioner. Since
the preconditioner is a random matrix which depends on the random parameters in the original
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2 C. DESCELIERS ET.AL

matrix of the problem, this algebraic representation is chosen as the chaos decomposition of
the random preconditioner. Once constructed, this preconditioner can then be used either in
accelerating the convergence of Monte Carlo sampling or in producing computationally efficient
estimates of the chaos decomposition of the solution [4].
The present paper deals with the problem where the linear algebraic system to be solved
is frequency-dependent as would be the case in many dynamics problems. After describing
the mathematical setting for the discretized problem in the next section, the stochastic
preconditioners are introduced and a construction algorithm is described for their computation.
An algorithm for estimating a solution of the stochastic equations is then presented followed
by a convergence analysis. A numerical example is then used to expand on and demonstrate
the various steps in building the preconditioner.

2. Discretized equations in the frequency domain

Consider the algebraic problem associated with solving the following linear system of equations,

A(ω, ξ)X(ω) = F (ω, ξ) , ω ∈ B, (1)

in which ω is a real parameter such as frequency, ξ is an Rn-valued second-order random
variable whose components are independent normalized Gaussian random variables, A(ω, ξ)
is a random symmetric (m × m) complex matrix, F (ω, ξ) is a Cm-valued second-order
random variable and X(ω) is a Cm-valued random variable. It is assumed that all rigid body
components have been condensed-out, resulting in a matrix A(ω, ξ) that is invertible almost
surely for every ω. It is further assumed that random matrix A(ω, ξ) is such that, for every
ω in B, vector X(ω) is a second-order random variable. blueIt is noted at this point that the
randomness of X(ω) derives both from the randomness of operator A(ω, ξ) as well as from
the randomness of the right hand side F (ω, ξ). The present thus covers situations where either
one or both of these two quantities is stochastic. The functional dependence on ω is such that
the treatment covers many frequency dependent problems where the analysis is conducted one
frequency at a time. Similar dependence on other parameters is clearly covered by the present
analysis.
Let {Ψα(ξ)} be the set of chaos variables in {ξ},

Ψα(ξ) : L
2 (Ω, Rn) −→ R , α = 0, 1, . . . (2)

The variables form an orthogonal basis in the space L2-space of second-order random variables
and can be obtained as the multi-dimensional Hermite Polynomial functionals in a set of
independent gaussian variables [4]. The chaos decomposition X(ω, ξ) of random variable X(ω)
is of the form,

X(ω, ξ) =
∑

α

Xα(ω)Ψα(ξ) (3)

in which Xα(ω) ∈ Cm and such that

Xα(ω) =
〈X(ω, ξ)Ψα(ξ)〉

〈Ψα(ξ)2〉
α = 0, 1, . . . (4)
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STOCHASTIC PRECONDITIONER 3

Throughout this paper, for a multi-index α = (α1, . . . , αn) of length |α| = α1 + . . .+ αn, each

term in the sum
∑P

|α|=0 is itself the summation over all multi-indices of a given length.

The objective is to develop an acceleration procedure for the solution of Eq. (1) when either
chaos developments or Monte Carlo Simulation (MCS) method is used in its solution [4, 5].
In the case of the MCS method, a chaos decomposition is used. The proposed acceleration
procedure relies on the development of stochastic preconditioners.

3. Introducing stochastic preconditioners

Let C(ω) be a frequency-dependent symmetric m×m complex random matrix. Introduce the
change of variable,

X(ω) = C(ω)Y (ω) , (5)

then Eq. (1) becomes

A(ω, ξ)C(ω)Y (ω) = F (ω, ξ) . (6)

Since A(ω, ξ) is invertible a.s., the best stochastic preconditioner is clearly given by

