
HAL Id: hal-00686158
https://hal.science/hal-00686158v2

Submitted on 8 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust design optimization for uncertain complex
dynamical systems

Evangéline Capiez-Lernout, Christian Soize

To cite this version:
Evangéline Capiez-Lernout, Christian Soize. Robust design optimization for uncertain complex
dynamical systems. International Conference on Noise and Vibration Engineering (ISMA2006),
Katholieke Universiteit Leuven, Sep 2006, Leuven, Belgium. pp.Pages: 4041-4054. �hal-00686158v2�

https://hal.science/hal-00686158v2
https://hal.archives-ouvertes.fr


Robust design optimization for uncertain complex
dynamical systems

E. Capiez-Lernout, C. Soize
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Abstract
This paper deals with the design optimization problem of a structural-acoustic system in presence of un-

certainties. The uncertain vibroacoustic numerical model is constructed by using a recent nonparametric

probabilistic model which takes into account model uncertainties and data uncertainties. The formulation of

the design optimization problem includes the effect of uncertainties and consists in minimizing a cost func-

tion with respect to an admissible set of design parameters. The numerical application consists in designing

an uncertain master structure in order to minimize the acoustic pressure in a coupled internal cavity which

is assumed to be deterministic and excited by an acoustic source. The results of the design optimization

problem, solved with and without the uncertain numerical model show significant differences.

1 Introduction

The design of dynamical systems has become a challenge of interest in many industrial areas. The design

optimization is performed with a numerical model. It is known that for complex dynamical systems such as

structural-acoustic systems, the mathematical-mechanical modeling can induce important model uncertain-

ties and data uncertainties. Consequently, uncertainties have to be taken into account in the numerical model

which is used to perform design optimization. It should be noted that the quality of the design optimization

strongly depends on the probabilistic model of uncertainties. Design optimization for structural-acoustic

systems in a deterministic context (without uncertainties) can be found in [1, 2, 3, 4]. Nevertheless, there is

a priori no reason for which the performance for such an optimal system yields an optimal performance for

the real system manufactured from this optimal system because model and data uncertainties are not taken

into account in the numerical model used. For this reason, the formulation of the design optimization has to

contain the effect of uncertainties. There exists two classes of methodologies which allow the design opti-

mization in a probabilistic context to be solved: the reliability-based design optimization formulations (see

for example [5] in the context of aerostructural analysis and [6, 7] in the context of structural mechanics)

and the robust design optimization formulation (see for example [8, 9, 10] in the context of linear or non-

linear structural mechanics). This latter formulation allows the robustness of the design system with respect

to uncertainties to be improved. The cost function used in this formulation is not defined for the objective

performances of the design system but for the objective performances of the stochastic system modeling the

real system. The optimal design is the solution of a stochastic non-linear constrained optimization problem

solved by minimizing such a cost function with respect to an admissible set of design parameters. In struc-

tural dynamics, if several formulations for robust design optimization with respect to data uncertainties have

been proposed [11, 12], the concept of robust design optimization with respect to model uncertainties is rel-

atively recent [13]. Such an approach is based on the use of a recent nonparametric probabilistic approach of

model uncertainties [14, 15, 16, 17]. In particular, it should be noted that this probabilistic approach has been

experimentally and numerically validated for complex structural-acoustics systems [18, 19]. In the present

paper, a robust design optimization formulation with respect to model and data uncertainties is proposed in



the context of a structural-acoustic system in the low-frequency range. The paper is voluntary limited to

the design of a master system with stiffness uncertainties coupled to a deterministic internal acoustic cavity

which is excited by an acoustic source and whose noise level has to be reduced for the best. Clearly, the

extension to mass and damping uncertainties is straightforward. The paper compares the design points and

the performances of their corresponding real systems obtained with the deterministic design optimization

and with the robust design optimization.

