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We study the influence of wetting films on (density-density) correlations for a fluid in a slit-like geometry
near capillary condensation. We show that, for systems with short-ranged forces, the interaction between the
wetting films strongly enhances the amplitude of the exponential decay of correlations and, unlike the interfacial
roughness, is independent of a high-momentum cut-off. The correlation function shows scaling behaviour
near condensation arising from the equality of two characteristic length scales: the parallel correlation length
(associated with the complete wetting films) and a length scale related to the non-local interaction between
the wetting films on either side of the slit. We introduce a dimensionless amplitude ratio associated with the
decay of correlations which allows us to distinguish between local and non-local effective Hamiltonian theories.
Only the latter is fully consistent with microscopic density functional descriptions of correlation functions. The
influence of long-ranged intermolecular forces and fluctuation effects in two dimensions is also discussed.

I. INTRODUCTION

Capillary condensation [1–7] refers to the shift in the value
of the chemical potential µcap (or pressure), relative to that of
bulk saturation µsat, at which a vapour confined in a slit of
width L condenses to a liquid-like phase, see Fig. 1. As is
well known, for macroscopically wide slits, the shift in the
coexistence curve, δµcap ≡ µsat − µcap, is well described by
the classical Kelvin equation

δµcap =
2σ cos θ

∆ρL
+ · · · (1)

where θ is the contact angle, σ is the surface tension of the
liquid/vapour interface and ∆ρ = ρl − ρv is the difference
in bulk number density. For thin-film uni-axial (Ising-like)
magnets there is an analogous shift in the value of the ex-
ternal field h, at which up-spin and down-spin-like phases
coexist [6, 8]. In this magnetic notation, “condensation” be-
tween phases with net positive and negative magnetisation oc-
curs when hcap ≈ −σ cos θ/m0L where m0 is the sponta-
neous magnetisation and σ is the surface tension of the free
up-spin/down-spin interface.

Modern density functional theory (DFT) studies and com-
puter simulations have shown that, at low temperatures, far
from the capillary critical point, the Kelvin equation remains
accurate for slit widths as small as 10 molecular diameters -
provided the walls are only partially wet by the liquid, cor-
responding to θ > 0. For complete wetting, θ = 0, (or in-
deed complete drying θ = π) on the other hand corrections
to the Kelvin equation arise due to the presence of wetting
layers of liquid (vapour for the case of drying) at each wall
and are particularly important for systems with long-ranged
(dispersion-like) interactions in the wetting layers [9]. Simi-
lar (fluctuation-induced) modifications to the Kelvin equation

arise in lower dimensions due to the long-ranged entropic re-
pulsion of the interface from the wall(s) [10].

In this paper, we point out that, for systems with short-
ranged forces, complete wetting layers also strongly influence
the decay of (density-density) correlations near capillary con-
densation. While there has been some discussion of the mo-
ments of the correlation function and, in particular, their rela-
tion to thermodynamic observables such as the force of solva-
tion [1, 11], we are not aware of any detailed studies of how
wetting influences the asymptotic decay of the correlation
functions in the capillary slit geometry. We ask the following
question: what is the correlation (function) between particles
situated on opposite side of the capillary? On the “condensed”
side of the capillary condensation transition, µ = µ+

cap, it is
reasonable to assume the correlation function across the slit is
similar to that of a bulk liquid. On the “vapour” side of the
transition, µ = µ−cap, however it is possible that the correla-
tion is enhanced due to the interaction between the fluctuating
liquid-vapour interfaces associated with the wetting films. We
shall show that the full quantitative form of this enhancement
is particularly revealing and reflects the non-local nature of
interfacial interactions. Indeed, this leads to universal scaling
behaviour and a novel reinterpretation of the Kelvin equation.

Our article is arranged as follows: we begin by recalling
some simple background theory about complete wetting tran-
sitions and the Kelvin equation. We then turn attention to
the nature of correlation functions, and use effective interfa-
cial Hamiltonian descriptions to predict how the spatial de-
cay across the capillary depends on the slit width. We fo-
cus primarily on three-dimensions (3D) in systems with short-
ranged forces, and stress some subtle quantitative differences
between predictions based on a local and non-local descrip-
tion of interfacial phenomena. Only the latter is fully consis-
tent with calculations based on a more microscopic square-
gradient density-functional theory. We finish with a summary
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FIG. 1. Schematic illustration of coexisting vapour-like and liquid-
like phases in a capillary slit geometry of width L. On the vapour
side of the condensation transition, thick wetting films of liquid form
at the substrates if the contact angle is zero.

of our main predictions and also make some remarks about
the decay of correlations in 3D with long-ranged (dispersion)
forces, and also in 2D concentrating on Ising-like systems.

II. BACKGROUND THEORY

Consider the interface between a planar substrate (wall) of
infinite area and a bulk fluid at chemical potential µ and tem-
perature T , below that of bulk criticality. If µ > µsat, the bulk
fluid is a high density liquid while for µ < µsat it is a low den-
sity gas. Exactly at bulk two-phase co-existence the surface
tensions of the respective wall-vapour (σwv) and wall-liquid
(σwl) interfaces are related through Young’s equation for the
contact angle of a macroscopic drop:

σwv = σwl + σ cos θ. (2)

Complete wetting corresponds to θ = 0, in which case a
macroscopically thick layer of liquid intervenes between the
wall and bulk vapour when µ = µ−sat [12–15]. The com-
plete wetting transition refers to the continuous divergence
of the thickness `π ∼ δµ−β

co
s of this layer as saturation is

approached (δµ = µsat − µ → 0). Here, the subscript on
the thickness refers to the semi-infinite nature of the planar
wall-fluid geometry. Associated with this transition are the
vanishing of a singular contribution to the (wall-vapour) sur-
face tension, σsing ∼ δµ2−αco

s , and the divergence of a corre-
lation length parallel to the unbinding liquid-vapour interface,
ξ‖ ∼ δµ−ν

co
‖ (and an associated interfacial roughness ξ⊥) aris-

ing from its fluctuations. Only one of the exponents is free
since 1 − αco

s = −βco
s and αco

s = 2νco
‖ which follow from

the Gibbs adsorption equation and a compressibility sum-rule
respectively. The phenomenon of complete drying (θ = π)
is completely analogous to this but instead refers to the di-
vergence of a macroscopic layer of vapour at a wall-liquid
interface as µ→ µ+

sat.

