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Solvation forces in Ising films with long-range boundary

fields: density-matrix renormalization-group study.

I. INTRODUCTION

The solvation force f solv is the force per unit area between two surfaces, large colloidal particles or macromolecules due to the intervening fluid. It arises in the thermodynamic description of confined fluids as an excess pressure over the bulk value (fixed by the reservoir) and is conjugate to the distance L between the confining surfaces [1]. The study of this generalized force for simple and complex fluids is useful as it may play an important role in the field of colloid sciences, in self-assembling systems and in the biology of protein folding.

From a fundamental viewpoint, solvation forces present an abundance of interesting problems to investigate: the behaviour at the phase transitions of a confined fluid, such as capillary condensation [1][2][3][4], bridging [5][6][7], localization-delocalization transition [8,9], or layering [9], the structure at small separations L [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF][START_REF] Christenson | [END_REF], or the dependence on the fluid-fluid interactions and the surface potentials [3,4,12]. An addition appeal lies in the fact that it may be measured experimentally by a number of different techniques [START_REF] Israelachvili | Intermolecular and Surface Forces[END_REF][START_REF] Christenson | [END_REF]; e.g., the surface force apparatus, the atomic force microscope, or the total internal reflection microscopy (TIMR) [13]. By using the latter technique, the first direct determination of the universal contribution to f solv between a single colloidal particle and a planar surface in the presence of a near-critical binary liquid mixture was provided [14,15]. The universal contribution, called the critical Casimir force [16][START_REF] Krech | Casimir Effect in Critical Systems[END_REF][START_REF] Brankov | Theory of Critical Phenomena in Finite-Size Systems[END_REF][START_REF] Kardar | [END_REF], is induced by the confinement of critical fluctuations of the order parameter of the second order phase transition, e.g. the density of the fluid or the concentration of one species for a binary liquid mixture. At the bulk critical point this fluctuation-induced force has a leading power law decay f solv /(k B T c ) ∼ AL -d as L → ∞, where d is the spatial dimension of the system and A is the Casimir amplitude. The finitesize scaling theory predicts (see, e.g., Ref. [START_REF] Barber | Phase Transition and Critical Phenomena[END_REF]) that in the vicinity of the bulk critical point f solv is described by a scaling function that depends on the so-called universality class of the phase transition occurring in the bulk and on the geometry and surface universality classes of the confining surfaces [START_REF] Diehl | Phase Transition and Critical Phenomena[END_REF]. The critical Casimir force is a subject of recent considerable theoretical and experimental interest because at the submicron scale its strength and range is comparable with other interactions and because it can be easily controlled, including its sign, by changes of thermodynamic fields, such as the temperature, and by appropriate surface treatments.

As mentioned above, the solvation force is associated with fluid-fluid interactions and the surface potential. In the present paper we want to study the relevant effects of longranged, i.e., algebraically decaying forces on the near-critical behaviour of f solv between two parallel walls and test predictions of the critical finite-size scaling theory. Examples of such long-ranged forces are dispersion or van der Waals forces, dipolar forces, RKKY interactions, forces in charged systems, and elastic forces in solids. Here we utilize the equivalence between a lattice gas model of a fluid and the Ising model and consider Ising spin films subject to identical boundary fields decaying in the orthogonal direction at a distance j from the surface as -h 1 j -p , with p = 2, 3, 50 and h 1 ≥ 0. Using the density-matrix renormalization-group (DMRG) method, we calculate the solvation force in two-dimensional (2D) systems along various thermodynamic paths. The DMRG method is based on the transfer matrix approach and provides a numerically very efficient iterative truncation algorithm for constructing the effective transfer matrices for strips of fixed width and infinite length. The advantage of this method is that it can treat arbitrary fields that are coupled to the single spin variable.

Moreover, because the DMRG method gives quasi-exact results for the spectrum of the transfer matrix of the system, fluctuations are fully accounted for in this approach. Recall, that in 2D systems fluctuation effects are particularly strong. However, this method works only if the spin-spin interactions are nearest-neighbour and, at present, it is limited to the two-dimensional systems.

