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Abstract

This paper deals with the construction of a class of non Gaussian positive-definite matrix-valued

random fields whose mathematical properties allow elliptic stochastic partial differential operators

to be modeled. The properties of this class is studied in details and the numerical procedure for

constructing numerical realizations of the trajectories is explicitly given. Such a matrix-valued

random field can directly be used for modeling random uncertainties in computational sciences with

a stochastic model having a small number of parameters. The class of random fields which can be

approximated is presented and their experimental identification is analyzed. An example is given in

three-dimensional linear elasticity for which the fourth-order elasticity tensor-valued random field

is constructed for a random non homogeneous anisotropic elastic material.

Keywords: Random field; Non Gaussian; Uncertainties; Stochastic partial differential equations.

1. Introduction

The role played by the modeling of random uncertainties in computational sciences is become

really important for improving the predictability of the numerical simulations. The fundamental

mathematical tool used for performing such models is the probability theory which is very developed

and allows numerous problems to be studied in sciences: see for instance [9, 15, 28, 41, 42, 60] for the

theory of stochastic processes and random fields, [28, 29, 32, 33, 40, 51, 57, 60, 70, 86] for the theory

of stochastic integration, stochastic differential equations and diffusion processes, [52, 55, 56, 72]

for random signal processing, [4, 17, 35, 38, 64] for mathematical statistics. These mathematical
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tools have been intensively used in the context of physics and engineering [47, 71, 83], in particular

for random vibration, for probabilistic theory and stochastic methods in structural dynamics and in

structural acoustics, and for computational stochastic mechanics [31, 41, 45, 50, 59, 62, 63, 73].

In computational sciences, a predictivemodel is generally constructed by developing amathematical-

physical model of a designed system in order to predict the response of the real system which is

the system realized from the designed system. The mathematical-physical modeling process of the

designed system introduces two fundamental types of uncertainties: the data uncertainties and the

model uncertainties. Uncertainties have to be taken into account for improving the predictability of

the model.

In general, model uncertainties cannot be modeled by using the usual parametric probabilistic ap-

proach. Recently, a nonparametric probabilistic approach of model uncertainties has been proposed

in the context of dynamical systems using the random matrix theory and has been validated for

different applications [74−81, 7, 8, 13]. Such a nonparametric probabilistic approach is not directly

addressed in the present paper. Nevertheless, the class of random fields which is constructed below

corresponds to this nonparametric probabilistic approach.

Data uncertainties concern the parameters of the boundary value problem resulting from the

mathematical-physical modeling of the designed system and are, for instance, the geometrical

parameters, the boundary conditions, the coefficients of the partial differential operators of the prob-

lem, etc. The best approach to take into account data uncertainties is the parametric probabilistic

approach which consists in modeling the parameters of the model by random quantities such as

vector-valued random variables, vector-valued stochastic processes, tensor-valued random fields,

etc. In the last period of fifteen years, a lot of works have been carried out in this area, in particular

concerning the stochastic finite element method [14, 19−26, 39, 46, 69, 82, 84, 85, 87, 89] and other

numerical methods for solving stochastic boundary value problems [11, 43, 44]. Such a parametric

probabilistic approach is directly addressed in the present paper.

A great challenge is to construct stochastic representations of random parameters for which prob-

abilistic data are known and can be identified by using experimental data. Let us consider, for

instance, the following deterministic elliptic partial differential operator A on a bounded open do-

main Ω of  3, related to the three-dimensional linear elasticity for a non homogeneous anisotropic
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elastic material [10],

A v = −
3∑

i=1

ei
3∑

j=1

∂

∂xj

{ 3∑

k,h=1

cijkh(x) εkh(v)
}

, (1)

in which x = (x1, x2, x3) ∈ Ω ⊂  3, where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) are

the vectors of the canonical basis of  3 and where x 7→ v(x) = (v1(x), v2(x), v3(x)) is a twice

differentiable function from Ω into  3. The second-order strain tensor {εkh}kh is such that

εkh(v) =
1

2

(
∂vk

∂xh
+
∂vh

∂xk

)
.

The fourth-order real tensor cijkh(x) of the elastic coefficients verifies the usual property of symmetry

cijkh(x) = cjikh(x) = cijhk(x) = ckhij(x) , (2)

and for all symmetric second-order real tensors {zij}ij , the tensor cijkh(x) verifies the following

positive-definiteness property,

3∑

i,j,k,h=1

cijkh(x)zkhzij ≥ c0

3∑

i,j=1

z2
ij , (3)

in which c0 is a positive constant independent of x. The fourth-order tensor cijhk(x) is constituted of

21 algebraically independent coefficients depending on x. Let us assume that the material is random.

Consequently, for all x fixed in Ω, tensor {cijkh(x)}ijkh is replaced by a fourth-order tensor-valued

random variable {Cijkh(x)}ijkh whose mean value is {cijkh(x)}ijkh and which has to verify similar

equations to Eqs. (2) and (3) in a probabilistic sense which has to be defined. Nevertheless, for the

random case, the introduction of a deterministic constant c0 in Eq. (3) cannot always be justified

from a probabilisticmodeling point of view (this statement will be explained in Section 5.6). Finally,

x 7→ {Cijkh(x)}ijkh is a fourth-order tensor-valued random field indexed byΩ and is constituted of

21 mutually dependent random fields. The stochastic partial differential operator A associated with

operator A is such that

AV = −
3∑

i

ei
3∑

j=1

∂

∂xj





3∑

k,h=1

Cijkh(x) εkh(V)



 . (4)

It should be noted that the probability distribution of this fourth-order tensor-valued random field

(that is to say the system of the marginal probability distributions) is required because the unknown
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solution of the stochastic boundary value problem is a nonlinear mapping of the random field

x 7→ {Cijkh(x)}ijkh. If the usual parametric probabilistic approach is used, then the identification

of this probability model by using experimental data seems to be difficult.

This paper deals with a nonparametric construction of a random field such as x 7→ {Cijkh(x)}ijkh.

For that, an ensemble of non Gaussian positive-definite matrix-valued random fields is constructed

and studied which allows the fourth-order tensor-valued random field x 7→ {Cijkh(x)}ijkh to be

modeled. Then, such a tensor-valued random field will depend only on 4 scalar parameters: three

spatial correlation lengths and one parameter allowing the level of the random fluctuations to be

controlled. With such a model, the inverse problem related to the experimental identification seems

to be more feasible.