Complete wetting transitions can also be seen in semi-
infinite Ising-like magnets [16–18]. Suppose for example that
the spins are subject to a bulk field h ≤ 0, (which ensures
that the bulk phase has negative magnetisation) but also that a
strong positive surface field h1 orders the spins at the surface
(wall). As h → 0− a wetting layer of up-spins grows and in-
trudes between the surface and the bulk down-spin state. Pro-
vided one is above the roughening temperature (for models
based on lattices) the unbinding (and associated fluctuations)
of the up-spin/down-spin interface are the same as those oc-
curring for the liquid-vapour interface in fluid systems.

The modern theory of complete wetting, which is in excel-
lent agreement with experiment [12–15], builds on the pio-
neering work of Frumkin and Derjaguin in the 1940s [9, 19].
Theorists have two main approaches; Density functional mod-
els and effective interfacial Hamiltonians which each have
complementary strengths (and weaknesses). Within DFT the
equilibrium one-body density profile is found from minimi-
sation of a grand-potential functional. The advantage of den-
sity functional theory is that it is microscopic, taking as its
starting point a molecular description of short-ranged repul-
sive and long-ranged attractive intermolecular forces. Thus
modern DFTs based on fundamental measure theory can de-
scribe very well packing effects which give rise to density os-
cillations when a high density liquid is close to a wall [20].

The disadvantage of the mean-field DFT approach is that it
does not include fluctuation effects arising from the thermally
induced wandering of the unbinding interface. To model
these one must usually rely on interfacial Hamiltonian models
which describe long wavelength fluctuations in a collective-
coordinate `(x), representing the local height of the liquid-
vapour interface (or up-spin/down-spin interface for Ising-like
magnets) at position x along the wall. The standard local in-
terfacial model, which is partly phenomenological in charac-
ter, has the form [14]

H[`] ≡
∫

dx
{ σ

2
(∇`)2 +W (`)

}
(3)

where W (`) is the binding potential function describing the
direct interaction of the interface with the wall (arising from
intermolecular forces) which can be determined from some
more microscopic theory - most commonly a DFT for fluids or
a Landau-Ginzburg-Wilson (LGW) model for Ising-like mag-
nets [21]. By definition, the binding potential is identified as
the excess-free energy per unit area of a wetting film which
is constrained to be at a uniform height `. There is therefore
an implicit assumption of locality in the standard interfacial
model in that the interface interacts with the wall via its local
height only. This is something we will return to later. Note
that in writing (3) we have specialised to isotropic fluid inter-
faces in which the coefficient of the gradient term (the stiff-
ness) is identified with the surface tension. This is also appro-
priate for Ising-like systems close to the bulk-critical point.
Thus the first term in (3) arises simply due to the increase in
surface area induced by a fluctuation. Implicit in the Hamilto-
nian is a high-momentum cut-off Λ of the order of an inverse
bulk correlation length.

A mean-field analysis of fluctuation effects at complete
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wetting in three-dimensional systems suffices for almost all
purposes, implying that the film thickness `π and excess free-
energy σsing can be determined from the minimisation condi-
tions

W ′(`π) = 0 σsing = W (`π) (4)

respectively. The length scales ξ‖ and ξ⊥ can be determined
from the structure factor (the parallel Fourier transform of the
height-height correlation)

S̃(q) ≡
∫

dx12 〈δ`(x1)δ`(x2)〉 eiq.x12 (5)

where δ`(x) ≡ `(x) − `π . At mean-field, S̃(q) = 1/C̃(q)

where C̃(q) is the Fourier transform of the “direct” correlation
function C(x12) ≡ β δ2H

δ`(x1)δ`(x2) where β = 1/kBT . Clearly

C̃(q) = β (W ′′(`π) + σq2) (6)

so that

S̃(q) =
kBT

W ′′(`π) + σq2
(7)

and identifies the parallel correlation length as ξ‖ =√
σ/W ′′(`π). Integrating S̃(q) over all wave-vectors deter-

mines the (squared) interfacial roughness ξ2
⊥ ≡ 〈δ` 2〉 in three

dimensions as

ξ2
⊥ =

kBT

2π

∫ Λ

0

dq
q

W ′′(`π) + σq2
(8)

The presence of the high momentum, or short-distance, cut-
off is essential to regularise this integral and leads to

ξ2
⊥ ≈

kBT

2πσ
ln Λξ‖ (9)

which diverges (weakly) as one approaches complete wetting
[22, 23]. It is this length scale that is missing in current mean-
field DFT descriptions of wetting transitions.

For systems with short-ranged forces, the appropriate
choice of binding potential, is

W (`) ≡ h̄`+ ae−κ` + · · · (10)

where the coefficient of the exponential repulsion a > 0 and
κ ≡ 1/ξb is the inverse bulk correlation length ξb of the phase
that wets the wall. Here h̄ is proportional to the bulk-ordering
field; specifically h̄ = ∆ρ δµ for fluids and h̄ = 2m0|h|
for Ising-like magnets, where m0 is the absolute value of the
magnetization of the bulk phase. The physical origin of this
binding potential will be discussed later. Using this binding
potential it follows that

κ `π ∼ − ln h̄ (11)

and the associated free-energy singularity σsing ∼ −ξbh̄ ln h̄.
Similarly for the parallel correlation length we obtain

ξ‖ =

√
σ

κh̄
(12)

The values of the critical exponents are therefore βco
s =

0(ln), αco
s = 1 and νco

‖ = 1/2. Even though the upper crit-
ical dimension for complete wetting with short-ranged forces
is d∗ = 3, explicit renormalisation group analysis of the inter-
facial Hamiltonians shows that these mean-field predictions
are largely unaltered by fluctuation effects. Only the coeffi-
cient of the logarithmic divergence is (slightly) altered while
the expression for ξ‖ is unchanged [24].

