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Complex fluids at complex surfaces: Simply complicated?
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We study wetting and filling of patterned surfaces by a nematic liquid crystal. We focus on
three important classes of periodic surfaces: triangular, sinusoidal and rectangular. The results
highlight the similarities and differences of nematic wetting of these surfaces and wetting by simple
fluids. The interplay of geometry, surface and elastic energies can lead to the suppression of either
filling or wetting. The periodic rectangular surface displays re-entrant transitions, with a sequence
dry-filled-wet-filled, in the relevant region of parameter space.

I. INTRODUCTION

Classical Density Functional Theory (DFT) is one of
the most powerfull theoretical tools in the study of sur-
face and interfacial phenomena of liquids [1]. The appli-
cation of DFT to simple fluids led to a truly significant
discovery by Ebner and Saam: the wetting transition of
a simple fluid (argon) on a simple solid (CO2) surface
[2]. A simple surface is - for the purposes of this paper -
one that is flat (structureless) on the mesoscale. The wet-
ting transition was discovered simultaneously by Cahn [3]
using a phenomenological square-gradient theory. Bob
Evans established the connection between DFT and the
square-gradient theory - proposed originally by van der
Waals for simple fluid interfaces [1, 4]. Subsequently, Bob
Evans and his co-workers made seminal contributions in
the field of wetting of simple surfaces, and pioneered the
study of simple fluids under confinement [5–7].

In this paper we will shift the focus from simple fluids
at simple surfaces to complex fluids at complex surfaces,
revisiting the most significant results of simple fluids at
complex surfaces and complex fluids at simple surfaces.
The aim is to establish general rules for nematic wetting
at structured surfaces, based on a systematic investiga-
tion of the square-gradient (Landau-de Gennes) theory
of nematics at representative periodic surfaces.

The global surface phase diagram of simple fluids at
simple surfaces is quite rich but has been well under-
stood for decades [8, 9]. More recently, Parry and co-
workers led a systematic investigation of simple fluids
at structured surfaces, discovering new phase transitions
and elucidating - at last - the role of thermal fluctuations
at the critical wetting transition [10]. In the next section
we review the most relevant results of this work in prepa-
ration for the discussion of nematic wetting of analogous
structured surfaces. In section III, we give an overview
of the physics of wetting of simple surfaces by nematics,
highlighting the role of the elastic free energy of non-

∗Electronic address: margarid@cii.fc.ul.pt

uniform director fields. In the last section, we present
the results of our program of systematic investigation of
nematic wetting at structured surfaces, emphasising the
role of the elastic energy of surface and bulk topological
defects.

Throughout this paper we will consider three paradig-
matic examples of patterned surfaces: triangular, sinu-
soidal and rectangular periodic surfaces. We will present
our results side by side, and in relation with simple flu-
ids, to stress the similarities and the differences between
different fluids and different surfaces. The free energy of
a nematic slab includes an elastic term caused by dis-
tortions of the director field. The latter may be smooth
or ‘singular’ due to the nucleation of defects in the bulk
nematic matrix or at the surface. The interplay of sur-
face geometry, interfacial and elastic energies results in
complex (and complicated) phase diagrams with new fea-
tures. To summarise the most surprising results, we
found that: i) For periodic triangular surfaces the singu-
lar elastic free energy, due to geometrical surface singu-
larities, is responsible for a drastic increase of the wetting
anchoring energy, even in the limit of long wavelengths.
The filling transition is suppressed, and a direct transi-
tion from the dry to the wet state is observed. ii) For
periodic sinusoidal surfaces, the situation appears to be
quite different as the defects, if present, are necessarily
bulk topological defects. We found that, in general, fill-
ing and wetting pre-empt each other. We observed a
single transition - filling or wetting - to a phase with-
out topological defects. Whether the stable phase is the
wet or filled state depends on a combination of the sur-
face roughness and anchoring conditions at the interfaces.
The competing wet and filled phases are metastable over
a relatively wide range of parameters but the nucleation
of bulk topological defects - required to realise one or
the other - is not compensated by a decrease in the an-
choring energy in the transitions range of parameters.
As a consequence, for a given surface geometry, we have
not observed a sequence of filling/wetting transitions for
different anchoring strengths. iii) Finally, for periodic
rectangular surfaces the scenario is similar to that of pe-
riodic sinusoidal surfaces over a wide range of parameters.
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We have, however, observed re-entrant filling transitions,
with a sequence of states dry-filled-wet-filled as the an-
choring strength increases, in a restricted but relevant
range of parameters.