C(ω) = A(ω, ξ)−1 , (7)

resulting in

I Y (ω) = F (ω, ξ) , (8)

where I is the identity matrix which is deterministic. In this case, the solution Y (ω) associated
with the ideal preconditioned stochastic equation (8) is easily obtained, either using chaos
decomposition or using MCS method.
Equation (8) requires a knowledge of the stochastic inverse of A(ω, ξ) and is therefore an
unrealistic limiting case. This paper proposes efficient stochastic preconditioners. It is noted
here that in the general case, the preconditioner C(ω) will depend on the probabilistic
parameters of the system and will therefore be denoted by C(ω, ξ).
For a given stochastic preconditioner C(ω, ξ), introduce the preconditioned stochastic matrix
of the system

Acond(ω, ξ) = A(ω, ξ)C(ω, ξ) . (9)

The stochastic solution to problem (1) is then obtained as

X(ω) = C(ω, ξ)Y (ω) ,

Acond(ω, ξ)Y (ω) = F (ω, ξ) , ω ∈ B . (10)

There is a significant leeway in selecting C(ω, ξ). Certain properties are imposed on matrix
C(ω, ξ) in order to maintain some desirable properties of the solution process, as well as the
numerical behavior of the preconditioned system. These properties are as follows:

1. X(ω) ∈ L2(Ω, Rm), ∀ω ∈ B .
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4 C. DESCELIERS ET.AL

2. C(ω, ξ) is a.s. invertible for every ω ∈ B .
3. In general C(ω, ξ) is a full matrix. Consequently, Acond(ω, ξ) is also full and such an

approach would lead us to a prohibitive numerical effort for solving the resulting algebraic
problem. A constraint on C(ω, ξ) should therefore be introduced to reduce this cost by
maintaining a sparse representation of Acond(ω, ξ).

4. Construction of stochastic preconditioner

Any approximation of A(ω, ξ)−1 satisfying the above properties is an acceptable
preconditioner. From a design perspective, a compromise must be made between proximity
to A(ω, ξ)−1 and the numerical effort associated with constructing the approximation. Two
candidate preconditioners are analyzed below one of which is pursued in detail.

4.1. Neumann series expansion

Given the common usage of Neumann series approximations of the inverse operator in the
context of stochastic computational mechanics, its significance as a preconditioner is worth
highlighting. Indeed, the Neumann series expansion of A(ω, ξ)−1 provides a straightforward
procedure for constructing a preconditioner. For a preconditioner constructed with an
approximation of order µ, the following expression is obtained,

C(ω, ξ) =

µ∑

|α|=0

(−1)
α
(A(ω, ξ)− I)

α
, (11)

where I is the identity matrix. In general, for a given A(ω, ξ) the series is not convergent as
µ → ∞ and the preconditioner defined by equation Eq. (11) using a finite sum could degrade
the preconditioning of the original system instead of improving it. In addition, for µ ≥ 2, such
a preconditioner is not a sparse matrix. Consequently, this preconditioner will not be pursued
in this paper.

4.2. Preconditioner based on the stochastic incomplete LU factorization of the stochastic

system matrix

The construction of the stochastic incomplete LU factorization (see Refs.[7, 8, 13, 15, 14, 3])
of stochastic system matrix A(ω, ξ) is an independent initial step in the construction of the
stochastic solution of equation Eq. (1). Since for each ω ∈ B, matrix A(ω, ξ) is invertible a.s.,
for each ω ∈ B, it admits an incomplete factorization

Linc(ω, ξ)U inc(ω, ξ) = Linc(ω, ξ)Dinc(ω, ξ)Linc(ω, ξ)T , a.s. (12)

In this factorization, Linc(ω, ξ) is a random sparse triangular complex matrix having 1 on its
diagonal and Dinc(ω, ξ) is a random diagonal complex matrix. Stochastic representations of
Linc(ω, ξ) and Dinc(ω, ξ) in terms of their respective chaos decompositions are given as
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Linc(ω, ξ) =

P1∑

|α|=0

Linc
α (ω)Ψα(ξ) ,

Dinc(ω, ξ) =

P1∑

|α|=0

Dinc
α (ω)Ψα(ξ) , (13)

in which Linc
α (ω) andDinc

α (ω) are complex matrices with the same sparsity structure as Linc(ω, ξ)
and Dinc(ω, ξ) respectively, and are explicitly given by