Let us now consider a fluid confined between two identi-
cal planar walls, of infinite area A, which are located in the
planes z = 0 and z = L respectively, and which is also in con-
tact with a bulk reservoir at chemical potential µ < µsat and
temperature T . The Kelvin equation (1) follows from consid-
eration of the total grand potential Ω for vapour-like (v) and
liquid-like (l) phases that may coexist in the slit at tempera-
tures far below the capillary critical point [1]. For the gas-like
phase we write

Ωv
A

= −pL+ σ(L;µ) (13)

where p is the pressure of the bulk vapour and σ(L;µ) is the
total surface tension of the finite-width capillary. To first ap-
proximation we write this as σ(L;µ) ≈ 2σwv corresponding
to the tensions of two semi-infinite wall-gas interfaces. For
the liquid-like phase on the other hand

Ωl
A
≈ −p∗L+ 2σwl (14)

where p∗ is the pressure of a metastable bulk liquid and σwl
is the surface tension of a semi-infinite wall-liquid interface.
Phase co-existence in the slit occurs when Ωl = Ωv imply-
ing that p − p∗ = 2(σwv − σwl)/L. This reduces to eq. (1)
on using Young’s equation σwv = σwl + σ cos θ and the bulk
relation p − p∗ = (ρl − ρv) δµ. The Derjaguin correction
to the Kelvin equation for complete wetting arises from the
singular contribution to the surface tension σ(L;µ) due to the
wetting films. Neglecting the interaction between the wet-
ting layers on either side of the strip we now approximate
σ(L;µ) ≈ 2 (σwl +σ+σsing) where, as above, σsing ∼ h̄2−αs .
On making use of the Gibbs adsorption equation this leads
to an effective reduction in the slit width Leff appearing in
the Kelvin equation. As first shown by Derjaguin [9] for dis-
persion forces Leff = L − 3`π where recall `π ≈ δµ−1/3.
For short-ranged forces on the other hand the correction has
a more obvious geometrical interpretation, Leff = L − 2`π ,
and is not quite so important owing to the slow logarithmic
divergence of `π .

III. CORRELATION FUNCTIONS AT CAPILLARY
CONDENSATION IN SYSTEMS WITH SHORT-RANGED

FORCES

A. The Zeroth Moment

Let us now begin to extend the above argument with a view
to calculating the pair correlation function in three dimensions
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in systems with short-ranged forces. To do this, we will need
to account for the interaction between the wetting films on
either side of the slit. To this end, we write

σ(L;µ) = 2σwl + 2σ +Wsing (15)

and seek to determine the width dependence of the singular
contribution to the excess-free energy. At mean-field level,
which is accurate for almost all purposes in 3D, we can deter-
mine Wsing as the minimum value of a binding potential func-
tion which allows for the interaction of the interfaces with the
walls and also each other. We write

WL(`1, `2) = W (`1) +W (L− `2) + ∆W (`1, `2) (16)

where `1 and `2 denote the positions of two planar constrained
liquid-vapour interfaces representing the thickness of the wet-
ting layers (see Fig. 1). The interaction of each interface
with the (closest) wall is modelled using the binding poten-
tial W (`) defined for a semi-infinite geometry (10) while for
the interface-interface interaction we use

∆W (`1, `2) = −ce−κ(`2−`1) + · · · (17)

where c ∝ σ is the coefficient of an exponential attraction be-
tween the interfaces. Strictly speaking the inverse length scale
κ now corresponds to the inverse bulk correlation length of
the gas phase (or down-spin phase in a magnetic context), but
for simplicity we shall assume an Ising-like symmetry for the
bulk phases. The form of ∆W (`1, `2) may be easily derived
from an underlying square-gradient DFT (or LGW Hamilto-
nian) by considering the excess free-energy of a constrained
interfacial configuration. We will comment more on this later
when we consider a non-local treatment of interfacial interac-
tions.

Since, at equilibrium, the wetting films have the same thick-
ness at each wall we can define W (`;L) ≡WL(`, L− `) and
determine Wsing as the minimum of

W (`;L) = 2(h̄`+ ae−κ`)− ce−κ(L−2`) + · · · (18)

Provided the bulk ordering field is not too small, the interac-
tion between the wetting films has a negligible influence on
the equilibrium thickness which is extremely well approxi-
mated by the semi-infinite expression (11). This is certainly
the case close to capillary condensation where, according to
the Kelvin equation the film thickness ` ≈ ξb lnL � L. We
note in passing that the interaction term does become impor-
tant for much smaller values of δµ and, indeed, eventually
induces a spinodal when h̄ ≈ e−2κL/3 corresponding to thick
wetting films of order ` ≈ L/3. However, this metastable
region is of no relevance to our present discussion of correla-
tion functions near capillary condensation. It follows that near
capillary condensation Wsing ≈ 2h̄`π(δµco), so that equating
(13) and (14) leads to

h̄cap =
2σ

(L− 2`π)
+ · · · (19)

which is the modified Kelvin equation for complete wetting
with short-ranged forces.