2 Mean structural-acoustic system

The structural-acoustic system under consideration is made up of an internal acoustic cavity coupled with a

master structure which has to be designed (see Figure 1). Let r = (r1, . . . , rs) be the
 s-vector of the design

parameters (geometry, elasticity properties, boundary conditions, etc.). The vector of the design parameters

belongs to an admissible set R defined by the set of constraints prescribed by the design. For a given r in R,

the linear vibrations of the structural-acoustic system are studied around a static equilibrium state taken as a

natural state at rest.
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Figure 1: Structural-acoustic system

The master structure is constituted of a nonhomogeneous and anisotropic viscoelastic material without

memory, occupying a three-dimensional bounded domain ΩS(r) of the physical space ! 3 with boundary

∂ΩS(r) = ΓS,0(r) ∪ ΓS(r) ∪ Σ. The master structure is fixed on ΓS,0(r). The internal acoustic cavity

occupies a three-dimensional bounded domain ΩF of ! 3 with boundary ∂ΩF = ΓF ∪ Σ and is filled with a

dissipative acoustic fluid. It is coupled to the master structure through boundary Σ and has rigid wall condi-

tions on ΓF . Les nS(r) and nF be the outward unit normals to ∂ΩS(r) and ∂ΩF . Note that nS = −nF on

Σ. Let x be the generic point of ! 3. The equations are written in the frequency domain of analysis and the

low-frequency band of analysis is denoted as " . A formulation in terms of displacements field u(x, r, ω) for

the master structure and in terms of pressure field p(x, r, ω) for the internal acoustic cavity is chosen. For r

fixed in R and for ω fixed in " , the equations related to the mean structural-acoustic system [20] are written

as



−ω2 ρS u − div  S = fvol in ΩS(r) , (1)

u = 0 on ΓS,0(r) , (2)

 S · nS = fsurf on ΓS(r) , (3)

 S · nS = fsurf − p nS on Σ , (4)

 S = ! S : ε(u) + i ω " S : ε(u) , (5)
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in which  S(x, r, ω) is the stress tensor, ε(u) is the linearized strain tensor, ! S(x, r) and " S(x, r) are fourth-

order tensors, ρS(x, r) is the mass density of the master structure, fvol(x, r, ω) and fsurf(x, r, ω) are the body

force and the surface force fields for the master structure, ρF (x) is the mass density of the fluid, cF is the

sound velocity, τ is a coefficient due to the viscosity of the fluid and s(x, ω) is the acoustic source density

assuming that lim
ω 7→0

s(x, ω)

ω2
= lim

ω 7→0

∇ s(x, ω)

ω2
= lim

ω 7→0

∆ s(x, ω)

ω2
= 0.

The structural-acoustic system is then discretized with the finite element method assuming that the finite

element meshes of the master structure and of the internal acoustic cavity are compatible on the coupling

interface Σ.

A mean reduced matrix model of the structural-acoustic system is then constructed. Let u(r, ω) be the# nS -vector of the nS DOF (independent of r) of the master structure and let p(r, ω) be the
# nF -vector

corresponding to the finite element discretization of the pressure field of the internal acoustic cavity. For a

given r in R, let [ΦS(r)] be the nS × NS real matrix whose columns are the NS structural modes related to

the NS first positive structural eigenfrequencies of the master structure in vacuo. The generalized eigenvalue

problem of the internal acoustic cavity with fixed coupling interface yields one zero eigenvalue corresponding

to the constant pressure mode and nF − 1 acoustic eigenmodes [20]. Let [ΦF ] be the nF × NF real matrix

whose columns are (1) the constant pressure eigenmode and (2) the NF−1 acoustic eigenmodes related to the

NF − 1 first positive acoustic eigenfrequencies. Note that each eigenmode is normalized with respect to its

corresponding mass matrix. The projection basis allowing the mean reduced matrix model to be constructed

is given by
[

u(r, ω)
p(r, ω)

]

=

[

[ΦS(r)] [ $ ]
[ $ ] [ΦF ]

] [

q
S
(r, ω)

q
F
(r, ω)

]

, (9)

in which q
S
(r, ω) and q

F
(r, ω) are the

# NS -vector and the
# NF -vector of the generalized coordinates related

to the master structure and to the internal acoustic cavity and are solution of the matrix equation

[

[AS(r, ω)] [C(r)]
−ω2 [C(r)]T [AF (ω)]

] [

q
S
(r, ω)

q
F
(r, ω)

]

=

[

FS(r, ω)
FF (ω)

]

, (10)

in which the symmetric NS × NS complex matrix [AS(r, ω)] and the diagonal NF × NF complex matrix

[AF (ω)] are the generalized dynamical stiffness matrices of the master structure and of the internal acoustic

cavity respectively. The rectangular NS × NF real matrix [C(r)] is the generalized coupling matrix. In

Eq. (10) the
# NS -vector FS(r, ω) and the

# NF -vector FF (ω) are the generalized force vectors related to the

master structure and to the internal acoustic cavity respectively.