Linc
α (ω) =

〈Linc(ω, ξ)Ψα(ξ)〉
〈Ψα(ξ)2〉

,

Dinc
α (ω) =

〈Dinc(ω, ξ)Ψα(ξ)〉
〈Ψα(ξ)2〉

. (14)

In the above expressions, the mathematical expectations are estimated as statistical averages
from a finite sample population whose minimum size generally depends on |α|. In the following,
the size N1 of this population will be taken as a function of P1. The algorithm for computing
Linc
α and Dinc

α is then as follows. Starting with a sample ξ(r) of vector-valued random variable ξ,
a corresponding sample A(ω, ξ(r)) of random matrix A(ω, ξ) is synthesized. The corresponding
sample of the incomplete factors Linc(ω, ξ(r)) and Dinc(ω, ξ(r)) of matrix A(ω, ξ(r)) is then
computed. The approximations Linc

α,N1
(ω) and Dinc

α,N1
(ω) of the coefficients Linc

α (ω) and Dinc
α (ω)

in the chaos decomposition of Linc(ω, ξ) and Dinc(ω, ξ) are then computed from set {ξ(r)} by,

Linc
α,N1

(ω) =
1

N1〈Ψα(ξ)2〉

N1∑

r=1

Linc(ω, ξ(r))Ψα(ξ
(r)) ,

Dinc
α,N1

(ω) =
1

N1〈Ψα(ξ)2〉

N1∑

r=1

Dinc(ω, ξ(r))Ψα(ξ
(r)) . (15)

Once the incomplete factorization of A(ω, ξ) has been computed as described above, the
stochastic preconditioner can then be explicitly written as

C(ω, ξ) =
(
Linc(ω, ξ)Dinc(ω, ξ)Linc(ω, ξ)T

)−1
, (16)

in which Linc and Dinc are given by Eq. (15). It should be noted that the stochastic
preconditioner C(ω, ξ) is never constructed explicitly using Eq. (16) because the inversion
of sparse matrices in that equation leads to a full matrix for C(ω, ξ). Indeed, since Linc is lower
triangular, it is clear that C(ω, ξ) need not be computed explicitly since LDLT is easily solved
by back substitution in each triangular system. An implicit procedure for implementing the
preconditioning is next described.

5. Solution of the stochastic system

Refering to Section 2, the intermediate solution Y (ω, ξ) is first obtained as the solution to
a conditioned system by using an iterative algorithm, followed by the evaluation of X(ω, ξ)
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6 C. DESCELIERS ET.AL

using Eq. (10).

5.1. Constructing the solution of the conditioned system

For each sample ξ(r) of ξ and using an iterative algorithm, the solution Y (r)(ω) of the
conditioned deterministic matrix equation

Acond(ω, ξ(r))Y (r)(ω) = F (ω, ξ(r)) , (17)

must be computed. As previously explained, sample C(ω, ξ(r)) of stochastic preconditioner
C(ω, ξ) is not explicitly computed. Rather, an iterative procedure involving C−1(ω, ξ(r)) is
utilized for solving Eq. (17). In such a procedure, expressions of the form

W = Acond(ω, ξ(r))V , (18)

have to be calculated. Using Eqs. (10) and (16), complex vector W is given by

W = A(ω, ξ(r))R (19)

in which R is the solution of the linear system

C(ω, ξ(r))−1R = V (20)

which can be rewritten as

Linc(ω, ξ(r))Dinc(ω, ξ(r))Linc(ω, ξ(r))TR = V . (21)

The chaos decompositions of Linc(ω, ξ) and Dinc(ω, ξ), given by Eq. (13) are utilized in Eq. (21).
Given the lower triangular structure of Linc(ω, ξ(r)), the solution of Eq. (21) is readily obtained
using two back-substitutions. This process is very efficient due to the very sparse nature of
Linc(ω, ξ).