II. SIMPLE FLUIDS AT COMPLEX SURFACES

We start by reviewing wetting and adsorption of sim-
ple fluids at complex surfaces. As alluded to above, a
complex surface is one that is geometrically structured
on the mesoscale.

At the level of thermodynamics, a liquid droplet de-
posited on a planar solid surface will form a spherical
droplet, defining a contact angle θ of the liquid with the
surface. The cornerstone of wetting phenomena [8, 9, 11–
15], Young’s equation, relates the contact angle with the
surface tensions of the solid-vapour σsv, solid-liquid σsl,
and liquid-vapour σ interfaces:

cos θ =
σsv − σsl

σ
. (1)

When the contact angle is zero, the liquid spreads to
cover the surface and we say that the liquid wets the
solid. A wetting transition occurs when the contact angle
changes from a finite value to zero, as the temperature
or the surface properties vary [8, 9, 11, 12, 14, 15].

The macroscopic droplet is accompanied by a micro-
scopic film of adsorbed liquid. In wetting studies, it is
convenient to focus on the amount of adsorbed liquid.
A wetting transition now corresponds to the divergence
of the adsorption, which is equivalent to the presence of
a macroscopic liquid film. This phase transition is very
sensitive to the details of the interactions within the fluid
and of the fluid with the surface. Even the character of
the transition, continuous or discontinuous, depends on
these details [10, 16]. The adsorption can also diverge
if we approach the liquid-vapour coexistence line from
the vapour side, typically by changing the vapour pres-
sure. This is the route usually followed in experiments
[8, 9, 11, 12, 14, 15, 17–19], and is called a complete
wetting transition.

On structured surfaces the most obvious difference is
that the effective surface area increases due to the surface
structure. The roughness r is defined as the ratio of
apparent, i. e. projected, to real surface area. On a
rough surface the interfacial free energies of the solid-
vapour and solid-liquid interfaces increase by the same
amount, leading to a modified Young equation

cos θ = r cos θ0 (2)

where θ0 is the contact angle at the planar surface. This
is known as Wenzel equation and results from simple
thermodynamic arguments [13]. Eq. (2) implies that
mesoscopic surface structure or roughness amplifies the
surface wetting properties: hydrophilic surfaces become
more hydrophilic, and hydrophobic surfaces become more
hydrophobic.

Dry Filled Wet
Filling Wetting

FIG. 1: The three wetting states of structured surfaces: dry,
filled and wet, separated by filling and wetting “transitions”.
In certain geometries these are true phase transitions. The
relevant length scales are defined for each geometry. See the
text for details.

Beyond thermodynamics, at the microscopic level, sur-
face geometry has a profound effect on wetting transi-
tions: the nature of the transition may change and new
kinds of transitions, e.g. filling, may occur [20].

It is convenient to unify and simplify the notation for
the remaining of the paper. We distinguish three “wet-
ting states”: dry, filled and wet (see Fig. 1). We call
filling the process through which a dry state becomes
filled, and wetting the process through which a dry or
filled state becomes wet. This classification does not im-
ply that the “states” are distinct thermodynamic surface
phases, i.e., that they are separated by phase transitions.
In some cases the filling process is indeed smooth and
there is no phase transition. Our classification is not
unique, for example, Rascón et al. [21] called unbending
(of the interface) to the filling of a sinusoidal surface,
and unbinding (of the interface from the surface) to the
wetting transition of the same surface.

There are numerous theoretical predictions for wetting
on a wedge [20, 22–27]. The filling transition of wedges
occurs before wetting of flat surfaces. Indeed, the latter
occurs when the contact angle vanishes (θ = 0) while
for a wedge with opening angle α a filling transition oc-
curs when θ = α. One of the most surprising results is
that the filling transition may be continuous when the
wetting transition is discontinuous [23]. There are also
hidden symmetries between filling on wedges and wet-
ting of planar surfaces, known as wedge covariance [20].
Unlike critical wetting at planar surfaces the theoretical
results for wedge filling are in very good agreement with
both simulations [28] and experiments [17].