The studies carried out here complement and extend the earlier works (see Refs. [3,[START_REF] Drzewiński | [END_REF]23]). In Refs. [START_REF] Drzewiński | [END_REF]23] it was argued that the solvation (Casimir) force in the vicinity of the critical point is strongly influenced by capillary condensation, i.e., the shift of the bulk firstorder transition which occurs below the critical temperature T c . The residual condensation leads to the solvation force which is much more attractive at temperatures near T c and a reservoir densities slightly below the critical value (or compositions slightly away from the critical composition in a binary mixture) than the Casimir value (at the bulk critical point) for the same L. These predictions were supported by explicit calculations for 2D Ising films with short-ranged (contact) boundary fields. By using the DMRG method it was possible to study the region between the capillary and bulk critical points, i.e., for nonvanishing ordering field h < 0, which corresponds to the chemical potential difference µµ sat . In particular, the scaling functions of f solv along several isotherms were obtained showing that upon increasing the temperature towards T c a weakly rounded in 2D discontinuous jump of f solv on crossing the coexistence line [1,24] transforms gradually into a minimum. A location [START_REF] Drzewiński | [END_REF]. The similar behaviour was found in the field-theoretic model solved numerically in the mean-field approximation [25], again for the short-ranged boundary fields. In Ref. [3], the case of short-ranged fluid-fluid interaction and long-ranged wall-fluid potentials decaying as -Az -p for z → ∞ was considered for 2D Ising films and for the truncated Lennard-Jones fluid in a slit geometry. The discrete model was treated within the DMRG method whereas the continuum one by the nonlocal density functional theory. The study was focused on the asymptotic behaviour of the solvation force as L → ∞. Except for a high temperature Ising system, results for both models agree with the predictions from the analysis based on the wall-particle Ornstein-Zernike equations that f solv is repulsive and asymptotically decays with the same power law as the wall-fluid potential; this prediction holds away from the critical temperature and from any phase transition. For Ising films above T c the asymptotic behaviour was found to be of the higher order then that of the boundary field, i.e., L -(p+1) . This was explain by the specific symmetry of the order parameter with the spontaneous magnetization m * equal to zero above T c . Moreover, f solv was calculated along the bulk two-phase coexistence line slightly on the liquid side of this line and at the critical density for T > T c ; in the Ising system this path corresponds to the line H = 0. The obtained results imply that for ordering field H = 0 and L → ∞

f solv ∼ f reg solv + f sing solv = 2ρBL -p + (d -1)L -d ϑ(L/ξ τ ), ( 1 
)
where ρ is the bulk density and B is related to the strength of the wall-fluid potential. For

Ising systems ρB is replaced by m * h 1 . ϑ(x) is a universal scaling function describing the contribution arising from critical fluctuations of a fluid. τ = (T -T c )/T c and ν is the critical exponent of the bulk correlation length ξ b . ϑ is vanishingly small away from the critical region and is negative for identical walls.

In the present study we consider the neighbourhood of the bulk critical point and investigate the scaling behaviour of the solvation force along the critical and two subcritical isotherms and along the pseudo-coexistence (capillary condensation) line slightly on the "liquid" and on the "gas" sides. A substantial progress in computer capacities allows to study sufficiently thick films to assure that the scaling limit is achieved. Here we consider strips of widths up to L = 700 lattice constants. According to general scaling arguments [4,[START_REF] Diehl | Phase Transition and Critical Phenomena[END_REF] the finite-size behaviour of the singular part of the solvation force is modified by the presence of the long-ranged substrate-wall potentials. However, if p > (d + 2η)/2 the universal behavior is expected to hold. In this case the long-ranged part of the boundary field is irrelevant in the RG sense with respect to a pure contact surface field [START_REF] Diehl | Phase Transition and Critical Phenomena[END_REF]. Here η is the critical exponent governing the algebraic decay of the two-point correlation function in the bulk and at T c . In the present case of the d = 2 Ising model η(d = 2) = 1/4 so that for p > 15/8 we expect to observe the power law L -2 . The scaling of the solvation force in films with long-ranged fluid-fluid and substrate-fluid potentials was analysed in Ref. [4] by using the general scaling arguments and mean-field theory. We will summarize the relevant conclusions of this analyses and relate our results to them in Sec. III.