5.2. Constructing a representation of stochastic solution X(ω, ξ)

A truncated decomposition of stochastic solution X(ω, ξ) is written as

XP2
(ω, ξ) =

P2∑

|α|=0

Xα(ω)Ψα(ξ) , (22)

in which Xα(ω) is given by

Xα(ω) =
〈X(ω, ξ)Ψα(ξ)〉

〈Ψ2
α(ξ)〉

. (23)

Moreover, the first of Eqs. (10) is rewritten as

C−1(ω, ξ)X(ω, ξ) = Y (ω, ξ) (24)

or, using Eq. (16),

Linc(ω, ξ)Dinc(ω, ξ)Linc(ω, ξ)TX(ω, ξ) = Y (ω, ξ) . (25)
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STOCHASTIC PRECONDITIONER 7

An approximation Xα,N2
(ω) of Xα(ω) is evaluated using MCS method according to the

expression

Xα,N2
(ω) =

1

N2〈Ψ2
α(ξ)〉

N2∑

r=1

X(ω, ξ(r))Ψα(ξ
(r)) , (26)

where X(ω, ξ(r)) is obtained as the solution of Eq. (25) associated with sample ξ(r) of ξ.
This solution is obtained mainly using two very sparse back-substitutions. Consequently, the
approximation of XP2

(ω, ξ) given by Eq. (22) is written as

XP2,N2
(ω, ξ) =

P2∑

|α|=0

Xα,N2
(ω)Ψα(ξ) . (27)

6. Convergence Analysis

A general form of the chaos decomposition for a random quantity Z(ω, ξ) is given by

ZP,N(ω, ξ) =

P∑

|α|=0

Zα,N (ω)Ψα(ξ) , (28)

in which

Zα,N (ω) =
1

N

N∑

r=1

Z(ω, ξ(r))Ψα(ξ
(r))

〈Ψ2
α(ξ)〉

. (29)

Note that P and N are, in general, functions of ω. blueThe value of P , required to achieve
a certain level of accuracy, usually depends on the the departure of Z(ω, ξ) from a gaussian
random variable, while the value of N depends on the strength of the uncertainty as measured,
for example, by its variance. A norm for the error estimation on these developments is given
by

|ZP,N |2 =

∫

B

|||ZP,N (ω)|||2dω , (30)

in which

|||ZP,N (ω)|||2 = 〈||ZP,N (ω, ξ)||2〉

=

P∑

|α|=0

||Zα,N(ω)||2〈Ψ2
α(ξ)〉 , (31)

and where || . || is an appropriate norm. Note that P and N are taken to be independent of ω
in order to obtain a uniform convergence on B with respect to ω. This norm permits, given a
specified level of tolerance, the calculation of the pair (N conv, P conv) at convergence.
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8 C. DESCELIERS ET.AL

7. Numerical example

7.1. Definition of the mechanical system with random uncertainties

Below, we consider a static problem which is then independent of the frequency parameter ω.
The stochastic system is a fixed structure consisting of an isotropic non-homogeneous linear
elastic medium occupying a three-dimensional bounded domain Ω with boundary ∂Ω, defined
in Fig. 1. The structure is fixed on a part Γ0 of ∂Ω for which the displacement field is zero
(see Fig. 1). Domain Ω is the union of the three subdomains, Ω1, Ω2 and Ω3, as indicated in
the figure. For k = 1, 2, 3, subdomain Ωk is occupied by a homogeneous medium whose Young
modulus is Ek and Poisson coefficient is νk such that νk = 0.3 . The uncertainties concern only
the Young moduli which are modeled by independent second-order random variables (i.e. of
finite variance) whose mean values Ēk = 〈Ek〉 are such that Ē1 = 2.1 × 1010, Ē2 = 2Ē1 and
Ē3 = Ē1/2. For fixed k, random variable Ek is written as

Ek =

(
1− δk√

2

)
Ēk +

δkĒk√
2

ξ2k . (32)

In the above equation, ξk is a normalized Gaussian random variable (centered with variance
equal to 1) and δk ∈ [0,