It should be noted that the probabilistic model of a random field such as x 7→ {Cijkh(x)}ijkh is

constructed by using the tensor-valued field x 7→ {cijkh(x)}ijkh of the associatedmeanmodel which

is such that the mathematical expectation of the random tensor {Cijkh(x)}ijkh is the deterministic

tensor {cijkh(x)}ijkh. For instance, for heterogeneous elasticmaterials, the known symmetries, such

as monoclinic symmetry, orthotropic symmetry, transverse square symmetry, transversaly isotropic

symmetry, isotropic symmetry, can be taken into account with the mean model represented by the

tensor {cijkh(x)}ijkh. Nevertheless, this paper is limited to the case for which the random tensor

fluctuation {Cijkh(x) − cijkh(x)}ijkh around the mean model is purely anisotropic, without any

symmetries.

Section 3 deals with the construction and the properties of the ensemble SFG+ of normalized homo-

geneous non Gaussian positive-definite matrix-valued random fields. This ensemble constitutes the

germs of the random fields in the ensemble SFE+ which is defined and studied in Section 4. This

ensemble is constituted of non normalized, non homogeneous and non Gaussian positive-definite

matrix-valued random fields. In Section 5, we present the nonparametric probability modeling of

elliptic stochastic partial differential operators on a bounded domain of  d, using the random fields

belonging to SFE+. Section 6 is devoted to finite element discretization of such an elliptic stochastic

partial differential operator on a bounded domain. Section 7 deals with the class of random fields

which can be approximated with the ensemble SFE+ and their experimental identification. Finally,

a numerical example is presented in Section 8.

2. Algebraic notations
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In this paper, the following algebraic notations are used.

Euclidean space. Let x = (x1, . . . , xn) be a vector in  n. The Euclidean space  n is equipped with

the usual inner product (x, y) 7→<x , y>=
∑n

j=1 xjyj and the associated norm ‖x‖ =<x , x>1/2.

Matrix sets. Let !n,m( ) be the set of all the (n×m) real matrices, !n( ) = !n,n( ) be the set

of all the square (n× n) real matrices, !S
n( ) be the set of all the (n× n) real symmetric matrices

and !+
n ( ) be the set of all the (n× n) real symmetric positive-definite matrices. We then have!+

n ( ) ⊂ !S
n( ) ⊂ !n( ) .

Norms and usual operators. We denote:

(i) The determinant of matrix [A ] ∈ !n( ) as det[A ] and its trace as tr[A ] =
∑n

j=1[A ]jj .

(ii) The transpose of [A ] ∈ !n,m( ) as [A ]T ∈ !m,n( ).

(iii) The operator norm of the matrix [A ] ∈ !n,m( ) as

‖A‖ = sup‖x‖≤1‖[A ] x‖ , x ∈  m ,

which is such that ‖[A ] x‖ ≤ ‖A‖ ‖x‖ , ∀x ∈  m. Ifm = n, then ‖A‖ = |λn| in which |λn| is the
largest modulus of the eigenvalues of [A ].

(iv) For [A ] and [B ] ∈ !n,m( ), we denote≪ [A ],[B ]≫= tr{[A ]T [B ]}and the Frobenius norm
(or Hilbert-Schmidt norm) ‖A‖F of [A ] is such that

‖A‖2
F =≪ [A ],[A ]≫= tr{[A ]T [A ]} =

n∑

j=1

m∑

k=1

[A ]2jk .

For [A ] in !n( ), we have

‖A‖ ≤ ‖A‖F ≤
√
n‖A‖ .

3. Construction and properties of the ensemble SFG+ of homogeneous and normalized non

Gaussian positive-definite matrix-valued random fields

3.1. Principle of the construction

Let n ≥ 2 and d ≥ 1 be two finite integers. In Refs. [74,75,81], we introduced the ensemble SG+

of the random matrices [Gn], defined on a probability space (Θ, T , P )with values in!+
n ( ), whose

probability distribution was constructed by using the entropy optimization principle [65,34,36,37]
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with the constraints defined by the following available information: [Gn] is a symmetric positive-

definite real random matrix whose mean value is the identity matrix and for which the second-order

moment of the random variable ‖[Gn]−1‖F is finite. The probability distribution P[Gn] on  +
n (!)

of such a random matrix [Gn] was explicitly constructed and depends only on dimension n and a

positive real parameter δ independent of n and allowing the dispersion of random matrix [Gn] to

be controlled. Consequently, for n fixed, SG+ is a one-parameter ensemble of random matrices

which differs from the usual ensemble of the random matrix theory [48]. In addition, it was proved

that a random matrix belonging to SG+ can be written as [Gn] = [Ln]T [Ln] in which [Ln] is an

upper triangular matrix with values in  n(!) whose elements are constituted of ν = n(n + 1)/2

independent random variables which can be written as a nonlinear transformation of ν independent

copies of a real-valued Gaussian random variable U with a zero mean and a variance equal to 1.

The ensemble SFG+ is then constructed as an ensemble of the random fields x 7→ [Gn(x)] defined

on (Θ, T , P ) indexed by !d, with values in SG+, for which the ν independent real-valued Gaussian

random variables are substituted by ν independent copies of a second-order homogeneous real-

valued Gaussian random field x 7→ U(x) indexed by !d, with E{U(x)} = 0, E{U(x)2} = 1 (E is

the mathematical expectation). The autocorrelation function RU ( ) = E{U(x+  )U(x)} defined
on !d has to be constructed and will depend only on d scalar parameters which will be the spatial

correlation lengths associated with each coordinate x1, . . . , xd. Clearly, for such a construction,

any autocorrelation functionRU ( ) could be chosen. However, the aurocorrelation functionRU ( )

introduced in Section 3.2.2 has been constructed (1) to obtain the simplest model, (2) to get the

required mathematical properties for random field U and (3) to be completely defined with the

smaller number of parameters (that is to say, by d scalar parameters).

Consequently, for n and d fixed, ensemble SFG+ will be a (1 + d)-parameters ensemble of random

fields. This ensemble is constituted of non Gaussian homogeneous and normalized random fields

indexed by !d, with values in  +
n (!), for which random field U has to be considered as the

“germ”. We will use this ensemble for constructing the ensemble SFE+ of non homogeneous (or

homogeneous) and non normalized random fields indexed by any open set Ω in !d and with values

in  +
n (!).

3.2. Set EU for germ U of ensemble SFG+

In this section, EU is defined as the set of all the random fields U having given properties. A random

field belonging to EU will be the germ of the ensemble SFG+. An explicit construction of a random
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field U in EU is given.