Our paper is organized as follows. In Sec. II we introduce the model and describe the determination of the phase diagrams for various values of the parameter p. Sec. III contains our results. Finally, we give conclusions in Sec. IV.

II. MICROSCOPIC MODEL

We consider D = 2 Ising strips defined on a square lattice of size M × L, M → ∞ and subject to the same boundary fields on both sides. The lattice consists of L parallel rows at spacing a, so that the width of the strip is La; in the following we set a = 1. At each site there is an Ising spin variable taking the value σ k,j = ±1, where (k, j) labels the site.

The boundary surfaces are located in the rows j = 1 and j = L and periodic boundary conditions (PBCs) are assumed in the lateral x direction. The Hamiltonian of our model is

given by

H = -J   kj,k ′ j ′ σ k,j σ k ′ ,j ′ + L j=1 V ext j,L k σ k,j + H k,j σ k,j , (2) 
where the first sum is over all nearest-neighbor pairs and the external potential is measured in units of J > 0. V ext j,L = V s j + V s L+1-j is the total boundary field experienced by a spin in row j; it is the sum of the two independent wall contributions. The single-boundary field with p > 0 and h 1 > 0. H is a bulk magnetic field. h 1 and H are dimensionless (see Eq. ( 1)).

V s j is taken to have the form V s j = h 1 j p (3) 
As already mentioned this model is equivalent to the 2D lattice gas model of a twodimensional one-component fluid with a short-ranged interaction potential between the fluid particles and either short-ranged or long-ranged substrate potentials (see, e.g., Ref. [26]).

A. Phase diagram

In Fig. 1 we show the phase diagram for the present model calculated by using the DMRG method for a strip of width 600 and for three choices of the parameter p describing the decay of the boundary field: p = 2, 3, and 50. h 1 is chosen so that the scaling variable

x = h 1 * L 2 = 20000
, which for the short-ranged boundary fields is sufficient to ensure each system corresponds to the infinite surface field scaling limit [27]. The case p = 50 is expected to resemble the behavior corresponding to short-ranged surface forces. In this figure we display the various thermodynamic paths along which we have calculated the solvation force.

For surfaces which prefer the same bulk phase, the phenomenon equivalent to capillary condensation takes place. The pseudo-phase coexistence between phases of spin up and spin down occurs along the line H ca (T, L; p), which is given approximately by the analogue of the Kelvin equation [28]. For positive surface fields capillary condensation occurs at negative values H ca (T, L; p) of the bulk field H. The pseudo-coexistence lines have been identified

as those positions (H, T ) in the phase diagram where the total magnetization of the strip vanishes, i.e., L j=1 m j = 0 with m j = σ k,j . We have not attempted to localize the position of the pseudo-critical temperature T c,L which ends the pseudo-coexistence lines; the unique determination of the pseudo-critical point is not possible because non-analytic behaviour is rounded in 2D [29]. Notice, that for p = 3 and 50 and T > T c , the line defined by the zeros of the total magnetization moves to more negative values of H upon increasing temperatures.

For p = 2 we observe this trend already below T c . In Ref. [29] the shift of pseudo-phase coexistence lines H ca (T, L; p) for p = 2 and 3 relative to the short-ranged pseudo-phase coexistence line (p = 50) was analysed. For p = 50 and 3 also the scaling behaviour of the pseudo-coexistence line of capillary condensation was studied.