√
2], is the coefficient of variation of Ek which is defined by

δk = σk/Ēk , σ2
k = 〈E2

k〉 − Ē2
k , (33)

and permits the control of the dispersion of random variable Ek. It should be noted that
the above construction results in Ek > 0 almost surely. For the numerical calculations, the
values of the dispersions parameters are δ1 = 0, δ2 = 0.6 and δ3 = 0.8 which means that
subdomain Ω1 has no uncertainties (deterministic medium). The externally applied forces
consist of 6 deterministic point forces (independent of ξ) denoted as f1, . . . , f6, defined in Fig.
1, the magnitudes of which are such that |f2| = |f5| = |f6| and |f1| = |f3| = |f4| = 2|f2|.
The finite element mesh of the mechanical system is defined in Fig. 1 and is constituted of
8-nodes isoparametric 3D solid finite elements. The number of DOFs is m = 1500.

7.2. Sparsity pattern of the random matrix of the system

Let X(ξ) ∈ Rm be the vector of the m DOFs of the finite element model, such that

A(ξ)X(ξ) = F , (34)

where A(ξ) is the random stiffness matrix which is positive definite, F is the vector of the
external forces and ξ = (ξ1, ξ2, ξ3) is the random variable with values in R3. In the following,
the sparsity pattern PA of matrix A(ξ) is defined as the set of all the non zero entries of
random matrix A(ξ). Taking into account Eq. (32) and since the random stiffness matrix
depends linearly on random variables E1, E2, E3, it can be deduced that random matrix A(ξ)
can be written as

A(ξ) = A0 +A1ξ
2
1 +A2ξ

2
2 +A3ξ

2
3 , (35)

in which the matrices A0, A1, A2 and A3 do not depend on ξ (deterministic matrices) and
have the same dimensions as A(ξ). Consequently, sparsity pattern PA of random matrix A(ξ)
has an upper bound that is independent of ξ and which is given by the sparsity pattern as A0.
Figure 2 displays sparsity pattern PA of matrix A(ξ) or of matrix A0.
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STOCHASTIC PRECONDITIONER 9

For any sample ξ(r) of random vector ξ, the complete factorization of A(ξ(r)) is written as
A(ξ(r)) = L(ξ(r))D(ξ(r)) L(ξ(r))T in which D(ξ(r)) is a diagonal matrix and where the lower
triangular matrix L(ξ(r)) has a sparsity pattern Pc. On the other hand, for any sample ξ(r),
the incomplete factorization of A(ξ(r)) is written as Linc(ξ(r); ℓ) Dinc(ξ(r); ℓ) Linc(ξ(r); ℓ)T in
which Dinc(ξ(r); ℓ) is a diagonal matrix and where the lower triangular matrix Linc(ξ(r); ℓ) has
a given sparsity pattern Pℓ with upper bound independent of ξ(r). Note that the arguments
for Linc and Dinc in this context refer to random variables ξ and a measure of bandwidth, ℓ,
and are different from arguments in equation (12).

It should also be noted that this sparsity pattern Pℓ cannot be arbitrarily given, but has to be
constructed so that the incomplete factorization can be carried out effectively for any sample
ξ(r) of random vector ξ. For that, the following algorithm, adapted to this particular need, has
been constructed :
1. The data are: the value ℓ of the bandwith of Linc(ξ; ℓ), with ℓ taken independent of ξ and
the knowledge of the sparsity pattern PA of matrix A(ξ).
2. Calculation of the symbolic complete Cholesky factorization of matrix A(ξ) allowing the
sparsity pattern Pc of the lower triangular matrix to be constructed.
3. From sparsity pattern Pc, construction of a sparsity pattern P̃ℓ whose bandwidth is smaller
than or equal to ℓ.
4. Sparsity pattern Pℓ is deduced from sparsity pattern P̃ℓ by cancelling entries in P̃ℓ with the
algorithm proposed in Ref. [13]. This is an algorithm which allows the incomplete factorization
to be performed with the given sparsity pattern Pℓ.