On sinusoidal surfaces there are both similarities and
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differences with wetting and filling of wedges [21]. There
is filling of the sinusoidal cavities accompanied by a
thermodynamic transition when the surface roughness is
above a certain threshold. The filling transition, or the
smooth crossover below the threshold, are then followed
by the wetting transition of the sinusoidal surface. On
a capped capillary, filling of the surface turns condensa-
tion into a continuous phase transition [29]. Again there
is filling of the capillary followed by the wetting of the
surface. Related results have been published for arrays
of posts and pits [30, 31].

More generally, Rascón and Parry [32] have used a sim-
ple geometric construction to study a parametrised fam-
ily of surfaces that goes smoothly from a planar surface to
a capillary slit, with linear and parabolic wedges as par-
ticular cases. This study illustrates the role of geometry
and the relation between wetting, filling, and capillary
condensation. Many of the novel theoretical results have
been confirmed by experiments [17–19].

III. COMPLEX FLUIDS AT SIMPLE SURFACES

Since their discovery, liquid crystals (LC) provided a
fertile ground for the development of new theoretical
methods and ideas. Wetting is no exception [33, 34]. In
this section, we review nematic wetting of simple surfaces
emphasising the similarities and differences with simple
fluid wetting.

The nematic phase is characterised by long-range ori-
entational order and positional disorder. The direction
of molecular alignment, the nematic director n, is arbi-
trary in bulk nematics but the presence of surfaces and
interfaces selects a particular direction, known as surface
anchoring. Typical situations include homeotropic (ori-
entation perpendicular to the surface), random planar
(random orientation parallel to the surface) and planar
(orientation along a direction in the surface). Nematic
wetting was predicted in the framework of the Landau-
de Gennes (LdG) theory [35–42] and has been observed
experimentally using a variety of techniques [43–47]. At
nematic-isotropic (NI) coexistence, the quantity of inter-
est is the adsorption of the orientational order parameter
Q (defined below), as the densities of the coexisting liq-
uid phases are very close and their spatial variations may
be neglected [48–52]. Although there are quantitative
discrepancies between the full DFT and LdG, and some
qualitative ones [53], the overall picture of the wetting
phase diagram is described adequately by the simpler
LdG theory and this is the theory that will be used here.

Within the LdG theory, the isotropic and nematic
phases are characterised by a traceless, symmetric order-
parameter tensor with components Qij , which may be
represented as

Qij =
3
2
S[ninj −

1
3
δij ] +

1
2
B[lilj −mimj ], (3)

where ni are the Cartesian components of the director

field n, S is the nematic order parameter, which mea-
sures the degree of orientational order along the nematic
director, and B is the biaxiality, which measures the de-
gree of orientational order along the directions perpen-
dicular to n, characterized by the eigenvectors l and m.
The corresponding LdG free energy may be written as

FLdG =
∫
V

(φb + φel) dv +
∫
S
φs ds (4)

where φb is the bulk free energy density and φel is the
elastic free energy density, given by [54]:

φb = aTr Q2 − bTr Q3 + c[Tr Q2]2 (5)

φel =
L1

2
∂kQij∂kQij +

L2

2
∂jQij∂kQik (6)

where a depends linearly on the temperature, b and c are
positive constants, and L1 and L2 are positive parameters
related to the elastic constants. The first integral in (4)
is over the volume, V, while the second is over the surface
area, S. The surface free energy, φs, is assumed to take
the form [55]:

φs =
w

3
Tr[Q−Qs]2 (7)

where Qs is the tensor order parameter favoured by the
surface: Qs = Ss(3ν⊗ν−1)/2, with ν the surface direc-
tor, Ss the surface nematic order parameter, and w the
anchoring strength. In the strong anchoring regime, the
nematic order parameter will take the value Qs at the
surface.