The thick solid line in Fig. 1 indicates the bulk phase coexistence line (H = 0, T < T c ) terminating at the bulk critical point (H = 0, T = T c ≃ 2.269J/k B ) (black circle). The 6 Before presenting our results let us summarize predictions for the scaling behaviour of the solvation force based on general scaling arguments [4]. One expects that the finitesize behaviour of the singular part of the solvation force is modified due to the presence of long-ranged substrate-fluid potentials:

f solv L d ≃ ϑ L/ξ τ , L/ξ H , (L/ξ 0 ) -ωs h 1 , (L/ξ 0 ) -ω g ω (4) 
Here ξ τ (τ → ±0, H = 0) = ξ ± 0 |τ | -ν is the bulk correlation length at bulk coexistence H = 0 while ξ H (τ = 0, H) = ξ 0,H |H| -ν/∆ is the bulk correlation length at the critical temperature

T = T c . ω s = p -(d + 2 -η)/2
is the correction to scaling exponents due to the long-ranged tail of the substrate-fluid interactions. ω is the Wegner's [30] correction-to-scaling exponent for short-ranged systems, which is equal to 1/2 for 2D Ising model. g ω is a dimensionless nonuniversal scaling field. In the case of p = 50 that mimics the effect of the contact surface fields, the third argument of the scaling function in (4) should be replaced by Lh

ν/∆ 1 1
, where the surface gap exponent ∆ 1 = 1/2 for 2D Ising system. For large L and ω s > 0, one can expand the scaling function ϑ in (4)

f solv L d ≃ ϑ sr [L/ξ τ , L/ξ H ] + (L/ξ 0 ) -ωs h 1 ϑ lr s [L/ξ τ , L/ξ H ] (5) 
+ (L/ξ 0 ) -ω g ω ϑ sr ω [L/ξ τ , L/ξ H ] .
Thus for L ≃ ξ τ , ξ H , ϑ lr s and ϑ sr ω represent corrections to the leading L-dependence provided by ϑ sr . For L/ξ ≫ 1 the scaling function ϑ sr decays exponentially, therefore in this regime ϑ lr s is the leading finite-size contribution in the singular behaviour of the force. As mentioned already in the Introduction, in the present case of the 2D Ising model η = 1/4 so that the expansion (5) should hold for p > 15/8, i.e., for all cases considered in our work.

However, one can argue that for sufficiently thin films the contribution of the longranged substrate-fluid potential is always important, also at the bulk critical point. Because the separation between two surfaces is finite and the substrate-fluid potentials are longranged and identical, there will be always some nonzero field acting at the center of the film. This effect can be interpreted as if the system experiences an external bulk field

H ef f = 2h 1 [L/(2ξ 0 )] -p
, although in fact it might be at the bulk coexistence curve H = 0.

The relevance of finite-size contributions due to this effective bulk field can be estimated by The total excess free energy per unit area for the case of identical surface fields h 1 = h 2 and non-vanishing bulk magnetic field H can be written as

f ex (L) ≡ L(f (L, T, H, h 1 ) -f b (T )) + 2f w (T, H, h 1 ) + f * (L, T, H, h 1 ) ( 6 
)
where f is the free energy per site, f b is the bulk free energy, f w is the L-independent surface excess free energy contributed from each wall, and f * is the finite-size contribution to the free energy. All energies are measured in units of J and the temperature in units of J/k B .

f * , which vanishes for L → ∞, gives rise to the generalized force, which is analogous to the solvation force between the walls in the case of confined fluids,

f solv = -(∂f ex (L)/∂L) T,H,h 1 . (7) 
In the transfer matrix approach the leading eigenvalue λ L of the transfer matrix T L

T L |v L = λ L |v L , (8) 
gives the free energy per spin of an Ising strip as

βf (L) = - 1 L ln λ L . (9) 
The components of the eigenvector |v L > related to the leading eigenvalue give the probabilities of various configurations. In order to calculate the size L dependence of the solvation force at fixed values of parameters (T, H, h 1 ) we calculate the excess free energy per unit area

f ex (L) ≡ (f -f b ) L at L 0 +1 and L 0 -1.
Having values f ex (L 0 +1) and f ex (L 0 -1) we approximate the derivative in eq.( 7) by a finite difference

f solv = -(1/2)(f ex (L 0 + 1)-f ex (L 0 -1)).
The case with vanishing external field H is relatively convenient to study because for the bulk free energy there exists an exact solution by Onsager [31]. For non-zero H, in order to find the bulk free energy for each thermodynamic state one has to perform the calculation 9 [32].