3.2.1. Definition of the set EU of random fields U

Let d ≥ 1 be an integer. Let U be any random field in the set EU . Then x 7→ U(x) is a second-

order mean-square continuous homogeneous Gaussian random field defined on probability space

(Θ, T , P ) indexed by  d, with values in  , such that
∀x ∈  d , E{U(x)} = 0 , E{U(x)2} = 1 . (5)

Its autocorrelation function  = (η1, . . . , ηd) 7→ RU ( ) = E{U(x+  )U(x)} which is continuous
from  d into  is assumed to be such that

RU ([C]  ̃) = 1 − ‖ ̃‖2 + o(‖ ̃‖2) for ‖ ̃‖ → 0 , (6)

in which [C] is an invertible (d × d) real matrix and where the change of variable  = [C]  ̃ has

been used.

From Eq. (6), it is deduced that, for ‖ ‖ → 0,

E{‖U(x+  ) − U(x)‖2} = 2(1 −RU ( )) ≤ c ‖ ‖2 ≤ c

| log(‖ ‖)|1+δ
,

with δ > 0 and c = 2‖[C]−1‖2. Using the Dudley lemma [16], it can be deduced that the random

fieldU has a continous versionwhichmeans that the trajectories of the randomfieldU are continuous

from  d in  almost surely, that is to say, {x 7→ U(x)} ∈ C0( d, ) almost surely. Finally, let

k = (k1, . . . , kd) be a point in  d and let dk = dk1 . . . dkd be the Lebesgue measure. It is assumed

that the power spectral density function k 7→ SU (k) from  d into  + such that

∀ ∈  d , RU ( ) =

∫ d

ei< ,k> SU (k) dk , (7)

has a compact support which is written as

suppSU = [−K1, K1] × . . .× [−Kd, Kd] , (8)

in which K1, . . . , Kd are positive real numbers. Consequently, the mean-square partial derivative

{Dp1...pd
U(x), x ∈  d} with

Dp1...pd
U(x) =

∂p1+...+pd

∂xp1

1 . . . ∂xpd

d

U(x)
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is a mean-square continuous random field existing for all integers p1 ≥ 0, . . . , pd ≥ 0. The spatial

correlation length LU
j of random field U relative to coordinate xj is then defined

LU
j =

∫ +∞

0

|RU (0, . . . , 0, ηj, 0, . . . , 0)| dηj . (9)

3.2.2. An example of random field U in EU

We consider a random field x 7→ U(x) in EU defined in Section 3.2.1, whose autocorrelation function

is written as

RU ( ) = ρ1(η1) × . . .× ρd(ηd) , (10)

in which, for all j = 1, . . . , d,

ρj(0) = 1 ; ρj(ηj) =
4L2

j

π2η2
j

sin2

(
πηj

2Lj

)
for ηj 6= 0 , (11)

and where L1, . . . , Ld are positive real numbers. Then, the power spectral density function k =

(k1, . . . , kd) 7→ SU (k) from  d into  + is written as

SU (k) = s1(k1) × . . .× sd(kd) , (12)

in which, for all j = 1, . . . , d, the function kj 7→ sj(kj) from  into  + is defined by

sj(kj) =
Lj

π
q(kjLj/π) . (13)

In Eq. (13), the function τ 7→ q(τ) is continuous from  into  +, has a compact support [−1 , 1] and

is such that

q(0) = 1 ; q(−τ) = q(τ) ; q(τ) = 1 − τ for τ ∈ [0 , 1] . (14)

q (τ )

τ

1

1−1 0

Fig. 1. Graph of function τ 7→ q(τ)
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Figure 1 displays the graph of function τ 7→ q(τ). Consequently, SU is a function with a compact

support

suppSU = [−K1, K1] × . . .× [−Kd, Kd] , Kj =
π

Lj
. (15)

The spatial correlation length LU
j relative to the coordinate xj and defined by Eq. (9) is such that

LU
j =

∫ +∞

0

ρj(ηj) dηj =
2π

2
sj(0) = Lj . (16)

Consequently, the parameters L1, . . . , Ld represent the spatial correlation lengths of random field

U . The autocorrelation function behavior at the origin is such that

RU ( ) = 1 − π2

12

(
η2
1

L2
1

+ . . .+
η2

d

L2
d

)
+ o

(
η2
1

L2
1

+ . . .+
η2

d

L2
d

)
for ‖ ‖ → 0 . (17)

Consequently, Eq. (6) is verified with [C] the invertible diagonal (d × d) real matrix such that

[C]jj = 2
√

3Lj/π.

3.2.3. Representation of the random field U adapted to its numerical simulation

In order to construct numerical simulations of randomfields belonging to SFG+, we need to introduce

an efficient representation of the germ U in EU . The spatial discretization of this random field will

directly be related to the spatial discretization of the elliptic stochastic partial differential operator

for which the germ U will be used. In general, the problem is setted on an arbitrary bounded domain

Ω of  d and the finite element method is utilized. Consequently, U has to be simulated in N given

points x1, . . . , xN in Ω ⊂  d (for instance located in the integrating points of the finite elements of

the finite element mesh of domain Ω). Clearly, the set of all these given points does not constitute

a structured mesh corresponding to a constant spatial sampling step in each direction. This means

that formulas based on the use of multidimensional Fast Fourier Transform (FFT) cannot be utilized.

We present below two representations. The first one is adapted to the case for which N is large and

the second one is adapted to small or moderate value of N . With respect to the numerical cost, the

most efficient representation is the second one, but this representation requires a large core memory.

With respect to the core memory, the most efficient representation is the first one, but the numerical

cost is higher than the second one.

(i) Representation adapted to a large value of N . The numerical simulation of homogeneous

Gaussian vector-valued random field was introduced by Shinozuka [66-68]. A detailed development

with additional mathematical properties related to convergence properties can be found in [54] and
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allows the following representation to be constructed. As an example, we consider the particular

random field U in EU defined in Section 3.2.2 for which the power spectral density function is

given by Eqs. (12) and (13). Let V = (U(x1), . . . , U(xN)) be the  N -valued random variable

corresponding to the spatial discretization of the random field U in points x1, . . . , xN in  d. Let

X1, . . . ,Xd be the d vectors in  N such that Xj = (x1
j , . . . , x

N
j ) for j = 1, . . . , d. Below, if

W = (W1, . . . ,WN ) is a vector in  N and, if α and β are two real numbers, then the notation

cos(α+βW)means the vector in N whose components are (cos(α+βW1), . . . , cos(α+βWN )).