By rescaling the variables as in [56]: Q̃ = 6cQ/b, r̃ =
r/ξ, where the nematic bulk correlation length ξ is ξ2 =
8c(3L1 + 2L2)/b2, and F̃LdG = 242c3FLdG/ξ

3b4, we find
F̃LdG =

∫
Ṽ(φ̃b + φ̃el) dṼ +

∫
Ã φ̃s ds̃, where the rescaled

free energy densities are:

φ̃b =
2
3
τ Tr Q̃2 − 8

3
Tr Q̃3 +

4
9

[Tr Q̃2]2 (8)

φ̃el =
1

3 + 2κ
[∂̃kQ̃ij ∂̃kQ̃ij + κ∂̃jQ̃ij ∂̃kQ̃ik] (9)

φ̃s =
1
3
w̃Tr[Q̃− Q̃s]2 (10)

Here τ = 24ac/b2 is a dimensionless temperature, κ =
L2/L1 a dimensionless elastic parameter (κ > −3/2) and
w̃ = 16wc/b2ξ a dimensionless anchoring strength. From
now on we consider rescaled variables only, and will drop
the tildes to simplify the notation.

At τ = 1, the bulk free-energy density has two min-
ima φb = 0 for rescaled scalar order parameters SI = 0
(isotropic phase) and SN = 1 (nematic phase). The sign
of the elastic parameter κ determines the anchoring at
the NI interface: homeotropic for negative κ and planar
for positive κ.

In order to describe nematic wetting, we have to con-
sider the anchoring both at the surface and at the NI
interface. In the simplest case, both favour homeotropic
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anchoring (i.e. κ < 0, Ss > 0, w > 0 and ν perpen-
dicular to the surface). The biaxiality B vanishes and
the nematic director is uniform throughout the system.
In this case the LdG functional reduces to the Landau-
Ginzburg free-energy functional of a subcritical fluid at a
planar surface. The system exhibits a first-order wetting
transition for w <

√
2, with an associated prewetting

line for τ > 1 [57]. Sheng’s limit [35, 36] corresponds to
w → 0, Ss →∞ with w = wSs finite. The wetting transi-
tion becomes tricritical at w =

√
2, and for larger values

of w it is continuous. In this case, isotropic wetting is
completely analogous to nematic wetting, and follows by
changing wSs to 1− wSs. This symmetry, characteristic
of fluids with scalar order parameters, breaks down in
the presence of biaxiality and is absent when the surface
and the NI interface are antagonistic, i.e., favour distinct
anchorings.

When the surface and the NI interface favour planar
anchoring, biaxiality plays a role. The nematic director
is still uniform throughout the system but there are two
distinct possibilities: Ss < 0 and ν perpendicular to the
surface (random planar), or Ss > 0 and ν parallel to the
surface (planar). In the former case, the wetting phase
diagram resembles that for homeotropic anchoring with
an additional feature, the ‘nematization’ surface transi-
tion between a random planar and a planar nematic film
[39].

Finally, when the anchoring at the surface differs from
that at the NI interface, the picture changes quite drasti-
cally, as the elastic deformations of the director field play
a crucial role. As the nematic wetting layers grow, spatial
variations of the nematic and biaxial order parameters,
S and B, remain confined to the neighbourhood of the
interfaces, but the nematic director changes linearly from
that favoured at the surface to that favoured at the NI
interface [42]. Since the associated elastic energy is posi-
tive, the wetting transition is always first-order. In addi-
tion, wetting by the isotropic phase of the nematic-solid
surface may be pre-empted by a pure surface anchoring
transition [41].

IV. COMPLEX FLUIDS AT COMPLEX
SURFACES

Nematic wetting on structured surfaces has attracted
little attention [58], although it is of considerable fun-
damental interest, with relevant applications in bistable
liquid-crystal displays. One reason for this is that it is
complicated! The surface structure causes orientational
frustration that contributes an elastic term to the free
energy. Under certain conditions, it may lead to the nu-
cleation of topological defects that will, in turn, affect
the nematic order at the surface. The nucleation of de-
fects, with complex structure and dynamics, is a new
ingredient, not present in the wetting of simple liquids at
structured surfaces nor in nematic wetting at structure-
less ones.