We now return our attention to our main concern and in-
troduce the connected density-density correlation function
G(r1, r2) = 〈δρ(r1)δρ(r2)〉 where δρ(r) = ρ(r) − 〈ρ(r)〉
is the fluctuation (operator). It is convenient to exploit the
translational invariance in the directions parallel to the wall
and define a transverse or parallel Fourier transform

G̃(z1, z2; q) ≡
∫

dx12 G(r1, r2) eiq.x12 (20)

where x12 is the parallel displacement vector between the two
points at heights z1 and z2 from one of the walls. As a starting
point for interpreting the correlation function we first consider
the zeroth moment G̃0(z1, z2) ≡ G̃(z1, z2; 0) corresponding
to the zero wave-number limit. Indeed, exact sum-rules and
also density-functional calculations shows that, for particle
positions on either side of the slit, this function is related for-
mally to the derivative of the total surface tension via [25]

G̃0(0, L) ∝ −∂
2σ(L)

∂L2
. (21)

Therefore, for the vapour-like phase, provided δµ ≥ δµcap,
we can expect that

G̃v0(0, L) ∝ e−κ(L−2`π). (22)

As with the modified Kelvin equation, this expression depends
on the reduced effective slit width L − 2`π . Substituting for
`π , we have

G̃v0(0, L) ∝ e−κL

h̄2
(23)

so that, exactly at capillary condensation,

G̃v0(0, L) ∝ L2e−κL. (24)

This result is notable because of the polynomial prefactor ∝
L2 (arising from the reduction in the effective slit width) and
contrasts with the expected result for the liquid-like phase

G̃l0(0, L) ∝ e−κL. (25)

Therefore correlations are enhanced due to the presence of
wetting films. Note that the last expression (25) has two con-
sistent interpretations. Firstly, model calculations for sys-
tems with short-ranged forces show that for the liquid-like
phase the grand-potential (14) contains higher-order exponen-
tial corrections ∝ e−κL which lead directly to (25) using the
sum-rule (21). More physically we know that away from the
immediate vicinity of the walls where there are packing ef-
fects, the density profile is almost constant, in the liquid-like
phase. Hence, we can anticipate that the pair-correlation func-
tion decays as it does in the bulk, provided of course that
we are far below the capillary critical temperature. In other
words, above the Fisher-Widom line, where the correlation
function and associated inhomogeneous density profiles de-
cay monotonically [26, 27], we anticipate a simple Ornstein-
Zernike-like decay

Gl(r1, r2) ∝ e−κr

r
(26)

Page 4 of 11

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

5

where r ≡ |r1 − r2| is the particle separation. The zeroth
parallel moment of this, G̃0 ∝ e−κz , decays as a pure ex-
ponential, so that, for particles on either side of the slit, we
can expect (25). We emphasize again that the predictions (24)
and (25) are only valid far below the capillary critical point.
For wide capillary slits, this is equivalent to the condition that
L� ξb.

B. Capillary-wave theory

Let us now extend the analysis to calculate the pair-
correlation function across the slit in the presence of wetting
films assuming that δµ ≥ δµcap. The simplest approach to this
is based on a local interfacial Hamiltonian

H[`1, `2] =

∫
dx

{ σ
2

(∇`1)2 +
σ

2
(∇`2)2 +WL(`1, `2)

}
(27)

in which fluctuations are resisted by the surface tension and
the interface interaction is modelled using the binding poten-
tial (16) with the expressions (10) and (17). To determine G
for particle positions close to the walls on opposite sides of
the slit we need to determine the height-height correlations
between the two different interfaces. To this end we define a
(2× 2) matrix S̃(q) with elements

S̃mn(q) ≡
∫

dx12 〈δ`m(x1)δ`n(x2)〉 eiq.x12 (28)

where δ`m(x) = `m(x)−〈`m〉. Recall that only two elements
are independent since by symmetry S̃11 = S̃22 and S̃12 =

S̃21. At mean-field level, the matrix S̃(q) is obtained as the
inverse of the matrix

C(q) = β


∂2WL

∂`21
+ σq2 ∂2WL

∂`1∂`2

∂2WL

∂`2∂`1

∂2WL

∂`22
+ σq2

 (29)

the elements of which are simply the Fourier transforms of the
second functional derivatives δ2H

δ`mδ`n
evaluated at equilibrium.

Close to capillary condensation, C̃11(q) is essentially un-
changed from the expression (6) for complete wetting in the
semi-infinite geometry, while for the off-diagonal element is
determined as the second derivative of ∆W (`1, `2). Thus,

C(q) ≈ β

 W ′′(`π) + σq2 −κ2ce−κ(L−2`π)

−κ2ce−κ(L−2`π) W ′′(`π) + σq2

 (30)

This leads to the two structure factors

βS̃11(q) ≈ 1

κh̄+ σq2
(31)

and

βS̃12(q) ≈ cκ2e−κ(L−2`π)

(κh̄+ σq2)2
. (32)

The first result is the same expression (or rather very nearly
the same) as the structure factor for complete wetting at a sin-
gle wall, eq. (7). The weak correlation between the two in-
terfaces is quantified by the off-diagonal term S̃12 which is
exponentially small in the slit width. Note also that the de-
nominator is the square of that appearing in S̃11(q).

To determine the density-density correlation function we
note, that in local effective Hamiltonian theories, a local fluc-
tuation in the interfacial height `1(x) produces an analogous
local density fluctuation at the wall δρ ≈ e−κ`1δ`1(x). This
can be thought of as arising from the tail of the exponentially
decaying density profile from the liquid-vapour interface. It
follows that the Fourier transform G̃(0, L; q) of the density-
density correlation function for particle positions on either
side of the slit is given by

G̃v(0, L; q) ∝ e−κL

(κh̄+ σq2)2
. (33)

Exactly at capillary condensation, this reads

G̃v(0, L; q) ∝ L2e−κL

(1 + L
2κq

2)2
. (34)

Setting q = 0, this recovers our earlier sum-rule result for the
zeroth moment (24) demonstrating the consistency of the cal-
culation. Note that the large length scale present in the wave-
vector dependence is simply the parallel correlation length
ξ‖ ∝ h̄−1/2 describing the interfacial fluctuations in the wet-
ting film evaluated at the chemical potential corresponding to
capillary condensation. Substituting the Kelvin equation ex-
pression δµ ≈ 2σ/(∆ρL) into (12) yields

ξ‖ =

√
L

2κ
(35)

which is the same as that appearing in (34).
Finally we need to perform the inverse Fourier transform to

determine the desired decay in real space:

Gv(0, L) = C
L2e−κL

2π

∫ Λ

0

dq
q

(1 + L
2κq

2)2
(36)

where C is an unimportant constant. It is interesting that this
result is essentially independent of the cut-off Λ because the
high momentum behaviour is integrable. One can see this ex-
plicitly if one introduces a simple change of variable to re-
write the expression as

Gv(0, L) = C
Le−κL

2πξb
ICW (37)

where

ICW =

∫ Λ2ξbL/2

0

dz
1

(1 + z)2
(38)

is a dimensionless integral. Obviously this is non-singular and
approaches unity in the limit L → ∞. Thus within the local
effective Hamiltonian theory we are led to the prediction

Gv(0, L) = C
Le−κL

2πξb
(39)
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which shows explicitly the enhancement of correlations across
the slit compared to correlations in the condensed, liquid
phase. The non-universal constant C is the same as that ap-
pearing in the zeroth moment, and can be eliminated by defin-
ing a dimensionless amplitude ratio LξbG

v(0, L)/G̃v
0(0, L)

or, more accurately, the limit of this as L → ∞. Thus, ac-
cording to the present local Hamiltonian, this dimensionless
amplitude ratio is given by

ξbL
Gv(0, L)

G̃v
0(0, L)

≈ 1

2π
(40)

the value of which we shall return to shortly.

C. Non-local theory

The analysis described above, based on a local interfa-
cial Hamiltonian, is reliable regarding most of its predictions.
However, when we compare it to the results of a more micro-
scopic DFT we find that it is not quite correct (see Appendix).
In this section, we show that this can be traced directly to
non-local effects associated with the damping of interfacial
interactions and has a similar interpretation to recent studies
of non-locality at short-ranged wetting transitions [28–31].

One may improve on the basic phenomenological interfa-
cial Hamiltonian of wetting by starting from a more micro-
scopic LGW theory and integrating out degrees of freedom
systematically. This has been done recently for (short-ranged)
wetting in a semi-infinite geometry and has provided new in-
sights into a number of long-standing problems in the the-
ory of critical wetting transitions [32]. We recall some de-
tails of this approach, concentrating only on what we need for
complete wetting transitions, before describing how the anal-
ysis generalises to the parallel-plate geometry. The system-
atic derivation of an interfacial model was first considered by
Fisher and Jin [33] who used a perturbative approach (as an
expansion in the gradient ∇`). However as described in [29],
it is possible to do this non-perturbatively using a Green’s
function method closely related to multiple reflection expan-
sion techniques [34] . This has a number of advantages and
allows one to derive an interfacial model for wetting at non-
planar walls, the position of which we denote by a function
ψ(x).

The non-local (NL) Hamiltonian can be written

HNL[`, ψ] = σAlv + h̄V` +WNL[`, ψ] (41)

and is valid for length scales larger than the bulk correlation
length. Curvature corrections related to rigidity-like terms can
be calculated but are not considered here. The interfacial area
is denotedAlv while V` =

∫
dx(`(x)−ψ(x)) is the volume of

the wetting film. The binding potential functional WNL[`, ψ]
describes the interaction of the interface and wall and has an
expansion

WNL[`, ψ] = aΩ1
1[`, ψ] + · · · (42)

with a geometry independent coefficient a which is the same
as the binding potential (10). Higher order contributions to

WNL exist but are not important for complete wetting transi-
tions [35]. Each of these contributions has a diagrammatic
representation in which a zigzagging straight line (each zig
and zag representing a kernel ) connects points on the wall
(lower wavy-line) to points on the interface (upper wavy-line).
The dominant diagram has the algebraic expression

Ω1
1[`, ψ] = =

∫∫
dsψds` K(rψ, r`). (43)

Here rψ and r` are points on the wall and interface re-
spectively, which are integrated over using the appropri-
ate infinitesimal areas dsψ = dx

√
1 + (∇ψ)2 and ds` =

dx
√

1 + (∇`)2. These surface integrations are implied by
the black circles in the diagrams. The kernel, denoted by each
straight line, is

K(r1, r2) =
κ

2π|r1 − r2|
e−κ |r1−r2| (44)

and is simply a normalised version of the bulk correlation
function.

Specialising to the case of wetting at a planar wall, the NL
Hamiltonian reduces to

HNL[`] =

∫
dx

{ σ
2

(∇`)2 + h̄`
}

+WNL[`] (45)

where we have taken the usual gradient expansion for the
bending term. If the wall is flat the integral over it can be
done exactly in which case the wetting diagram reduces to

=

∫
ds e−κ` (46)

where ds = dx
√

1 + (∇`)2. One can see immediately that
this contribution is essentially identical to that appearing in
the standard interfacial Hamiltonian arising from the (lead-
ing) exponential decay of the binding potential (10). That is,
for a planar wall, the leading-order contribution to the binding
potential functional is local in character. This is not the case
for higher order terms, which are important at critical wet-
ting transitions, but for complete wetting the form of the local
Hamiltonian (3) is supported by the NL theory. Consequently
the predictions for the parallel correlation ξ‖ and structure fac-
tor S̃(q) are the same as described in section III A.

Despite this the description of density-density correlation
functions is better within the NL theory because the relation
between fluctuations in the interfacial height and density fluc-
tuations is controlled explicitly by the kernel K. Indeed this
is an additional source of non-local effects with the result that
the NL description is in precise agreement with an exact sum-
rule [31]. The singular (interfacial) contribution to the pair
correlation function is given by

G(r1, r2) ∝ ∂2

∂z1∂z2

∫∫
dx3dx4K(r1, r3)S(x34)K(r4, r2)

(47)

Page 6 of 11

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

7

where r1 and r2 are the correlated points, while r3 = (x3, `π)
and r4 = (x4, `π) lie on the interface. This has the short-hand
diagrammatic representation

G(r1, r2) ∝ ∂2

∂z1∂z2
(48)

where the wiggly line represents the height-height correlation
function S(x12). In Fourier space, this reads