Let p ≥ 1 be an integer and let ν = 2p. Let τ1, . . . , τν be the sampling points of the interval [−1 , 1]

with the constant step ∆ = 2/ν such that

τβ = −1 +

(
β − 1

2

)
2

ν
, β = 1, . . . , ν .

Let S1, . . . , Sν be the positive real numbers defined by

Sβ =
2

ν
q(τβ) , β = 1, . . . , ν ,

in which τ 7→ q(τ) is defined by Eq. (14). It should be noted that, for any j = 1, . . . , d, Sβ is equal

to (π∆/Lj)sj(kjβ) in which sj(kj) is defined by Eq. (13) and where kj1, . . . , kjν are such that

kjβ = πτβ/Lj with β = 1, . . . , ν. We then have the following vectorized ν-order approximation

Vν of the  N -valued Gaussian random variable V,

Vν =

ν∑

β1=1

. . .

ν∑

βd=1

√
2Sβ1

× . . .× Sβd
Zβ1...βd

cos
{
Φβ1...βd

+
π

L1
τβ1

X1 + . . .+
π

Ld
τβd

Xd
}

,

(18)

in which Zβ1...βd
=

√
− log Ψβ1...βd

and where {Φβ1...βd
,Ψβ1...βd

}β1...βd
is a set of independent

random variables,Φβ1...βd
being a uniform random variable on [0 , 2π] and Ψβ1...βd

being a uniform

random variable on [0 , 1].

For any ν = 2p fixed, Vν is a Gaussian vector and taking into account the properties of the random

field U given in Section 3.2.1, it can be proved [54] that:

(a) the covariance matrix of the random vector Vν defined by Eq. (18) converges to the covariance

matrix of the random vector V when ν goes to infinity.

(b) the sequence {Vν}ν of Gaussian random vectors defined by Eq. (18) converges in law to the

Gaussian random vector V when ν goes to infinity.

In practice, for fixed d ≥ 1, ν can be chosen as νd = 2m withm an integer such that m = r d and

consequently, we have ν = 2m/d. Therefore, ifm = 9 then νd = 512 and thus ν = 8 for d = 3 and

ν = 512 for d = 1.
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(ii) Representation adapted to a small or moderate value ofN . Let U be any random field in EU . A

direct representation could be used for constructing numerical simulations of the centered Gaussian

random vector V. The covariance matrix [CV] in  +
N (!) can easily be constructed by the formula

[CV]ij = RU (xi − xj) . (19)

Then, the Chowlesky factorization [CV] = [LV]T [LV] can be performed. Since V is a centered

Gaussian vector, we can write

V = [LV]T Ṽ , (20)

in which Ṽ = (Ṽ1, . . . , ṼN ) is an !N -valued random variable whose components Ṽ1, . . . , ṼN

are N independent normalized Gaussian random variables (E{Ṽj} = 0 and E{Ṽ 2
j } = 1 for

j = 1, . . . , N ). Equation (20) allows numerical simulations to be easily constructed. However,

such a formula required to construct matrix [CV] which is a full (N ×N) real matrix and requires

to perform a complete Chowlesky factorization of a full matrix. Nevertheless, the Chowlesky-

factorization step is processed outside the loop in which the construction of the realizations of the

Monte Carlo method are constructed. This means that the problem is related to the core memory and

not to the numerical cost. Finally, if the smaller diameter of domain Ω is very large with respect to

spatial correlation lengths LU
1 . . . , L

U
d , then a reduced representation of Eq. (20) can be constructed

in computing the dominant eigensubspace of the positive-definite symmetric real matrix [CV]. In

this case, the core memory problem disappears and the present method will be the most efficient.

3.3. Definition of ensemble SFG+

The ensemble SFG+ with the germ U belonging to EU is defined as the set of all the random fields

x 7→ [Gn(x)] defined on the probability space (Θ, T , P ), indexed by !d where d ≥ 1 is a fixed

integer, with values in +
n (!)where n ≥ 2 is another fixed integer and having a given mathematical

structure which has to be defined. Before completing this definition, a one-parameter family of

positive-valued function u 7→ h(α, u) on ! has to be defined and studied.

3.3.1. Defining the family of functions {u 7→ h(α, u)}α>0

Definition. Let α be a positive real number. The function u 7→ h(α, u) from ! into ]0 ,+∞[ is such

that Γα = h(α, U) is a gamma random variable with parameter α while U is a normalized Gaussian

random variable (E{U} = 0 and E{U2} = 1). Consequently, for all u in !, we have
h(α, u) = F−1

Γα
(FU (u)) , (21)
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in which u 7→ FU (u) = P (U ≤ u) is the cumulative distribution function of the normalized

Gaussian random variable U such that

FU (u) =

∫ u

−∞

1√
2π

e−t2/2 dt . (22)

The function p 7→ F−1
Γα

(p) from ]0 , 1[ into ]0 ,+∞[ is the reciprocical function of the cumulative

distribution function γ 7→ FΓα
(γ) from ]0 ,+∞[ into ]0 , 1[ of the gamma random variable Γα with

parameter α, which is such that, for all γ in  +,

FΓα
(γ) =

∫ γ

0

1

Γ(α)
tα−1 e−t dt , (23)

in which Γ(α) =
∫ +∞

0
tα−1 e−t dt is the gamma function [1].

Properties. For studying the mathematical properties of the random field x 7→ [Gn(x)], we need the

following properties related to the family of functions {u 7→ h(α, u)}α>0. It can easily be proved

that:

(i) For all α fixed in ]0 ,+∞[, u 7→ h(α, u) is a continuous function from  into ]0 ,+∞[, which is

such that

h(α, v) < h(α, u) ,
1

h(α, u)
<

1

h(α, v)
, for all −∞ < v < u < +∞ . (24)

(ii) For all u fixed in  , we have
h(β, u) < h(α, u) ,

1

h(α, u)
<

1

h(β, u)
, for all 0 < β < α < +∞ . (25)

(iii) Let α1, . . . , αn be the positive real numbers such that α1 > α2 > . . . > αn > 0. Figure 2

displays the graphs of functions u 7→ h(αj , u) and u 7→ 1/h(αj, u).
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25 h (α
j
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α
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2
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n

u
−2 −1 0 1 2
0

1

2 h (α
j
, u )

u

1 /

α n

α3

α2

α1

Fig. 2. Graph of function u 7→ h(αj , u) (left figure) and graph of function u 7→ 1/h(αj , u) (right

figure) for α1 > α2 > . . . > αn > 0.
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(iv) For u→ −∞, we have the following asymptotic behavior,

h(α, u) ∼
(
αΓ(α)√

2π

)1/α
1

(−u)1/α
exp

{
− u2

2α

}
. (26)

Equation (26) is proved by using the two following results [1],

u→ −∞ , FU (u) ∼ − 1

u

1√
2π

exp
{
−u

2

2

}
,

γ → 0 , FΓα
(γ) ∼ 1

Γ(α)

1

α
γα .