In this section we will address the interplay between
surface geometry (on the order of l ∼ 10 − 100ξ) and
the elastic energy of the distortions caused by the spa-
tially varying surface director field. The role of fluctua-
tions, which is completely unknown for nematic wetting,
is left for future work. A few systematic studies based
on the LdG theory were carried out for periodic trian-
gular [59, 60] and sinusoidal [61] surfaces, and general
rules begin to emerge. In the following, we discuss these
rules and present new results, based on the LdG the-
ory, for nematic wetting at periodic rectangular surfaces.
The latter have been investigated numerically and exper-
imentally, in the context of zenithal bistable switching of
LC devices [62, 63] and exhibit a rich wetting behaviour,
due to a large number of metastable ordered states in the
wetting range of parameters. Multiple filling transitions
may occur, leading to re-entrant behaviour, which has
not been observed at the periodic triangular and sinu-
soidal surfaces.

A. Nematic wet states: Thermodynamics

We start with the thermodynamics of nematic wet-
ting. The structured surface is characterised by a spa-
tially varying surface director field, while the director at
the NI interface is uniform. There is then an elastic con-
tribution to the thermodynamic free energy of a nematic
slab which is long-ranged, repulsive, and dominates the
interfacial free energies at large distances. In the wet
state, the system has a single length scale, l, set by the
surface. The elastic free energy for smooth distortions is,
up to a constant of order 1 which depends on the sur-
face geometry, KS/l, where K is the macroscopic Frank
elastic constant. The nematic wetting transition is then
given by a generalization of Wenzel’s law [59]

cos θ = r

(
cos θ0 −

KF̃el

σinl

)
(11)

where F̃el = lFel/KS ∼ 1 and σin is the NI surface
tension.

In the limit of large l, l � K/σin, the elastic contri-
bution is irrelevant, and Wenzel’s law is recovered. How-
ever, the orientational frustration, due to the geometrical
surface pattern, may lead to the nucleation of topolog-
ical defects close to the surface, with a cut-off length
(defect size) set by the bulk correlation length ξ. The
presence of bulk and/or surface defects will contribute a
singular ln(l/ξ) term to the rescaled elastic free energy
F̃el [60], which is dominant at large l. While for simple
fluids the wetting transition at structured surfaces oc-
curs always before the wetting transition at structureless
ones (as the temperature or the surface field increase),
for nematics, the wetting transition will occur before if
the geometrical structure dominates or after if the elastic
energy dominates. In systems where the elastic energy
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dominates, large deviations from Wenzel’s law are still
found at large l, and nematic wetting may be supressed.

Beyond thermodynamics, at the microscopic level, sur-
face geometry has an even more profound effect on ne-
matic wetting. As for simple fluids it may lead to new
transitions such as filling. However, nematic wetting does
not necessarily follow filling, as the pinned NI interface
in the filled state may prevent the nucleation of topologi-
cal defects in the bulk nematic, which would increase the
elastic energy by an amount that is not compensated by
the decrease in the surface anchoring energy.

B. Nematic wet states: LdG theory for periodic
triangular surfaces

Having set the stage, we proceed to discuss nematic
wetting at structured surfaces, based on the mesoscopic
LdG theory. Systematic work along these lines was pio-
neered by Patŕıcio et al. [59–61].

We start with nematic wetting at periodic triangular
surfaces, characterised by an opening angle α and length
L (see Fig. 1). The surface periodicity has wave num-
ber q = π/L cosα in the azimuthal plane and is transla-
tionally invariant in the perpendicular direction. The
roughness parameter is r = 1/ cosα ≥ 1. The sur-
face anchoring was assumed homeotropic and linear (see
[59, 60]) while the anchoring at the NI interface is pla-
nar (κ = 2 > 0). The LdG free energy minimization
(using adaptive meshing) yields equilibrium in-plane ne-
matic textures only, for the range of parameters relevant
in the wetting regime.

The numerical results further show that the ne-
matic texture with the lowest free energy changes from
‘homeotropic’ to ‘planar’, as α increases, at α = π/4
(see Fig. 2) and the system exhibits bi-stability for open-
ing angles close to π/4. Inspection of the textures also
reveals that, in general, there are no disclination lines
in the bulk nematic, but large distortions of the director
field were observed close to the surface singularities (lines
along the vertices of the triangular section). These dis-
tortions signal the presence of surface disclination lines
that contribute a term, to the elastic free energy, which
scales with the wave number q, as −q ln q for small q and
w > q. Although stable disclination lines in bulk three
dimensions have half-integer winding numbers, the sur-
face disclination lines have (arbitrary) winding numbers
related to the surface geometrical parameters [60].