7.3. Chaos decomposition of the stochastic preconditioner

Let Linc
P ′

1
,N ′

1

(ξ; ℓ) and Dinc
P1,N1

(ξ; ℓ) be the chaos decompositions given by Eqs. (13) of random

matrices Linc(ξ; ℓ) and Dinc(ξ; ℓ) where P ′
1 and P1 are the chaos orders and where N ′

1 and N1

are the numbers of samples used in estimating Linc(ξ; ℓ) and Dinc(ξ; ℓ) respectively, and such
that

Linc
P ′

1
,N ′

1

(ξ; ℓ) =

P ′

1∑

|α|=0

Linc
α,N ′

1

(ℓ)Ψα(ξ) , (36)

Dinc
P1,N1

(ξ; ℓ) =

P1∑

|α|=0

Dinc
α,N1

(ℓ)Ψα(ξ) , (37)

in which Eqs. (15) are rewritten as

Linc
α,N ′

1

(ℓ) =
1

N ′
1〈Ψα(ξ)2〉

N ′

1∑

r=1

Linc(ξ(r); ℓ)Ψα(ξ
(r)) , (38)

Dinc
α,N1

(ℓ) =
1

N1〈Ψα(ξ)2〉

N1∑

r=1

Dinc(ξ(r); ℓ)Ψα(ξ
(r)) . (39)

The approximation of the chaos decomposition of X(ξ) is computed by using Eqs.(26) and
(27) in which P2 is the decomposition chaos order and N2 is the number of samples for
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10 C. DESCELIERS ET.AL

approximating the mathematical expectation allowing the chaos coefficients to be computed.
In order to calculate these coefficients, the following equation

A(ξ(r))X(ξ(r)) = F (40)

has to be solved for each sample ξ(r). For the present numerical example, this linear matrix
equation is solved by using a preconditioned conjugate gradient solver (see, for instance, Ref.
[1]) with the stochastic preconditioner. Two methods are compared.
(1) Stochastic preconditioner: For the first one, the stochastic preconditioner {Linc

P ′

1
,N ′

1

(ξ(r); ℓ) , Dinc
P1,N1

(ξ(r); ℓ)}
is defined by Eqs. (36) to (39).
(2) Usual preconditioner: For the second one, for each sample ξ(r), the preconditioner
{Linc(ξ(r); ℓ) , Dinc(ξ(r); ℓ)} of matrix A(ξ(r)) is computed using the usual incomplete
factorization ([8]).

7.4. Convergence analysis

7.4.1. Convergence analysis of the stochastic preconditioner with respect to the chaos-

decomposition orders. In order to study the convergence of the stochastic preconditioner
chaos decomposition with respect to orders P1 and P ′

1, the graphs of the mappings P1 
→
|||Dinc

P1,N1
(ξ; ℓ)|||2/ |||Dinc

1,N1
(ξ; ℓ)|||2 and P ′

1 
→ |||Linc
P ′

1
,N ′

1

(ξ; ℓ)|||2/ |||Linc
1,N ′

1

(ξ; ℓ)|||2 are constructed
for N1 = N ′

1 = 8000 and for different values of the bandwidth ℓ. The norm ||| . ||| is such that
||| . |||2 = 〈|| . ||2〉 in which || . || is the Frobenius norm. Figures 3 and 4 display these graphs. It
can be seen that for all ℓ ≤ 100, acceptable convergence is achieved with a chaos decomposition
order 2 for Dinc(ξ; ℓ) (P1 = 2) and a chaos decomposition order of 0 for Linc(ξ; ℓ) (P ′

1 = 0).
This remarkable fact that matrix Linc(ξ; ℓ)(ξ; ℓ) is almost independent of ξ(ξ; ℓ) implies that
only one sample of Linc(ξ; ℓ) is necessary to construct its chaos decomposition which is then
identical to its mean.
blueAs indicated previously in the paper, values of P1 and P ′

1 indicate the departure of the
components of random matrices Dinc and Linc from a gaussian random variable. Although
the probabilistic measure of elements of these two matrices is quite complex and is not easily
amenable to analysis, further investigation will be required in order to analyze the convergence
behavior of the chaos representation of the stochastic preconditioners.