3 Design optimization of the structural-acoustic system without un-

certainties

In this Section, the design optimization problem is formulated assuming that there is no uncertainties in the

structural-acoustic system. This formulation will be used to compare the solution of the deterministic design

optimization problem with the solution obtained with the robust design optimization formulation which

includes the effects of uncertainties and which will be described in Section 5. Let w(r, ω) be the vector in
 k

of the observations of the mean model of the internal acoustic cavity, defined as a function of the acoustic

pressure such that

w(r, ω) = bω(p(r, ω)) , (11)

where bω is a given function from
 nF into

 k depending on the frequency ω. Recalling that the objective of

the paper is to design the master structure for minimizing the acoustic pressure in the internal acoustic cavity

over given frequency band ! , the cost function j(r) is formulated as follows

j(r) =
maxω∈ " ||w(r, ω)||

maxω∈ " ||w(r0, ω)||
, (12)

in which ||w(r, ω)|| is the Hermitian norm of vector w(r, ω) and where r0 ∈ R is the
 s-vector corresponding

to the initial value of the design parameter. The design optimization problem is formulated as the minimiza-

tion of the cost function j(r) with respect to the design parameter r in the admissible set R and is written as:

find rD in R such that

j(rD) ≤ j(r), for all r in R . (13)

4 Stochastic structural-acoustic system

As explained in the Introduction, the objective of this paper is to include the effects of data uncertainties and

model uncertainties in the formulation of the design optimization problem. In this Section, the nonparametric

probabilistic approach of uncertainties [14, 17] is briefly summarized. It is assumed that the structural stiff-

ness of the mean master model only contains model uncertainties and data uncertainties. The dynamic stiff-

ness reduced matrix of the mean master structure is written as [AS(r, ω)] = −ω2 [I ] + i ω [DS(r)] + [KS(r)]
in which [I] is the NS × NS identity matrix and where [DS(r)] and [KS(r)] are the NS × NS real sym-

metric and diagonal positive-definite generalized damping and stiffness matrices of the mean model of the

master system. The methodology of the nonparametric probabilistic approach consists in replacing matrix

[KS(r)] by a random matrix [KS(r)] such that E{[KS(r)]} = [KS(r)] in which E is the mathematical ex-

pectation and for which the probability distribution is known. The random matrix [KS(r)] is written as

[KS(r)] = [LKS
(r)]T [GKS

] [LKS
(r)] in which [LKS

(r)] is a NS × NS real diagonal matrix such that

[KS(r)] = [LKS
(r)]T [LKS

(r)] and where [GKS
] is a full random matrix with value in the set of all the

positive-definite symmetric NS × NS matrices. The probability model of random matrix [GKS
] is con-

structed by using the maximum entropy principle with the available information. All the details concerning

the construction of this probability model can be found in [14, 15]. The dispersion of the random matrix

[GKS
] is controlled by one real positive parameter δKS

called the dispersion parameter. In addition, there

exists an algebraic representation of this random matrix useful to the Monte Carlo numerical simulation.

In coherence with the notation of Section 2, let U(r, ω) be the
 nS -valued random vector of the nS DOF

and let P(r, ω) be the
 nF -valued random vector of the acoustic pressure. The equations of the stochastic

reduced structural-acoustic system constructed with the nonparametric approach of uncertainties are given

by
[

U(r, ω)
P(r, ω)

]

=

[

[ΦS(r)] [ # ]
[ # ] [ΦF ]

] [

QS(r, ω)
QF (r, ω)

]

, (14)



where QS(r, ω) and QF (r, ω) are the
 NS -valued random vector and the

 NF -valued random vector of

the generalized coordinates related to the master structure and to the internal acoustic cavity respectively,

solution of the random matrix equation

[

[AS(r, ω)] [C(r)]
−ω2 [C(r)]T [AF (ω)]

] [

QS(r, ω)
QF (r, ω)

]

=

[

FS(r, ω)
FF (ω)

]

, (15)

in which the matrix [AS(r, ω)] is such that [AS(r, ω)] = −ω2 [I] + i ω [DS(r)] + [KS(r)].