3.3.2. Defining the random field x 7→ [Gn(x)]

Let U be a given random field belonging to EU defined in Section 3.2.1 (for instance, the random

field U defined in Section 3.2.2).

(i) Let {Ujj′(x), x ∈  d}1≤j≤j′≤n ben(n+1)/2 independent copies of the random field {U(x), x ∈ d}. Consequently, for all x in  d, we have

E{Ujj′(x)} = 0 , E{Ujj′(x)
2} = 1 , 1 ≤ j ≤ j′ ≤ n , (27)

and for all 1 ≤ j ≤ j′ ≤ n, the random field x 7→ Ujj′(x) is completely defined.

(ii) Let δ be the real number, independent of x and n, such that

0 < δ < δn , δn =
√

(n+ 1)(n+ 5)−1 < 1 . (28)

This parameter will allow the dispersion of the random field to be controlled (see Section 3.4(v)).

(iii) The random field x 7→ [Gn(x)] is then defined as follows: for all x in  d,

[Gn(x)] = [Ln(x)]T [Ln(x)] , (29)

in which [Ln(x)] is an upper triangular random matrix with values in !n( ) such that:

(a) The n(n+ 1)/2 random fields x 7→ [Ln(x)]jj′ for 1 ≤ j ≤ j′ ≤ n, are independent.

(b) For j < j′, the real-valued random field x 7→ [Ln(x)]jj′ indexed by  d is defined by

[Ln(x)]jj′ = σnUjj′(x) , (30)

in which σn is such that

σn = δ (n+ 1)−1/2 . (31)
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(c) For j = j′, the positive-valued random field x 7→ [Ln(x)]jj indexed by  d is defined by

[Ln(x)]jj = σn

√
2h(αj, Ujj(x)) , (32)

in which, for j = 1, . . . , n,

αj =
n+ 1

2δ2
+

1 − j

2
, (33)

and where h(α, u) is defined by Eq. (21). Equations (28) and (33) yield

α1 > α2 > . . . > αn > 3 . (34)

3.4. Basic properties of the random field x 7→ [Gn(x)]

The properties given in Sections (i) to (vi), (viii) and (xi) below are directly deduced from Refs.

[74,75]. The other properties can easily be proved.

(i) Positiveness. For all x in  d, random matrix [Gn(x)] is a random variable with values in !+
n ( ),

[Gn(x)] ∈ !+
n ( ) a.s .

(ii) Second-order random field. Random field x 7→ [Gn(x)] is second-order which means that

E{‖[Gn(x)]‖2
F} < +∞ , ∀x ∈  d . (35)

(iii) Homogeneousness. Random field x 7→ [Gn(x)] is homogeneous on  d for the translation

x 7→ x +  in  d.

(iv) Mean function. The mean function x 7→ [Gn(x)] = E{[Gn(x)]} from  d into !+
n ( ) is such

that

[Gn(x)] = [In] , ∀x ∈  d , (36)

in which [In] is the identity matrix in !n( ).
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(v) Dispersion parameter. Parameter δ which is independent of x and n is such that

δ =

{
E{‖ [Gn(x)] − [Gn(x)] ‖2

F}
‖ [Gn(x)] ‖2

F

}1/2

=

{
1

n
E{‖ [Gn(x)] − [In] ‖2

F}
}1/2

. (37)

This equation shows that parameter δ allows the dispersion level of random field x 7→ [Gn(x)] to be

controlled. From Eq. (37), it can be deduced that

E{‖ [Gn(x)] ‖2
F} = n (δ2 + 1) . (38)

Equation (38) is coherent with Eq. (35) and shows that E{‖ [Gn(x)] ‖2
F} → n when δ → 0. In fact,

it can be proved that [Gn(x)] → [In] in mean-square sense when δ → 0.

(vi) One-order marginal probability distribution. For all x fixed in  d, let P[Gn(x)]be the probability

distribution of random matrix [Gn(x)] (that is to say, the one-order marginal probability distribution

of random field x 7→ [Gn(x)]). From Refs. [74,75], it can directly be deduced that this probability

distribution on !+
n ( ) is defined by a probability density function [Gn] 7→ p[Gn(x)]([Gn]) from!+

n ( ) into  +, with respect to the measure d̃Gn on !S
n( ) defined by

d̃Gn = 2n(n−1)/4 Π1≤i≤j≤n d[Gn]ij , (39)

in which d[Gn]ij is the Lebesgue measure on  . We then have

P[Gn(x)] = p[Gn(x)]([Gn]) d̃Gn , (40)

with the usual normalization condition
∫ +

n (!)

p[Gn(x)]([Gn]) d̃Gn = 1 . (41)

The probability density function p[Gn(x)]([Gn]) is then written as

p[Gn(x)]([Gn]) = " +
n (!)([Gn]) × cn ×

(
det [Gn]

)bn × exp {−an tr [Gn]} , (42)

in which an = (n+ 1)/(2δ2), bn = an(1 − δ2), " +
n (!)([Gn]) is equal to 1 if [Gn] ∈ !+

n ( ) and

is equal to zero if [Gn] /∈ !+
n ( ) and where positive constant cn is such that

cn =
(2π)−n(n−1)/4 anan

n

Πn
j=1Γ(αj)

, (43)

in which αj is given by Eq. (33). Equation (42) clearly shows that, for all x in  d, the random

variables [Gn(x)]ij for all 1 ≤ i ≤ j ≤ n are dependent. In addition, since (n + 1)/δ2 is

generally not an integer, then the probability distribution defined by Eqs. (40)-(43) is generally not

a multivariate Wishart distribution [4,17].