A. Thermodynamic path along the pseudo -phase coexistence line

A new computational problem arises when one wants to determine the solvation force on the thermodynamic path along the pseudo-coexistence line. In order to calculate the derivative of the excess free energy at certain L 0 the values of the free energy are necessary at L 0 + 1 and L 0 -1. According to the Kelvin equation, the pseudo-coexistence is shifted from the bulk position H = 0 proportionally to 1/L. Therefore the path ( 4) or ( 5) cannot be chosen to lie close to the pseudo-coexistence line corresponding to L 0 (see Fig. 2). Our way of defining the middle line between the L 0 + 1 and L 0 -1 pseudo-coexistence lines and the shift ∆ quarantees that for both L 0 + 1 and L 0 -1 one is on the same (liquid or gas) side of the above coexistence lines.

The solvation force scaled by L 2 as a function of the scaling variable L/ξ τ , evaluated along the pseudo-coexistence line slightly on its gas side (path ( 4)) and slightly on its liquid side (path ( 5)) is shown in Fig. 3 and Fig. 4, respectively. Data correspond to the fixed x = Lh 2 1 = 20000 and different values of L. Note that in the case of p = 50 which mimics a short-ranged contact surface field, x is the relevant scaling variable. Panels (a), (b) and (c) correspond to p = 2, 3, and 50, as depicted. On both sides of the pseudo-coexistence line and for all values of the parameter p, the force is attractive in the whole range of the studied scaling variable L/ξ τ .

On the gas side, data corresponding to different separations L do not collapse into a common curve, i.e., there is no scaling except for p = 3 and 50 near the minimum close to T c . Moreover, the solvation force f - solv is very weak -the weaker the larger value of the decay exponent p. For p = 3 and 50 the behaviour is qualitatively the same, we observe a slight linear variation of f - solv with a "dip" in the narrow interval below but close to T c . On the contrary, on the liquid side of the pseudo-coexistence line an excellent scaling has been found for p = 3 and 50. For p = 2 one can see deviations from scaling, especially below T c . The solvation force f + solv is much stronger than on the gas side -data shown in Fig. 4 to the scaling function divided by 100. The presence of the pseudo-capillary critical point manifests itself as a crossover between a rapid linear increase of the solvation force at low temperatures and a saturation at small values for high temperatures. In Ref. [23] it was argued that at the transition slightly on the liquid side f + solv ≈ 2H co (T )m * (T ) ≈ -2σ(T )/L. It follows that the amplitude of f + solv should increase in the same fashion as the interfacial tension as T increases at fixed L. For the 2D Ising model, the surface tension is given exactly by βJσ(T ) = 2(K -K * ), where K = J/k B T , K * = arcth(exp(-2K)), and [31]. Since σ(T ) ≃ -4K c τ , the scaling function should vary linearly with τ at fixed L, which agrees with our result for p = 50 and 3. The argument given in Ref. [23] is based on the macroscopic approximation for the total free energy which ignores interactions between surfaces, i.e., it is valid for L → ∞. For p = 2 such interactions cannot be ignored, even for large L. Therefore it is not surprising that we can see some deviations from the linear variation of f + solv in that case. For the gas side of the pseudo-coexistence curve, the analysis in Ref. [23] gives f - solv ≈ 0. What we have found, is a nonzero but very weak solvation force. It arises from the L-dependent part of the total free energy which is neglected in the previous argumentation. As mentioned in the Introduction, away from the bulk critical point the dominant contribution to the solvation force comes from the regular term which decays with L in the same way as the substrate fluid potential, i.e., ∼ L -p or exponentially in L for the case of short-range substrate potential -this explains the observed lack of the scaling behaviour. Finally, we note that on both sides of the pseudo-coexistence line f solv is attractive for all values of p. In contrast, in the same range of temperatures along the bulk coexistence line H = 0 the solvation force is repulsive for p = 2 and 3 and attractive for short-range boundary fields [3].