5 Design optimization of the structural-acoustic system with uncer-

tain stiffness in the master structure numerical model

In this Section, the model uncertainties and the data uncertainties are taken into account for the stiffness

operator of the master structure in the formulation of the design problem, using the nonparametric proba-

bilistic approach described in Section 4. This design optimization problem consists in minimizing a cost

function with respect to the admissible set R of the design parameter. Contrary to the design optimization

problem described in Section 3, the cost function is not defined for the performance of the mean model of

the structural-acoustic system but is defined with respect to the performance of the stochastic model of the

structural-acoustic system representing the real structural-acoustic system. The cost function is thus con-

structed with the uncertain numerical model introduced in Section 4. For r fixed in R, the
 k-valued random

vector W(r, ω) of the acoustic observation is introduced in coherence with the notation of Section 3. For

r fixed in R and for ω fixed in ! , let w+(r, ω) be the 99% quantile of random variable ||W(r, ω)||, such

that P(||W(r, ω)|| ≤ w+(r, ω)) = 0.99 [21], in which P denotes the probability. The cost function is then

written as

j(r) =
maxω∈ " w+(r, ω)

maxω∈ " ||w(r0, ω)||
. (16)

For given dispersion parameter δKS
, such a design optimization problem is formulated as: find rRD in R such

that

j(rRD) ≤ j(r), for all r in R . (17)

It should be noted that the formulation of such a robust design optimization is coherent with respect to

the deterministic design optimization problem given in Section 3, i.e. limδKS
7→0 rRD = rD. In addition,

Eqs. (16) and (17) mean that the acoustic level corresponding to the upper envelope of the confidence region

is minimized.

6 Application

6.1 Mean finite element model of the structural-acoustic system

The mean model of the structural-acoustic system is a heterogeneous system made up of a master struc-

ture coupled with an internal acoustic cavity. The master structure is located in the plane (OX,OY ) of a

cartesian coordinate system (O X Y Z). The master structure is made up of a rectangular frame with four

plates as shown in figure 2. The frame has length L1 = 1m, width L2 = 0.9m, is fixed at each of

its corner and is constituted of tubes with square section 0.08m × 0.08m and thickness 1 10−4 m. The

plates have length 0.5m, width 0.45m and constant thickness 0.0035m except for the plate coupled with

the internal acoustic cavity whose constant thickness is the design parameter r. Each substructure is con-

stituted of a homogeneous, isotropic elastic material with mass density 7800Kg.m−3, Poisson ratio 0.29
and Young modulus 2 1011 N.m−2. The damping part of the constitutive equation is modeled by a hys-

teretic model with a mean loss factor 0.02. The internal acoustic cavity is a six-sided box with no parallel



sides whose corners are located at points (0, 0, 0), (0.5, 0, 0), (0, 0.45, 0), (0.5, 0.45, 0), (0.1, 0.45, 0.12),
(0.4, 0.45, 0.12), (0.48, 0, 0.15) and (0, 0, 0.15). All the walls are rigid except the wall made up of the elas-

tic plate with constsnt thickness r. The bounded internal acoustic cavity is filled with an acoustic fluid with

mass density ρF = 1.16Kg.m−3, with sound velocity cF = 343m.s−1. Parameter τ in Eq. (6) is such

that τ(ω) =
0.001

ω
.

The mean finite element model of the master structure is constituted of 228 Euler beams elements with

two nodes (the tubes), 1440 bending thin plate elements with four nodes and has nS = 10927 DOF.