C. Soize - CMAME - revised version December 2004 15



(vii) System of marginal probability distributions. Let  = {ujj′ , 1 ≤ j ≤ j′ ≤ n} be a vector in !ν

with ν = n(n+ 1)/2. For all x fixed in !d, let "(x) = {Ujj′(x), 1 ≤ j ≤ j′ ≤ n} be the Gaussian

random vector with values in !ν in which Ujj′(x) is defined in Section 3.3.2(i). From Eqs. (29) to

(33) and (21), it can be deduced that there exists a continuous nonlinear mapping  7→ [gn( )] from!ν into #+
n (!) such that

[Gn(x)] = [gn("(x))] , ∀x ∈ !d . (44)

Let x1, . . . , xN be any finite and not ordered subset of !d. Then, the joint probability distribution

on #+
n (!)× . . .×#+

n (!) (N times) of the random matrices ([Gn(x1)], . . . , [Gn(xN )]) is the image

of the joint Gaussian probability distribution on !ν × . . . × !ν (N times) of the random vectors

("(x1), . . . ,"(xN)) by the continuous nonlinear local mapping ( 1, . . . ,  N ) 7→ [GN ( 1, . . . ,  N)]

from !ν × . . .× !ν into #+
n (!) × . . .×#+

n (!) such that

[GN ( 1, . . . ,  N)] = ([gn( 1)], . . . , [gn( N )]) . (45)

Consequently, the system of the marginal probability distributions of random field x 7→ [Gn(x)] is

well defined but cannot be explicitly calculated. Only the one-order marginal probability distribution

is explicitly calculated (see Eqs. (40) to (43)). The random field x 7→ [Gn(x)] is non Gaussian. Nev-

ertheless, since the nonlinear mapping ( 1, . . . ,  N ) 7→ [GN ( 1, . . . ,  N )] is explicitly known, any

realization ([Gn(x1, θ)], . . . , [Gn(xN , θ)]) for θ ∈ Θ of random matrices ([Gn(x1)], . . . , [Gn(xN )])

can easily be computed by using Section 3.2.3.

(viii) Invertibility. There exists a positive constant c0 independent of n and independent of x but

depending on δ, such that

E{‖[Gn(x)]−1‖2} ≤ c0 < +∞ , ∀n ≥ 2 , ∀x ∈ !d . (46)

From the inequality ‖A‖F ≤ √
n‖A‖ for [A ] in #n(!) (see Section 2), it can be deduced that

E{‖[Gn(x)]−1‖2
F } ≤ cn < +∞ , ∀n ≥ 2 , ∀x ∈ !d , (47)

in which cn = n c0. Since [Gn(x)] belongs to #+
n (!) almost surely, then [Gn(x)]−1 exists almost

surely. However, since almost sure convergence does not imply mean-square convergence, then

Eq. (46) cannot simply be deduced. In fact, Eq. (46) is proved by using Eq. (42) (see Ref. [75]) and

means that n 7→ E{‖[Gn(x)]−1‖2} is a bounded function (the proof of this result is difficult enough

to perform).
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(ix) Mean-square continuity. Since function  7→ [gn( )] defined by Eq. (44) is continuous from!ν into "+
n (!) and since x 7→ #(x) is a mean-square continuous random field on !d (see Section

3.2.2(i)), it can be deduced that random field x 7→ [Gn(x)] = [gn(#(x))] is mean-square continuous

on !d.

(x) Continuous trajectory. Since function  7→ [gn( )] is continuous and since the trajectories of

random field x 7→ #(x) are continuous from!d into!ν almost surely (see Section 3.2.1), we directly

deduce that the trajectories of random field x 7→ [Gn(x)] are continuous from !d into "+
n (!) almost

surely.

(xi) Fourth-order tensor-valued covariance function. Taking into account Eq. (36) and since the

random field x 7→ [Gn(x)] is homogeneous and mean-square continuous on !d, the fourth-order

tensor-valued covariance function  7→ CGn( ) defined for all  in !d by

CGn( ) = E{([Gn(x +  )] − [Gn(x +  )]) ⊗ ([Gn(x)] − [Gn(x)])}

= E{([Gn(x +  )] − [ In]) ⊗ ([Gn(x)] − [ In])} , (48)

does not depend on x and is a continuous function on !d. From [74], it can be deduced that the

covariance tensor CGn(0) of random matrix [Gn(x)] which is such that

CGn

jk,j′k′(0) = E
{
([Gn(x)]jk − [In]jk)([Gn(x)]j′k′ − [In]j′k′)

}
, (49)

is written as

CGn

jk,j′k′(0) =
δ2

n+1

{
[In]j′k [In]jk′ + [In]jj′ [In]kk′

}
. (50)

In particular, the variance V Gn

jk of the random variable [Gn(x)]jk is such that

V Gn

jk = CGn

jk,jk(0) =
δ2

n+1
(1 + [In]jk) . (51)

(xii)Fourth-order tensor-valued spectral measure. Since random field x 7→ [Gn(x)] is homogeneous

and mean-square continuous on!d, there is a fourth-order tensor-valued spectral measureMGn(dk)

on !d which is such that, for all  in !d,

CGn( ) =

∫ d

ei< ,k>MGn(dk) . (52)
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It can be verified that the function  7→ CGn( ) is integrable on  d. Therefore, we can write

MGn(dk) = SGn(k) dk in which the fourth-order tensor-valued spectral density function k 7→
SGn(k) is a continuous function on  d given by

SGn(k) =
1

(2π)d

∫ d

e−i<k, > CGn( ) d . (53)

(xiii) Spatial correlation lengths. Let  = (η1, . . . , ηd) 7→ rGn( ) be the function defined from  d

into  by

rGn( ) =
1

δ2 ‖[Gn(x)]‖2
F

trE
{
([Gn(x+  )] − [Gn(x+  )]) ([Gn(x)] − [Gn(x)])

}

=
1

δ2

{ 1

n
E{tr{[Gn(x +  )] [Gn(x)]}

}
− 1

}
. (54)

Clearly (in particular due to Eq. (38)), it can be seen that

rGn(0) = 1 , rGn(− ) = rGn( ) .