G̃(z1, z2; q) ∝ K̃ ′(z1 − `π; q)K̃ ′(z2 − `π; q)S̃(q) (49)

where

K̃(z; q) =
κ

κq
e−κq|z| (50)

is the parallel Fourier transform of the Green’s function (44),
the prime denotes the derivative w.r.t. z and we have abbrevi-
ated κq =

√
κ2 + q2. Note that the length scale controlling

the exponential decay of correlations as we move away from
the interface is κq and not κ (as is often assumed in local the-
ories). Thus for particle positions very close to the wall, the
NL theory predicts that G̃ contains a singular term

G̃sing(0, 0; q) ∝ h̄

1 + ξ2
‖q

2
e−`πq

2/κ. (51)

Note the presence of a damping factor e−`πq
2/κ which shows

that, in addition to ξ‖, there is a diverging length scale ξNL ∝√
`π which strongly damps correlations. It is the allowance

for this length in the NL theory which gives consistency
with the exact sum-rule requirement that the second moment
G̃2(0, 0)sing ∝ σ + σsing [30, 31].

The generalisation of the NL theory to wetting films in a
parallel-slit geometry is straightforward. The interaction of
each interface with the (closest) wall is the same as in the
semi-infinite geometry and is essentially local in character.
The difference with the local Hamiltonian approach however
is that the interaction between the interfaces is now strongly
non-local. Thus, we have to write

HNL[`1, `2] =

∫
dx
{σ

2
(∇`1)2 +

σ

2
(∇`2)2

}
+WL[`1, `2]

(52)
where

WL[`1, `2] ≡
∫

dx {W (`1) +W (L− `2)}+ ∆W [`1, `2]

(53)
analogous to (16). The interaction between the interfaces is
now modelled by the non-local expression

∆W [`1, `2] ≡ −cΩ1
1[`1, `2] (54)

where, in an obvious notation,

Ω1
1[`1, `2] ≡

∫∫
ds`1ds`2 K(r`1 , r`2) (55)

Again, we can visualise this interaction diagrammatically as

Ω1
1[`1, `2] ≡ (56)

where the two horizontal lines represent the capillary walls. If
the two interfaces are planar then this integral reduces to

= Ae−κ(`2−`1) (57)

where A is the area. This exactly reproduces the interaction
term (17) in the binding potential function (16) implying that,
for planar interfaces, the NL Hamiltonian is (per unit area)
identical to the binding potential function WL(`1, `2) appear-
ing in the local theory. Hence, at mean-field level, the excess
free-energy and therefore the zeroth moment of the pair cor-
relation function G̃0(0, L) are the same as calculated earlier.

The determination of the structure factor S̃12(q) follows
along the same lines described in III A. The difference be-
tween the local and NL theories arises because now the off-
diagonal terms for the direct correlation function matrix is
wave-number dependent

C̃12(q) ≈ −κ2ce−κq(L−2`π) (58)

and recall κq =
√
κ2 + q2. This feeds directly into the struc-

ture factor

βS̃12(q) ≈ cκ2e−κq(L−2`π)

(κh̄+ σq2)2
(59)

which only matches with the corresponding expression of the
local theory when q = 0. To calculate the pair-correlation
function, we use (49) which is equivalent to

G̃v(0, L; q) ∝ e−2κq`π S̃12(q) (60)

where we have assumed that the wetting layer thickness is the
same as at a single wall. Hence, for h̄ ≥ h̄cap, we have

G̃v(0, L; q) ∝ e−
√
κ2+q2L

(κh̄+ σq2)2
. (61)

This is similar, but not quite identical, to the result (34)
we arrived at using a local capillary-wave theory because of
the wave-vector dependence in the numerator. Since the NL
Hamiltonian is only valid for length scales longer than the
bulk correlation length we can expand κq ≈ κ+ q2/2κ+ · · ·
and re-write this as

G̃v(0, L; q) ∝ e−κL e−q
2Lξb/2

(κh̄+ σq2)2
(62)

which identifies an additional damping term in the numerator
∝ e−Lq

2ξb/2 compared with the corresponding result of the
local theory. Thus both approaches are in agreement with re-
gard to the value of the zeroth moment but differ for larger
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wave-vectors. It is apparent that the structure factor across the
slit is characterised by two large length scales: the usual par-
allel correlation length ξ‖ which, for h̄ ≥ h̄cap, is well approx-
imated by the semi-infinite result (12), and a second length

ξdamp =

√
Lξb
2

(63)

which emerges from the damping term e−Lq
2ξb/2 ≡ e−q

2ξ2damp .
It is clear that this damping effect is very similar to that which
occurs for the correlation function G̃(0, 0; q) at complete wet-
ting discussed earlier. The extra length scale controlling the
damping in this case was ξNL =

√
`πξb. The damping across

the capillary is similar but now occurs on the scale of the slit
width rather than the wetting film thickness.

A remarkable feature of the length scales ξdamp and ξ‖ is
that at capillary condensation, h̄cap ≈ 2σ/L, they are equal.
In other words the Kelvin equation (1) is equivalent to the
statement that

ξdamp = ξ‖ (64)

where ξ‖ is given by (12). Expressed in terms of the slit width,
we find for the Fourier transform

G̃v(0, L; q) ≈ CL2e−κL
e−Lq

2/2κ

(1 + L
2κq

2)2
(65)

which is valid for wave-numbers q � Λ ≈ κ, and L � ξb.
The scaling of the correlation lengths (64) therefore implies
that

Gv(0, L) = C
Le−κL

2πκ
INL (66)

where

INL =

∫ Λ2ξbL/2

0

dz
e−z

(1 + z)2
(67)

is different to the corresponding expression ICW of the local
theory. Again this integral is very weakly dependent on L
(which can be set to∞) leading to

INL = 1− eE1(1) ≈ 0.404 (68)

where E1(x) is the exponential integral

E1(x) ≡
∫ ∞
x

dt
e−t

t
(69)

Hence the dimensionless amplitude ratio

ξbL
Gv(0, L)

G̃v
0(0, L)

≈ 1− eE1(1)

2π
(70)

and is reduced compared to the prediction of the local inter-
facial Hamiltonian. In the Appendix, we show that (65) is
the result obtained from directly solving the Ornstein-Zernike
equation for a square gradient DFT. That is, only the non-
local description of interfacial interactions reproduces the full
quantitative features of an underlying microscopic theory.