K c = J/(k B T c ) = ln(1 + √ 2)

B. Isotherms

As mentioned in the Introduction, the scaling behaviour of the solvation force along various isotherms was studied for 2D Ising model with short-range contact boundary fields in Ref. [23]. The conclusion was that in the range of the scaling variable L/ξ τ in which the solvation force displays the features of (weakly rounded) capillary condensation, i.e., the jump from values appropriate to a spin down (-) (gas) phase f - solv ≈ 0 to the negative values appropriate to a spin up (+) (liquid) phase f + solv ≈ 2Hm * (T ), scaling is not well obeyed. In the present study we have been able to perform calculations for much bigger systems than that considered in [23]. We find that along the isotherms corresponding to L/ξ τ ≈ 127 and ≈ 42, data for different values of the separation L collapse onto the common curve on the liquid side of the pseudo-coexistence line -see Fig. 5. This holds for all considered values of the parameter p. This is because on the liquid side of the pseudo-coexistence line the leading behaviour of the solvation force f + solv ≈ 2Hm * (T ), so that f solv L 2 is approximately a quadratic function of H 8/15 L. On the gas side, the leading behaviour is the regular part of the solvation force (see Eq. ( 1)). The maximum absolute value of the force is ∆f solv = f + solv -f - solv ≈ 2H co (T )m * (T ) ≈ -2σ(T )/L, which for a fixed temperature decreases as 1/L. The location of the abrupt change in the value of the solvation force depends slightly on L, as it should be for a weakly rounded transition. What is also characteristic is that on the liquid side of the pseudo-coexistence curve the scaling function varies only very little from one isotherm to another. As L/ξ τ decreases the jump of f solv gradually transforms into a minimum.

For p = 50, scaling along the critical isotherm is excellent in the whole range of the scaling variable |H| 8/15 L (see Fig. 6). For p = 2 and 3, data collapse only on the left shoulder of the minimum, which indicates some residual effect of the condensed phase. As one can expect the finite size effects increase with the range of the substrate potential. Notice also that for long-ranged boundary fields the maximal absolute value of the solvation force is strongly increased with respect to the one for the short-ranged one and that the force becomes repulsive for |H| 8/15 L → 0.

IV. CONCLUSIONS

We have presented DMRG results for the solvation force f solv for 2D Ising systems between identical walls with surface potentials decaying algebraically with the exponent p = 2, 3 and 50. The range of the substrate potential does not influence the qualitative behaviour of the solvation force. We found, in agreement with simple macroscopic arguments, that on the liquid side of the pseudo-coexistence line the behaviour of the solvation force is dominated by the bulk excess free energy associated with the (+) phase being metastable in the bulk. solvation force slightly on the liquid side of the pseudo-coexistence line. Contribution to the solvation force arising from the L-dependent regular terms in the free energy manifests itself strongly for p = 2 and on the gas side of the pseudo-coexistence line for all values of the decay exponent p. There, except in the vicinity of the pseudo-capillary critical point for p = 2, scaling does not hold and the solvation force is weak.

Close to the bulk critical temperature the solvation force changes its behaviour significantly, i.e., the jump of f solv transforms into a minimum, but the effects of (pseudo) capillary condensations remain strong. This manifests itself at small values of |H| 

bulk phase.

For p = 2 and 3, along the pseudo-coexistence line on its gas side and along the isotherms for large values of |H| 8/15 L, the regular contribution (1) dominates the behaviour of the solvation force. Because m * (T )h 1 < 0, at these thermodynamic points f solv is attractive.