For all j = 1, . . . , d, the spatial correlation length LGn

j of random field x 7→ [Gn(x)], relative to

coordinate xj , can be defined by

LGn

j =

∫ +∞

0

|rGn(0, . . . , 0, ηj, 0, . . . , 0)| dηj . (55)

Example. Let us consider the case n = 6, d = 1, δ = 0.5, L1 = 1 in which L1 is defined in Section

3.2.1. In Eq. (54), the mathematical expectation is estimated with 20 000 realizations and Eq. (20)

is used with N = 100. The correlation length LGn

1 is calculated with Eq. (55) in approximating the

interval [0 ,+∞[ by the interval [0 , 20[ and yields LGn

1 = 1.0614. Figure 3 displays the graph of

the function η1 7→ rGn(η1).
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Fig. 3. Graph of function η1 7→ rGn(η1) for the case n = 6, d = 1, δ = 0.5, L1 = 1.
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(xiv) Independence of the construction with respect to the choice of the Cartesian coordinate

systems. In order to prove the independence of the proposed construction of the random field

x 7→ [Gn(x)] with respect to the choice of the Cartesian coordinate system, we have to prove that,

for all x fixed in  d, the probability distribution of random matrix [Gn(x)] is invariant under real

orthogonal transformations. Let [Φn] be any real orthogonal matrix belonging to !n( ) such that

[Φn]T [Φn] = [Φn] [Φn]T = [ In]. Let [G′
n(x)] be the random matrix with values in !+

n ( ) defined

by [G′
n(x)] = [Φn]T [Gn(x)] [Φn]. We then have

[Gn(x)] = [Φn] [G′
n(x)] [Φn]T .

The probability density function p[G′

n(x)]([G
′
n]) of random matrix [G′

n(x)] with respect to the volume

element d̃G′
n (see Eq. (39)) is such that

p[G′

n(x)]([G
′
n]) d̃G′

n = p[Gn(x)]([Gn]) d̃Gn ,

in which p[Gn(x)]([Gn]) is defined by Eq. (42). Let [Gn] and [G′
n] be such that [Gn] =

[Φn] [G′
n] [Φn]T . Since [Φn] is a real orthogonal matrix, it can be deduced that d̃Gn = d̃G′

n,

det [Gn] = det [G′
n] and tr [Gn] = tr [G′

n]. From Eq. (42), we deduce that

p[Gn(x)]([Gn]) d̃Gn = p[Gn(x)]([G
′
n]) d̃G′

n ,

and consequently, we have

p[G′

n(x)]([G
′
n]) d̃G′

n = p[Gn(x)]([G
′
n]) d̃G′

n ,

which proves the invariance of random matrix [Gn(x)] under real orthogonal transformations.

3.5. Fundamental property of the random field x 7→ [Gn(x)]

Let Ω be a bounded open domain of  d and let Ω = Ω ∪ ∂Ω be its closure in which ∂Ω is the

boundary of Ω. We then have

E
{
(sup

x∈Ω ‖ [Gn(x)]−1‖)2
}

= c2G < +∞ , (56)

in which sup is the supremum and where 0 < cG < +∞ is a finite positive constant.

Remark. Let us consider the case d = 1 with Ω be a compact interval of  . Since the

stochastic process {‖Gn(x)−1‖ , x ∈ Ω ⊂  } is not a continuous local martingal with respect
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to an increasing family of σ-fields, the following fundamental Doob maximal inequality [15,53],

E
{

sup
x∈Ω ‖ [Gn(x)]−1‖2

}
≤ 4E

{
‖ [Gn(x)]−1‖2

}
cannot be used. In addition, we have to con-

sider the non Gaussian random field case d ≥ 2. Consequently, there is no known result allowing a

direct proof of Eq. (56) to be obtained and a proof of this fundamental result has to be given.

Proof of Eq. (56). Let x be any point fixed in  d. The random eigenvalues of the ran-

dom upper triangular matrix [Ln(x)] are [Ln(x)]11, . . . , [Ln(x)]nn. Thus, the random eigen-

values of the random matrix [Ln(x)]−1 are 1/[Ln(x)]11, . . . , 1/[Ln(x)]nn and, since [Ln(x)]jj

is a positive-valued random variable, then the operator norm ‖[Ln(x)]−1‖ of random matrix

[Ln(x)]−1 can be written as ‖[Ln(x)]−1‖ = supj=1,...,n {1/[Ln(x)]jj}. Using Eq. (32) yields

‖[Ln(x)]−1‖2 = 1
2σ2

n
supj=1,...,n{1/h(αj, Ujj(x))}. From Eq. (29), we deduce that [Gn(x)]−1 =

[Ln(x)]−1[Ln(x)]−T and consequently, ‖ [Gn(x)]−1‖ ≤ ‖[Ln(x)]−1‖2. We can then conclude that,

for all x fixed in  d,

‖ [Gn(x)]−1‖ ≤ 1

2σ2
n

supj=1,...,n

{
1

h(αj , Ujj(x))

}
. (57)

For all j = 1, . . . , n, let Infj be the real-valued random variable defined by

Infj = inf
x∈Ω Ujj(x) . (58)

From Eq. (34), we deduce that, for all j = 1, . . . , n− 1, we have αj > αn and using Eq. (25) yields

1/h(αj, Ujj(x)) < 1/h(αn, Ujj(x)). Finally, from Eqs. (24) and (58), it can be deduced that,

∀ x ∈ Ω , ∀ j = 1, . . . n ,
1

h(αj , Ujj(x))
≤ 1

h(αn, Infj)
. (59)

Equations (57) and (59) yield

(
sup

x∈Ω ‖ [Gn(x)]−1‖
)2 ≤ sup{B1, . . . , Bn} , (60)

in which, for all j = 1, . . . , n, Bj is the positive-valued random variable defined by

Bj =
1

4σ4
n

1

h(αn, Infj)2
. (61)

Since random fields U11, . . . , Unn are independent copies of random field U (see Section 3.3.2),

from Eq. (58), we deduce that Inf1, . . . , Infn are n independent copies of the real-valued random

variable Inf defined by

Inf = inf
x∈Ω U(x) , (62)
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in which U is the random field defined in Section 3.2.1. Therefore, random variables B1, . . . , Bn

are n independent copies of the positive-valued random variable B defined by

B =
1

4σ4
n

1

h(αn, Inf)2
. (63)

Let FB(b) = P{B ≤ b} be the cumulative distribution function of random variable B. Let M be

the positive-valued random variable defined by

M = sup{B1, . . . , Bn} . (64)

Therefore, the cumulative distribution function FM (b) = P{M ≤ b} of random variableM is such

that FM (b) = P{B1 ≤ b, . . . , Bn ≤ b} = FB(b)n because B1, . . . , Bn are n independent copies

of random variable B. We then have E{M} =
∫ +∞

0
b dFM(b) = n

∫ +∞

0
b FB(b)n−1 dFB(b) and

since FB(b) ≤ 1, we have FB(b)n−1 ≤ 1 and consequently, E{M} ≤ nE{B}. Using Eqs. (60)

and (64), it can be deduced that

E
{
(sup

x∈Ω ‖ [Gn(x)]−1‖)2
}
≤ nE{B} . (65)