The mean finite element model of the internal acoustic cavity is constituted of 2160 acoustic finite el-

ements and has nF = 2793 DOF. The finite element mesh of the structural-acoustic system is shown

in Fig. 2. The internal acoustic cavity is excited by a localized deterministic acoustic source density,

which is constant in the frequency band  = [1060 , 1300]Hz. Let J be the set of indices correspond-

ing to the nodes of the finite element mesh of the internal cavity located at points (0.423, 0.450, 0.040),
(0.424, 0.425, 0.041), (0.445, 0.450, 0.040), (0.446, 0.425, 0.041), (0.41, 0.45, 0.06), (0.412, 0.425, 0.061),
(0.43, 0.45, 0.06), (0.432, 0.425, 0.061). The spatial distribution of the acoustic source is such that the vec-

tor of the generalized acoustic forces is written as FF (ω) = ! " (ω)
∑

j∈J [ΦF ]T ej in which e1, . . . , enF

are the canonical basis vectors of # nF and where ! " (ω) = 1 if ω ∈  and ! " (ω) = 0 if ω /∈  . The chosen

observation is the spectral acoustic energy w(r, ω) =
VF

ρF c2
F

p̃(r, ω)2 with p̃(r, ω)2 =
1

nF

nF
∑

j=1

|p
j
(r, ω)|2,

in which VF is the volume of the internal acoustic cavity and where p
j
(r, ω) is the component number j of

vector p(r, ω).

O X

Y

$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$%$

&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&

'%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%''%'%'%'%'%'%'%'%'%'%'%'%'%'%'%'



*%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%**%*%*%*%*%*%*%*%*%*%*%*%*%*%*%*

+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%++%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+%+

,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,%,

Y

Figure 2: Mean model of the master structure : plates (filled domain), frame (thick black line) (left) - mean

finite element model of the structural-acoustic system (right).

6.2 Estimation of the numerical parameters for the robust design optimization

In the present analysis, the initial structural-acoustic system corresponds to the value of the design parameter

r0 = 0.005m. The frequency band of analysis for which the acoustic level has to be reduced is  =
[1060 , 1300]Hz.

The Monte Carlo numerical simulation is chosen for solving the design optimization problem. The numer-

ical parameters related to the stochastic reduced equation Eq. (15) have to be fixed first. These numerical

parameters are the number NS of structural modes, the number NF − 1 of acoustic modes, which have to be

kept in the modal reduction and the number nr of realizations used in the Monte Carlo numerical simulation.

Consequently, a convergence analysis has to be carried out with respect to nr, NF and NS . The computation

is performed for the initial structural-acoustic system with dispersion parameter δKS
= 0.25. Let W 0(ω)



be the initial random observation defined by W 0(ω) = W (r0, ω) and corresponding to the random spec-

tral acoustic energy of the initial structural-acoustic system. The mean square convergence is analyzed by

studying the function (nr,NF ,NS) 7→ Conv(nr,NF ,NS) defined by

Conv2(nr,NF ,NS) =
1

nr

nr
∑

i=1

(

W 0
 ,∞(θi)

)2
, (18)

in which W 0 ,∞(θi) is the realization number i of the random variable W 0 ,∞ defined by W 0 ,∞ = maxω∈  W 0(ω).
Note that random variable W 0 ,∞ is computed with a reduced model of dimension NS + NF .
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Figure 3: Convergence analysis : graph of function nr 7→ Conv(nr, 51, 100) for the structural-acoustic

system with r0 = 0.005m and δKS
= 0.25.
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Figure 4: Convergence analysis : graph of function NS 7→ Conv(500,NF ,NS) for the structural-acoustic

system with r0 = 0.005m and δKS
= 0.25 and for NF = 11 (black line), NF = 41 (dark gray line) and

NF = 51 (light gray line).

Figure 3 displays the graph nr 7→ Conv(nr, 51, 100). It can be seen that a reasonable convergence is



reached for nr = 500. Figure 4 displays the graph NS 7→ Conv(500,NF ,NS) for several values of NF .

Convergence is reached for NF = 41 and NS = 90.

6.3 Specification of the design optimization

Below, the robust design optimization is carried out with δKS
= 0.25, NF = 41, NS = 90 and nr = 500.

The admissible set R for the design parameter r is defined such that r ∈ [0.005 , 0.007]m. Note that the

convergence of the results has been verified over admissible set R with these numerical parameters. Similarly

to the stochastic case, let w0(ω) = w(r0, ω) be the observation corresponding to the spectral acoustic

energy of the mean initial structural-acoustic system. Figure 5 shows the observation ω 7→ 10 log10(w
0(ω))

and the confidence region of random observation W 0(ω) obtained with a probability level Pc = 0.98.