On the liquid side of the pseudo-coexistence line and far away from (pseudo) capillary condensation and bulk criticality, f solv becomes repulsive in agreement with (1) (see also Ref. [3]). Near the bulk critical point and close to the capillary condensation (pseudo) transition the solvation force is attractive. In the case of short-range-like boundary potential p = 50, f solv is always attractive. 
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 1 FIG. 1: Phase diagram for a 2D Ising strip subject to identical boundary fields V ext j (see Eq. (3)) obtained by using DMRG for a strip width L = 600 and the amplitude h 1 for the boundary fields such that x = h 1 * L 2 = 20000. The thick solid line indicates the bulk coexistence line at H = 0 ending at the bulk critical point (black circle). The lines interpolating the symbols represent the pseudo-phase coexistence lines H ca (T, L; p) for three different values of the exponent p governing the algebraic decay of the boundary fields. Three isotherms along which the solvation force has been calculated are shown -paths (1)-(3). The other thermodynamic path (4) and (5) run parallel to the pseudo-coexistence line slightly on the "liquid" and on the "gas" side, respectively.
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 8 that H scales as HL ∆/ν . These finite-size contributions are negligible in the critical regime if 2 p+1 |h 1 | [L/ξ 0 ] ∆/ν-p ≪ 1. From that inequality one can identify the thickness of the film L crit such that for L ≤ L crit the effect due to the long-ranged substratefluid potentials is relevantL crit ≃ ξ 0 (2 p+1 |h 1 |) -1/(d-p-β/ν) .For 2D Ising model β/ν = 1/8 and ξ 0 ≈ 0.5673 therefore for p = 2 one obtains L crit ≃ 0.5673 (8|h 1 |) 8 , i.e., the long-ranged tails practically always matter. For p = 3, L crit ≃ 0.5673 (16|h 1 |) 8/9 ≃ 7 (|h 1 |) 8/9 which assuming |h 1 | = 10 gives L crit ≈ 50. The separation L is in units of a lattice constant.
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 42 FIG. 2: Phase diagram for an Ising strip subject to identical short-ranged (p = 50) boundary fields h 1 ∼ 6.32 for strip widths L = 500 and L = 502 corresponding to x = h 1 L 2 = 20000. The solid line denotes the middle line between both pseudo-coexistence lines defined as H mid (T ) = (H co (T ; L = 502) + H co (T ; L = 500)) /2. Dashed lines indicate the pseudo-coexistence lines, whereas the dashed-dot lines present the thermodynamic paths shifted with respect to the H mid line by ∆(T ) = H co (T ; L = 502) -H co (T ; L = 500).
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 1223 FIG. 3: Scaled solvation force as a function of L/ξ τ = Lτ /ξ 0 calculated for different separations L along the line of pseudo-coexistence slightly on its gas side -the path (4). The amplitude of the substrate potential h 1 is chosen such that Lh 2 1 = 20000. Different panels show results for different values of the exponent p describing the algebraic decay of the substrate fluid potential. Scaling does not hold.
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 1324 FIG.4: The same as in Fig.3but slightly on the liquid side of the pseudo-coexistence curve -the path(5). Scaling is very well obeyed.
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 141925 FIG. 5: Scaled solvation force as a function of |H| 8/15 L calculated for different separations L along 3 various isotherms. For L/ξ τ ≈ 127 (path (1)-bottom curve) and 42 (path (2)-middle curve), the sharp jumps to a strongly attractive solvation force as |H| 8/15 L is reduced indicate weakly rounded capillary condensation of the (+) (liquid) phase. Data corresponding to L = 601 (crosses), 501 (squares), and 401 (circles) follow common curves to the left from the jumps. Along the critical isotherm solvation force exhibits a minimum.
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 8151526 FIG. 6: Scaled solvation force as a function of |H| 8/15 L calculated along the critical isotherm.Scaling is excellent for p = 50. For p = 3 and 2 data collapse on the left shoulder of the minimumto the right from the minimum we observe deviations from scaling. For p = 2 and 3, f solv becomes repulsive for small values of |H| 8/15 L. Symbols have the same meaning as in the Fig.5.
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