Finally, we mention that within the non-local theory there is
a simple diagrammatic expression for the correlation function
across the slit, analogous to that for a single wall, eq. (48).
For particle positions at distances z1 ≈ 0 and z2 ≈ L (and
arbitrary parallel displacement), the expression is given by

G(r1, r2) ∝ ∂2

∂z1∂z2
(71)

where the lowest and highest horizontal lines represent the
capillary walls, and the two middle horizontal lines repre-
sent the two liquid-vapour interfaces. The diagram has the
same interpretation as earlier, in which the wavy lines denote
height-height correlations S11 (= S22), and the thick line de-
notes the kernel K. In this way, we can see rather clearly that
the total correlation across the slit arises from both bulk-like
decays, represented by the thick lines, and capillary-wave ex-
citations at both interfaces (wavy lines).

IV. DISCUSSION

In this paper, we have discussed how the presence of wet-
ting films influences the density (or magnetisation) correlation
function G(0, L) between particle positions on either side of
a capillary slit (or Ising thin-film). Concentrating on systems
in three dimensions with short-ranged forces, our central pre-
dictions are as follows:

1) The amplitude of the exponential decay of correlations
is enhanced due to the presence of the wetting films. Near
capillary condensation, the correlation function in the vapour
phase decays as Gv(0, L) ≈ Le−κL compared to Gl(0, L) ≈
e−κL/L in the liquid phase.

2) The enhancement of correlations arises from the interac-
tion between the fluctuating interfaces on either side of the slit
and, unlike the interfacial roughness, does not depend on the
high-momentum cut-off in the effective Hamiltonian.

3) The attractive interaction between the wetting films must
be modelled using a non-local interaction potential which we
can represent diagrammatically as

∆W [`1, `2] = −c . (72)

For planar interfacial configurations this recovers the usual
binding potential function present in local descriptions. This
non-local description correctly accounts for the damping of
interfacial interactions controlled by a length scale

ξdamp =

√
Lξb
2

(73)

4) At capillary condensation h̄cap ≈ 2σ/L the damping
length scale and the parallel correlation length are equal:

ξdamp = ξ‖. (74)
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This scaling of the characteristic lengths leads to the follow-
ing amplitude ratio for the correlation function to its zeroth
moment

ξbL
Gv(0, L)

G̃v
0(0, L)

≈ 1− eE1(1)

2π
. (75)

This may be regarded as a signature of non-locality.
Our analysis has only considered Gaussian fluctuations

about the mean-field approximation. However, we believe
that our quantitative predictions remain valid even if one did
a more thorough renormalisation group analysis based on the
interfacial models. As remarked earlier, even though the up-
per critical dimension for complete wetting with short-ranged
forces is d∗ = 3, it is known that fluctuations do not alter the
mean-field expression for the parallel correlation length (12).
Since both the form of the exponential decay of correlations
and the expression for ξ‖ are not altered by interfacial fluctua-
tion effects in three dimensions, we believe all our predictions
are exact (for sufficiently large slit widths L).

We finish our article by making some brief remarks about
systems with long-ranged forces and also correlation func-
tions near (pseudo) capillary condensation in two dimensions:

Long-Ranged Forces - Let us imagine that instead of being
short-ranged, the attractive component of the fluid-fluid (and
wall-fluid) intermolecular potential decays as φ(r) ≈ −r−γ
where, of course, γ = 6 for dispersion forces. In the bulk,
this long-ranged decay, also describes the large-distance be-
haviour of the correlation function. It is possible to generalise
the above interfacial Hamiltonian analysis and determine how
the correlation function behaves in the slit geometry in the
presence of wetting films. Consider a local treatment first us-
ing the interfacial Hamiltonian (27) but now with a binding
potential appropriate for long-ranged forces. For the wall-
interface interaction we use the standard binding potential
[12–15]

W (`) = h̄`+ a`−p + · · · (76)

where p = γ − 4 (in three dimensions). To describe the inter-
interfacial interaction we now use

∆W (`2, `1) ∝ (`2 − `1)−p + · · · (77)

which is simply the excess free-energy per unit area of two
planar parallel interfaces separated by a distance `2 − `1.

Repeating our analysis, we find that this local treatment pre-
dicts that, at capillary condensation, the correlation decays as
G(0, L) ∼ L−q where the exponent q = (γ−2)2

γ−3 , i.e., an alge-
braic decay which is different to the intermolecular potential!
For example, q = 16/3 < 6 for dispersion forces. This result
is, in fact, wrong owing to the incorrect local description of
the interface-interface interaction. Recall that, for simple liq-
uids, it is often assumed that the contribution to the Helmholtz
functional F [ρ], arising from attractive intermolecular forces
is

Fatt =
1

2

∫∫
dr1dr2ρ(r1)ρ(r2)φ(r12). (78)

Applying a simple sharp-kink approximation to the density
profile in this expression leads directly to an interaction term

∆W [`1, `2] ∝ (79)

where, following the diagrammatic notation of [35], the upper
and lower black dots (which now lie off a surface) indicate an
integral over the volume of the upper and lower wetting layer.
The dashed line now represents the intermolecular potential
φ(r) rather than the Yukawa function K(r). If both `1 and `2
are planar ∆W [`1, `2] = A∆W (`1, `2) (where A is the area),
so that the local theory is recovered in the long-wavelength
limit. It is straightforward to show that the non-local interac-
tion (79) corrects the erroneous prediction of the local theory
and leads to

G(0, L) ≈ L−γ , (80)

i.e., the pair correlation decays algebraically with the same
exponent as the intermolecular potential. Wetting films
therefore do not strongly influence the decay of correlations
as they do for systems with short-ranged forces.