It can be seen that the confidence region is narrow over frequency band  except for the frequency band

[1130 , 1160]Hz. Consequently the structural-acoustic system is robust with respect to model uncertainties

and to data uncertainties in frequency band  \ [1130 , 1160]Hz.
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Figure 5: Observation of the initial structural-acoustic system. Graph of function ν 7→ 10 log10(w
0(2πν))

(thin black line). Confidence region (gray region) of random observation W 0(2πν) obtained with a proba-

bility level Pc = 0.98. Horizontal axis is the frequency ν in Hz.

The design optimization problem consists in finding the design of the structural-acoustic system which allows

the spectral acoustic energy over frequency band  to be reduced for the best. It is assumed that the precision

of design parameter r is 50µm. The robust optimization problem is then solved by computing the cost

function with repect to admissible set R and by using Monte Carlo numerical simulation. For r in R, let

g ! (r) and greal! (r) be the acoustic gains defined with respect to the acoustic level corresponding to the upper

envelope of the confidence region of the initial structural-acoustic system and defined by

g ! (r) = 10 log10

(

w ! ,∞(r)

w+
! ,∞(r0)

)

, greal

! (r) = 10 log10

(

w+
! ,∞(r)

w+
! ,∞(r0)

)

, (19)

in which w ! ,∞(r) = maxω∈ ! w(r, ω) and w+
! ,∞(r) = maxω∈ ! w+(r, ω). For a given r in R, the scalar

g ! (r) represents the acoustic gain predicted with the mean model of the designed system and the scalar

greal! (r) represents the acoustic gain predicted with the stochastic model constructed from this mean model.

We are interested in comparing the acoustic gain obtained from the designed system solution of the design

optimization presented in Section 3 and from the designed system solution of the robust design optimization

presented in Section 5.



6.4 Robust design optimization over a narrow frequency band of analysis

The design analysis is limited to the narrow frequency band  1 = [1190 , 1260]Hz for which the ini-

tial structural-acoustic system is robust with respect to model uncertainties and to data uncertainties. Fig-

ure 6 displays the graphs r 7→ 10 log10(w
+

 1,∞(r)) and r 7→ 10 log10(w  1,∞(r)). It can be seen that

the deterministic design optimization and the robust design optimization yield optimal design parame-

ters rD = 5.9 10−3 m and rRD = 5.95 10−3 m. Let W D(ω) and W RD(ω) be the random observa-

tions defined by W D(ω) = W (rD, ω) and W RD(ω) = W (rRD, ω). Similarly to the stochastic case, let

wD(ω) = w(rD, ω) and wRD(ω) = w(rRD, ω).
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Figure 6: Comparison between the design optimization and the robust design optimization. Graph of func-

tions r 7→ 10 log10(w
+

 1,∞(r)) (black line) and r 7→ 10 log10(w  1,∞(r)) (gray line). Horizontal axis is

design parameter r.

Figure 7 shows the spectral acoustic energy ω 7→ 10 log10(w
D(ω)) and the confidence region of random

observation W D(ω) corresponding to the design optimization. It can be seen that the resonance peaking

of the spectral acoustic energy wD(ω) has been considerably reduced. Indeed, the value rD of the design

parameter yields a mean master structure for which there exists a structural mode which couples with the

acoustic mode of the internal acoustic cavity. The resonance peaking corresponds to an elasto-acoustic

mode for this mean structural-acoustic system. At this resonance, the transfer of energy from the internal

acoustic cavity to the master structure is optimal. From Fig. 6, it should be noted that this energy pumping

phenomenon is very sensitive to the design parameter.

Figure 7 displays a broad confidence region for random observation W D(ω). By comparing Fig. 5 and 7, it

can be seen that the robustness of the structural-acoustic system (corresponding to the design optimization

point rD) with respect to model and data uncertainties has drastically decreased in comparison to the robust-

ness of the initial structural-acoustic system. This lack of robustness is due to the amount of uncertainty

in the master structure. Indeed, the structural mode (related to the uncertain master structure with fixed

coupling interface), which is likely to couple with the acoustic mode of the internal cavity in vacuo is uncer-

tain. The width of the support corresponding to the probability distribution of its corresponding structural

eigenvalue is an increasing function of dispersion parameter δKS
. In the present case, the value of the disper-