7.4.2. Convergence analysis of the stochastic solution with respect to the chaos-decomposition

order. For studying the convergence analysis of XP2,N2
(ξ) with respect to the chaos

decomposition order P2, the graph of the mapping P2 
→ |||XP2,N2
(ξ)|||2/|||X1,N2

(ξ)|||2 is
constructed for N2 = 1800 and is shown in Fig. 5. The norm ||| . ||| is such that ||| . |||2 = 〈|| . ||2〉
in which || . || is the Euclidean norm. It can be seen that a reasonable convergence is reached
for P2 = 4. It should be noted that this convergence result does not depend on the value
of ℓ. blueThe required order P2 for the solution depends simultaneously on the strength of
uncertainty in the system description (i.e. in matrix A(ω)) as well as on the structure of the
dependence of the solution on the system randomness.

7.4.3. Convergence analysis of the stochastic preconditioner with respect to the number of

samples. In order to study the convergence of the chaos decomposition of the stochastic
preconditioner with respect to the numbers N1 and N ′

1 of samples, the graphs of the mappings
N1 
→ |||Dinc

P1,N1
(ξ; ℓ)|||2 andN ′

1 
→ |||Linc
P ′

1
,N ′

1

(ξ; ℓ)|||2 are constructed for P1 = 2 and P ′
1 = 0 and
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for different values of bandwidth ℓ. These graphs are displayed in Fig. 6 and 7. It can be seen
that a reasonable convergence of Dinc

P1,N1
(ξ; ℓ) is reached for N1 = 4500 while the convergence

of Linc
P ′

1
,N ′

1

is reached for N ′
1 = 1 (deterministic quantity).

It should be noted that the numerical cost of the incomplete factorization of matrix A(ξ(r))
given Linc(ξ(r); ℓ) is smaller than the numerical cost of the incomplete factorization of matrix
A(ξ(r)) for which Linc(ξ(r); ℓ) and Dinc(ξ(r); ℓ) have to be computed. In the present case for
which Linc(ξ(r); ℓ) = Linc(ℓ) is independent of (ξ(r), this property results in a significant gain.
Such a method can be used whenever N ′

1 ≪ N1 (which is presently the case since N1 = 4500
and N ′

1 = 1).

7.4.4. Convergence analysis of the stochastic solution with respect to the number of samples.

For studying the convergence analysis of the chaos decomposition of XP2,N2
(ξ) with respect

to the number N2 the graph of the mapping N2 
→ |||XP2,N2
(ξ)|||2 is constructed for P2 = 4

and is displayed in Fig. 8. It can be seen that the convergence is reached for N2 = 1800. It
should be noted that this convergence result does not depend on the value of ℓ.

7.5. Efficiency of the stochastic preconditioner

In this section, we compare the numerical costs of the stochastic solution construction of
Eq. (34) using the stochastic preconditioner and using the usual preconditioner for the following
conditions: N1 = 4500, N ′

1 = 1, N2 = 1800, P1 = 2, P ′
1 = 0 and P2 = 4.

The numerical cost for the construction of the stochastic preconditioner is denoted by C1(ℓ) and
depends on its bandwidth ℓ. The numerical cost for the construction of the stochastic solution
using the stochastic preconditioner without including C1(ℓ) is denoted by C2(ℓ). Finally, the
numerical cost for constructing the stochastic solution using the usual preconditioner is denoted
by C3(ℓ). It should be noted that the construction of the stochastic preconditioner is presented
separately because its construction can generally be performed in an initial step. In addition,
we present normalized numerical costs with respect to the total cost for the construction of
the stochastic solution, that is to say, (1) the normalized numerical cost eff1(ℓ) = C1(ℓ)/C3(ℓ)
for the construction of the stochastic preconditioner, and (2) the normalized numerical cost
eff2(ℓ) = C2(ℓ)/C3(ℓ) for the construction of the stochastic solution using the stochastic
preconditioner. Figure 9 displays the graph of function ℓ 
→ eff1(ℓ). It can be seen that, as
expected, this normalized cost increases with the bandwidth. Figure 10 displays the graph of
function ℓ 
→ eff2(ℓ) which shows that the gain increases with the bandwidth (that is also
understandable). Comparing Figs. 9 and 10, it can be seen that the gain corresponds to the
total cost of the usual preconditioner which is constructed inside the samples loop while the
stochastic preconditioner is constructed in an initial step, outside the samples loop. It is clear
from this argument that the proposed stochastic preconditioning is particularly suitable for
problems in which the construction of the stochastic preconditioner can be performed outside
all the main loops of the problem under consideration such as the time loop for evolution
problems, and the equilibrium iterative loop for nonlinear problems. Moreover, it should be
noted that, the greater the number of samples required in the MCS method, the greater the
efficiency.
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8. Conclusions