Two-Dimensional Systems - Finally, we mention that cor-
relation functions at two-dimensional capillary condensation
are also of interest. Consider, for example, a two dimensional
Ising strip of infinite length, finite width L and surface spins
fixed to +1 (infinite surface field). Since the system is only
infinite in one direction, it is pseudo-one dimensional and the
capillary condensation “transition” is rounded. However, for
wide slits, the cross-over from up-spin to down-spin phases is
sharp and occurs over an exponentially narrow region centred
around h̄cap [36]. It is still possible, therefore, to compare how
the correlation function between spins on either side of the slit
decays compared to that in the bulk.

Recall that exactly in zero bulk field, and at sub-critical
temperatures, the spin-spin correlation function decays as
G(r) ≈ e−κr/r2 where the inverse length scale is related to
the surface tension κ = 2βσ [37]. These features of the bulk
correlation function are very beautifully explained by Abra-
ham’s bubble model of correlations [38]. In this picture, cor-
relations in a phase of net down-spins (say) arise from bub-
bles of up-spins which enclose the two points being corre-
lated. The sum over all Boltzmann weighted bubble config-
urations determines the correlation function G(r) ∝ Σe−βE .
In Fig. 2 we schematically illustrate the lowest energy bubble
excitation in the down-spin and up-spin-like phases close to
condensation. For the down-spin phase, the bubble that con-
nects spins on either side of the slit has the form of a capil-
lary bridge made from two semi-circular menisci. For the up-
spin phase, on the other hand, a circular bubble of down-spins
stretches across the slit connecting the two correlated spins.
The energy cost of both these configurations is determined by
simple macroscopic considerations involving surface tensions
(conjugate to the length of the domain wall) and the coupling
to the bulk magnetic field (conjugate to the area of the exci-
tation). Precisely at capillary condensation the energy cost of
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FIG. 2. In 2D systems, spins on either side of the strip are corre-
lated when excitations corresponding to bubbles of the appropriate
metastable phase extend between the two spins. Left) The elemen-
tary excitation on the down (-) spin phase is a capillary bridge of up
(+) spins. Right) The elementary excitation on the up (+) spin phase
is a circular bubble of down spins.

both the bridge and circular bubble excitations are the same
and a simple calculation leads to the prediction

G(0, L) ≈ e−πκL/4 (81)

for both the up-spin and down-spin phase. Here, we have ig-
nored a possible multiplicative algebraic prefactor which de-
pends on L and is unimportant compared to the exponential
term. It is remarkable therefore that near to capillary conden-
sation the correlation function decays with an effective (in-
verse) length scale κeff = π

4κ. Since κeff < κ, it follows
that correlations are therefore enhanced in the slit geometry.
We believe this prediction can be checked numerically in the
Ising model using density-matrix renormalisation group meth-
ods [39, 40] or perhaps simulations.
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Appendix A: Correlation Functions within a Square-Gradient
DFT

In this appendix, we determine the pair-correlation function
across a capillary slit using a simple square gradient DFT. We
adopt a magnetic notation and consider the LGW free-energy
functional

F [m] =

∫
dr

{
1

2
(∇m(r))2 + φ(m(r))

}
(A1)

with two bounding walls in the z = 0 and z = L planes. The
local order parameter (magnetization) is denoted m(r), and
the potential φ(m(r)) has an appropriate double-well struc-
ture modelling bulk two-phase coexistence at subcritical tem-
peratures. We use the simplest possible choice, corresponding

to a double-parabola approximation

φ(m) =
κ2

2
(|m| −m0)2 − hm (A2)

where the bulk “liquid” and “gas” phases have order parame-
ters m0 and −m0 at zero field, respectively. We fix the mag-
netization at the walls to be m1, and note that the condition
m1 > m0 corresponds to complete wetting, θ = 0. The
equilibrium magnetization profile is determined by the Euler-
Lagrange equation

m′′(z) = φ′(m) (A3)

whose solution, for the double-parabola approximation, is
readily expressed in terms of elementary exponential func-
tions. The correlation functionG(r1, r2) = 〈m(r1)m(r2)〉−
〈m(r1)〉〈m(r2)〉 is determined from solution of the Ornstein-
Zernike equation [41]. In Fourier space, the parallel transform
G̃ satisfies[
−∂2

z1 + φ′′(m(z1)) + q2
]
G̃(z1, z2; q) = δ(z1 − z2) (A4)

where we have set kBT = 1. Again within double-parabola
approximation, this equation is readily solved since φ′′(m) =
κ2, provided m 6= 0 [31]. For the “vapour-like” phase, the
full solution for G̃ is

G̃v(z1, z2; q) =
2κq sinh(κq(L− z2)) sinh(κq z1) e−κq L(

κ2m0

|m′(`)|

)2

X1 − κq 2κ2m0

|m′(`)|X2 + κ2
qX3

(A5)
where

X1 = (1− e−2κq(L−`)) (1− e−2κq`)2

X2 = (1− e−2κq(L−`)) (1− e−2κq`)

X3 = 1− e−2κqL

Here, ` denotes the equilibrium position of the interface
(where m = 0) from the wall at z = 0. We now consider
the case of a very wide capillary slit, L � l � 1/κ, and
small magnetic fields, |h| � κ2m0. We can then approximate
X1 ≈ X2 ≈ X3 ≈ 1 and assume that the interface position is
located in the same position as in the semi-infinite geometry.
Also, setting z1 ≈ 1/κ and z2 ≈ L − 1/κ, the correlation
function across the slit reduces to

G̃v(0, L; q) ≈ (A6)
κqe
−κqL/2

κ2(1− 2κq/κ)− 2|h|
m0

(1− κq/κ) + |h|2
κ2m2

0
(3− 2κq/κ) + κ2

q

.

Expanding κq to order q4 in the denominator and q2 in the
numerator, this reduces to

G̃v(0, L; q) ≈ 2κ3σ2e−κL
e−q

2Lξb/2

(2|h|m0κ+ σ q2)2
. (A7)

where σ ≡ κm2
0 is the surface tension.
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