sion parameter is relatively important (δKS
= 0.25), yielding realizations of the corresponding structural

eigenmode which couple weakly with the acoustic mode of the internal acoustic cavity. Consequently, such

realizations do not yield optimal elasto-acoustic coupling. The gain g real 1
(rD) predicted with the stochastic

model of the structural-acoustic system is lower than the gain g  1
(rD) predicted with the mean model of the



structural-acoustic system. We have greal 1
(rD) = 4.2 dB ≤ g  1

(rD) = 15.7 dB. In addition, it should be

noted that the deterministic design optimization yields a secondary optimum rD
′

for which greal 1
(rD

′

) < 0.
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Figure 7: Graphs of function ν 7→ 10 log10(w
D(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
D(2πν)) corresponding to the design optimization. Horizontal

axis is the frequency ν in Hz.
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Figure 8: Graphs of function ν 7→ 10 log10(w
RD(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
RD(2πν)) corresponding to the design optimization. Horizontal

axis is the frequency ν in Hz.

Figure 8 shows the spectral acoustic energy ω 7→ 10 log10(w
RD(ω)) and the confidence region of random ob-

servation W RD(ω) corresponding to the robust design optimization. Figure 6 shows that the design optimiza-

tion and the robust design optimization yields close design points. It can be seen that g  1
(rRD) < g  1

(rD)
which means that the performance of the designed system solution of the robust design optimization is not as

good as the performance of the designed system solution of the deterministic design optimization. Neverthe-



less, we have greal 1
(rRD) = 5.4 dB > greal 1

(rD). Clearly, the real structural-acoustic system manufactured

from the optimal designed system solution of the robust design optimization yields the most optimal perfor-

mance.

6.5 Robust design optimization over a broad frequency band of analysis

The robust design analysis is carried out over the broad frequency band ! = [1060 , 1300]Hz. Figure 9

displays the graphs r 7→ 10 log10(w
+

 ,∞(r)) and r 7→ 10 log10(w  ,∞(r)). It can be seen that rD =

5.45 10−3 m and rRD = 5.80 10−3 m. Figure 10 shows the spectral acoustic energy ω 7→ 10 log10(w
D(ω))

and the confidence region of random observation W D(ω) corresponding to the design optimization. Fig-

ure 11 shows the spectral acoustic energy ω 7→ 10 log10(w
RD(ω)) and the confidence region of random

observation W RD(ω) corresponding to the robust design optimization.
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Figure 9: Comparison between the design optimization and the robust design optimization. Graph of func-

tions r 7→ 10 log10(w
+

 ,∞(r)) (black line) and r 7→ 10 log10(w  ,∞(r)) (gray line). Horizontal axis is design

parameter r.

From figure 9, it can be seen that the design optimization yields g real (rD) = −1.57 dB. The comparison

between the confidence region of figure 4 and figure 10 shows that the resonance peaking number 2 is

drastically softened at the expense of the resonance peaking number 1. In the present case, since g real (rD) <
0, the deterministic optimization yields an erroneous optimal structural-acoustic system. The structural-

acoustic system which is manufactured with this erroneous optimal design yields an acoustic pressure level

which is contradictory to the prescribed objective. By comparing figure 4 and figure 11, it can be seen that

the robust design optimization yields greal (rRD) = 1.20 dB. These results show that the model uncertainties

and the data uncertainties have to be taken into account in the formulation of design optimization problems.
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Figure 10: Graphs of function ν 7→ 10 log10(w
D(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
D(2πν)) corresponding to the design optimization. Horizontal

axis is the frequency ν in Hz.
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Figure 11: Graphs of function ν 7→ 10 log10(w
RD(2πν)) (thin black line) and of the confidence region (gray

region) of random observation 10 log10(W
RD(2πν)) corresponding to the design optimization. Horizontal

axis is the frequency ν in Hz.

7 Conclusion

An approach which allows the robust design optimization problem to be formulated and solved in presence

of model uncertainties has been presented in the context of structural-acoustics. Model uncertainties are

taken into account with a nonparametric probabilistic approach. The numerical application shows that the

usual design optimization can produce a non optimal result. The proposed approach can be easily extended

to any complex uncertain structural-acoustic system.
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