This conclusion is quantified in Fig. 2, where the re-
sults of the LdG theory for the wetting transition anchor-
ing strength wt are plotted as a function of opening angle
α, for different surface lengths, L. In the same figure, we
have plotted the result of the generalized Wenzel’s law,
where the leading singular elastic contribution from the
surface disclination lines is taken into account (see [60]
for details). This contribution introduces a very slow de-
cay of the surface free energy at large L, and explains the
large deviations from Wenzel’s law observed in [59, 60].

0 20 40 60 80
 (degrees)

0

0.1

0.2

0.3

wt =32 Theory
=32 Numerical
=48 Theory
=48 Numerical
=64 Theory
=64 Numerical
=96 Theory
=96 Numerical

Wenzel

FIG. 2: Wetting phase diagram - anchoring strength wt versus
opening angle α - of periodic triangular surfaces and typical
nematic textures of each phase. Symbols correspond to the re-
sults of LdG theory [59], and lines to the generalized Wenzel’s
law, Eq. 11, where the leading contribution to the elastic free
energy from surface disclination lines, proportional to lnL/ξ,
is accounted for (see Ref. [60] for more details).

Somewhat surprisingly, the results also show that filled
states are suppressed, as they are found to be metastable
over the wetting range of parameters.

C. Nematic wet states: LdG theory for periodic
sinusoidal surfaces

A periodic sinusoidal surface is characterised by a wave
number, q = 2π/L, and amplitude, A, in the azimuthal
plane and is translationally invariant in the perpendic-
ular direction (see Fig. 1). The surface roughness is a
monotonic increasing function of Aq. Sinusoidal surfaces
are interesting as for simple fluids, and roughness above
a certain threshold, they exhibit a sequence of filling and
wetting transitions [21]. Recently, using the LdG theory
and the numerical techniques used for triangular surfaces,
nematic wetting of sinusoidal surfaces was also investi-
gated [61].

For linear surface potentials and homeotropic anchor-
ing [61], it is found that when the NI interface favours
parallel anchoring, a wetting transition from the dry to
‘homeotropic’ nematic occurs at small values of Aq. The
filled states appear at larger anchoring strengths but are
found to be metastable. At large Aq (large roughness)
the transition is from the dry to a filled state (as in sim-
ple fluids) but the wet states, found at higher anchoring
strengths, are always metastable. Indeed, the filled states
where the NI interface is pinned at the surface crests have
always a lower free energy than the wet states, where a
periodic array of defect lines is nucleated at the sinusoidal
crests (see Fig. 3).

Detailed results over a wide range of parameters show
that the filling-wetting transition sequence, observed
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FIG. 3: Typical nematic textures at sinusoidal surfaces. From
the left: wetting by ‘homeotropic’ nematic, filling and wetting
by a ‘planar’ nematic. The latter, characterised by topological
defects along the crests of the sinusoidal pattern (black dots),
was found to be metastable.

for simple fluids on sinusoidal surfaces, does not oc-
cur for nematics [61]. The phase diagrams - transition
anchoring strength wt versus Aq - are cusped, resem-
bling those found for periodic triangular surfaces. While
in the latter, the two branches correspond to wetting
by ‘homeotropic’ (small angle/roughness) and ‘planar’
(large angle/roughness) nematics, at sinusoidal surfaces
the transitions are wetting by ‘homeotropic’ nematic at
small roughness and filling by ‘planar’ nematic in the
opposite regime. The results, however, depend on the
anchoring conditions at both interfaces and the situation
is somewhat reversed if the anchoring at the surface and
at the NI is homeotropic. The detailed analysis of these
results will be published elsewhere [61].

D. Nematic wet states: LdG theory for periodic
rectangular surfaces

We now turn our attention to periodic rectangular sur-
faces. Like the triangular surface, these have geometrical
singularities, but unlike the triangular case, they may
exhibit a sequence of nematic filling and wetting transi-
tions. Periodic rectangular surfaces are characterised by
two lengths, L1 and L2 (wave number q = 2π/(L1 +L2))
and depth, H, in the azimuthal plane and are trans-
lationally invariant in the perpendicular direction (see
Fig. 1). The roughness is r = 1+2H/(L1 +L2). In order
to restrict the number of parameters, we have first set
L1 = L2 = 10ξ.