The construction of a stochastic preconditioner using the chaos decomposition is proposed.
The convergence properties of this stochastic preconditioner are studied through a numerical
example which shows that a significant gain is obtained. In addition, for the treated example, it
has been seen that, the convergence of the chaos decompositions of the diagonal and triangular
parts of the stochastic preconditioner is reached for different values of the decomposition
chaos order. This property allows the numerical effort associated with the construction of the
stochastic preconditioner to be further decreased. The persistence of this very useful property
merits further investigation in connection with a broader classes of random matrices.
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Figure 1. Geometrical definition and finite element mesh of the structural domain Ω and of the three
subdomains Ω1 (gray), Ω2 (dark gray) and Ω3 (white). The external applied forces are indicated with

arrows. Boundary Γ0 is indicated by the thick dark solid line.
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Figure 2. Sparsity pattern of matrix A(ξ).
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Figure 3. Convergence analysis of the chaos decomposition of Dinc(ξ; ℓ) with respect to
chaos decomposition order P1 and bandwidth ℓ: graph of the mapping (P1, ℓ) �→ |||Dinc

P1 ,N1

(ξ; ℓ)|||2/|||Dinc
1,N1

(ξ; ℓ)|||2; N1 = 8000
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Figure 4. Convergence analysis of the chaos decomposition of Linc(ξ; ℓ) with respect to chaos
decomposition order P ′

1 and bandwidth ℓ: graph of the mapping (P ′

1, ℓ) �→ |||Linc
P ′

1
,N′

1

(ξ; ℓ)|||2

/|||Linc
1,N′

1

(ξ; ℓ)|||2; N ′

1 = 8000.
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Figure 5. Convergence analysis of the chaos decomposition of XP2,N2
(ξ) with respect to chaos

decomposition order P2: graph of the mapping P2 �→ |||XP2 ,N2
(ξ)|||2/|||X1,N2

(ξ)|||2; N2 = 1, 800.
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Figure 6. Convergence analysis of the chaos decomposition of Dinc
P1,N1

(ξ; ℓ) with respect to the number

N1 of samples for different values of banwidth ℓ: graphs of N1 �→ |||Dinc
P1,N1

(ξ; ℓ)|||2 for P1 = 2 and for
ℓ = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The norm decreases with increasing ℓ.
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Figure 7. Convergence analysis of the chaos decomposition of Linc
P ′

1
,N′

1

(ξ; ℓ) with respect to the number

N ′

1 of samples for different values of banwidth ℓ: graphs of N ′

1 �→ |||Linc
P ′

1
,N′

1

(ξ; ℓ)|||2 for P ′

1 = 0 and for

ℓ = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The norm decreases with increasing ℓ.
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Figure 8. Convergence analysis of the chaos decomposition of XP2,N2
(ξ) with respect to number N2

of samples: graph of N2 �→ |||XP2,N2
(ξ)|||2 for P2 = 4.
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Figure 9. Normalized numerical cost for the construction of the stochastic preconditioner as a function
of its bandwith ℓ: graph of ℓ �→ eff1(ℓ); N1 = 4, 500, N ′

1 = 1; N2 = 1, 800; P1 = 2, P ′

1 = 0; P2 = 4.
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Figure 10. Efficiency analysis for the construction of the stochastic solution using the stochastic
preconditioner as a function of its bandwidth ℓ: graph of ℓ �→ eff2(ℓ) (solid line). The dashed line

represents the normalized reference numerical cost corresponding to C3(ℓ).
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