We consider homeotropic surface anchoring and planar
anchoring at the NI interface, as in the previous studies.
The anchoring strength at the transition, wt, is plotted
as a function of roughness, r in Fig. 4. The nematic
textures representative of the various surface phases are
also illustrated in the diagram. At small and large rough-
nesses, r, the wetting behaviour is similar to that found
at sinusoidal surfaces. There is wetting but no filling of
nearly flat surfaces (r ∼ 1), and filling but no wetting of
highly rough ones (r � 1). At intermediate values of the
roughness novel wetting behaviour is observed.

Over a narrow range of the roughnesses (1.4 < r <
1.5) the system exhibits a sequence of transitions, from
dry→filled→wet, as in simple fluids. However, as the an-
choring strength increases, the system exhibits a tran-

1 1.2 1.4 1.6 1.8 2 2.2 2.4
r

0

0.1

0.2

0.3

0.4

ω
c

FIG. 4: Wetting phase diagram - anchoring strength wt ver-
sus roughness r - of periodic rectangular surfaces and typical
nematic textures of each phase. Along the dashed path the
system exhibits a re-entrant filling transition, with a sequence
of states: dry-filled-wet-filled.

sition from the wet to a filled state (see Fig. 4). In
this phase, pinning of the NI interface is energetically
favourable when compared with the wet nematic phase,
where topological disclination lines appear at the top cor-
ners of the rectangular surface. This re-entrant behaviour
is robust and similar diagrams are obtained for rectan-
gular surfaces characterised by different geometrical pa-
rameters.

V. CONCLUSION

The wetting of complex surfaces by complex liquids is
complex and complicated. This is hardly surprising, in
view of the large number of parameters involved. Nev-
ertheless, a simpler picture emerges from the results ob-
tained.

Like with simple fluids, nematic wetting phenomena is
essentially an interplay of three possible states: dry, filled
and wet. In nematics, there can be a number of different
textures in each of these states (‘homeotropic’, ‘planar’,
with or without defects...) but the basic phenomenology
is the same. That said, each of the surfaces studied has
its own set of interesting and unique wetting behaviour.

The triangular is perhaps the simplest of geometri-
cally structured surfaces, but even in this case, the elastic
free energy and the effect of topological defects manifest
themselves: bistable nematic states are found for opening
angles close to α = π/4 and the approach to the wetting
transition predicted by Wenzel’s law, for rough surfaces,
is extremely slow. Rather surprisingly, the filled state is
found to be always metastable and thus the filling tran-
sition is pre-empted by wetting.

Sinusoidal surfaces exhibit a phase diagram that looks,
superficially, similar to that of triangular surfaces. How-
ever, at sinusoidal surfaces both filling and wetting may
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be suppressed. For a given roughness, the transition is
either from dry-to-wet or dry-to-filled and we do not ob-
serve the sequence dry-filled-wet found in simple fluids.
The analysis of the textures sheds some light on this be-
haviour: the sinusoidal surface is not singular and thus
wet states on sufficiently rough surfaces lead to the nucle-
ation of topological defects. The energy to create these
defects is usually so high that the filled state is always
energetically favourable. In effect, the NI interface be-
comes pinned by the emerging defects of the nematic wet
phase.

Rectangular surfaces once again have similarities with
the other surfaces. At low and high roughnesses, the
results are similar to the sinusoidal surface: There is a
transition from dry-to-wet at low r and a dry-to-filled
transition in the oposite limit. Interestingly, for inter-
mediate roughness, we find re-entrant filling transitions,
with a sequence dry-filled-wet-filled states.

The following table summarises the main results:
Geometry Main Result

Triangular No filling, wetting only.

Sinusoidal Either filling or wetting. The
transitions pre-empt each other.

Rectangular Re-entrant filling transitions:
sequence of dry-filled-wet-filled states.

The study of wetting of complex surfaces by complex
fluids is work in progress and the interpretation of the

results is still somewhat complicated! We hope that,
as more results become available, a simpler picture will
emerge, with a better understanding of the role of elastic-
ity and topological defects. This will provide a framework
- or generic behaviour - to guide and/or interpret detailed
studies of the phase diagrams of individual systems.
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