Let pInf(u) be the probability density function with respect to du of the real-valued random variable

Inf defined by Eq. (62). From Eq. (63), it is deduced that

E{B} =
1

4σ4
n

∫ 1

h(αn, u)2
pInf(u) du . (66)

Clearly, since u 7→ 1/h(αn, u)
2 is a positive-valued decreasing function (see Eq. (24)), if for b≫ 1,

Hb =

∫ −b

−∞

1

h(αn, u)2
pInf(u) du , (67)

is finite, then we will have proved that Eq. (56) holds. Therefore, if Hb < +∞ for b ≫ 1, then the

proof will be complete. Since x 7→ U(x) is a centered Gaussian field, the random field x 7→ −U(x)

is isonomic to random field x 7→ U(x). It can then easily be verified that the probability density

function u 7→ pSup(u) with respect to du of the random variable

Sup = sup
x∈Ω U(x) , (68)

is such that pSup(u) = pInf(−u). Then, Eq. (67) can be rewritten as

Hb =

∫ +∞

b

1

h(αn,−u)2
pSup(u) du . (69)
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Since U is a Gaussian random field on  d, some results concerning the probability distribution of

random variable Sup can be found in Refs. [2,3,5,12,18,53,90]. Taking into account the property

defined by Eq. (6), we have (see Ref. [53], page 106), P{Sup > u}u→+∞ ∼ c u3 ψ(u) (1 + o(1)),

in which c is a positive constant and whereψ(u) =
∫ +∞

u
p(t) dtwith p(t) = (2π)−1/2 exp(−t2/2).

For u→ +∞, we have [1], ψ(u) ∼ u−1p(u) and thus,

P{Sup > u}u→+∞ ∼ c u2 p(u) . (70)

Let ψSup(u) = P{Sup > u}. Since dψSup(u) = −pSup(u) du, Eq. (69) can be rewritten as

Hb = −
∫ +∞

b
f(u) dψSup(u) du in which f(u) = h(αn,−u)−2. Since αn > 2 (see Eq. (34))

and from Eq. (26), it can be deduced that limu→+∞{f(u)ψSup(u)} = 0 and that, for all β > 0,

limu→+∞{uβf(u) p(u)} = 0. An integration by parts yields Hb = f(b)ψSup(b) +
∫ +∞

b
ψSup(u)

df(u). Using Eq. (70), we deduce that if b → +∞ then for u ∈ [b ,+∞[, we have ψSup(u) ∼
c u2 p(u) and thus, Hb ∼ f(b)ψSup(b) + c

∫ +∞

b
u2 p(u) df(u). A new integration by part al-

lows us to write, for b → +∞, Hb ∼ f(b)ψSup(b) − c b2 f(b) p(b) − 2c
∫ +∞

b
u f(u) p(u) du +

c
∫ +∞

b
u3 f(u) p(u) du. Clearly, Hb will be finite for b → +∞, if H̃b =

∫ +∞

b
u3 f(u) p(u) du is

finite. Using Eq. (26) and since αn > 2, we deduce that H̃b is finite for b → +∞. This completes

the proof.

4. Construction and properties of the ensemble SFE+ of nonGaussian positive-definite matrix-

valued random fields

4.1. Definition of the ensemble SFE+

Let d ≥ 1 and n ≥ 2 be two fixed integers. Let Ω be an open (or closed) bounded (or not) domain

of  d (we can have Ω =  d). Let x 7→ [an(x)] be a matrix-valued field from Ω into !+
n ( ), i.e.,

∀ x ∈ Ω ⊂  d , [an(x)] ∈ !+
n ( ) . (71)

Then, for all x fixed in Ω, there is an upper triangular invertible matrix [Ln(x)] in !n( ) corre-

sponding to the Cholesky factorization [27] of matrix [an(x)], such that

[an(x)] = [Ln(x)]T [Ln(x)] . (72)

It is assumed that the matrix-valued field x 7→ [an(x)] defined on Ω is such that:
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(i) There is a real positive constant 0 < c0 < +∞ independent of x such that, for all x in Ω,

∀ y ∈  n , < [an(x)] y , y> ≥ c0 ‖y‖2 . (73)

(ii) There is a real positive constant 0 < c1 < +∞ independent of x such that

∀ x ∈ Ω ,
√
c0 ≤ ‖[Ln(x)]‖ ≤ √

c1 , (74)

the left inequality resulting from Eqs. (72) and (73). For all y in  n, we have < [an(x)] y , y>=

‖[Ln(x)] y‖2 ≤ ‖[Ln(x)]‖2 ‖ y‖2 and consequently, for all x in Ω,

∀ y ∈  n , < [an(x)] y , y> ≤ c1 ‖y‖2 . (75)

(iii) It should be noted that ‖[an(x)]‖ ≤ ‖[Ln(x)]‖2 and thus, using Eq. (74) and the inequality

‖[an(x)]‖F ≤ √
n ‖[an(x)]‖ yield

∀ x ∈ Ω , ‖[an(x)]‖ ≤ c1 , ‖[an(x)]‖F ≤
√
n c1 . (76)

Equation (76) means that the matrix-valued field x 7→ [an(x)] is a bounded function on Ω.

(iv) The ensemble SFE+ is then defined as the set of all the random fields x 7→ [An(x)] defined on

probability space (Θ, T , P ), indexed by Ω, with values in !+
n ( ), such that

∀ x ∈ Ω , [An(x)] = [Ln(x)]T [Gn(x)] [Ln(x)] , (77)

in which x 7→ [Gn(x)] is the random field in SFG+ defined on (Θ, T , P ), indexed by  d and with

values in !+
n ( ) (see Section 3.3.2).

4.2. Basic properties of the random field x 7→ [An(x)]

The following properties are directly deduced from Sections 3.4 and 4.1.

(i) Positiveness. For all x in Ω, [An(x)] is a random matrix with values in !+
n ( ), i.e.

[An(x)] ∈ !+
n ( ) a.s . (78)
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(ii) Second-order random field. From Eq. (77), we deduce that ‖[An(x)]‖ ≤ ‖[Ln(x)]‖2 ‖[Gn(x)]‖
and consequently, from the inequalities ‖A‖ ≤ ‖A‖F ≤ √

n ‖A‖, it can be written that

‖[An(x)]‖2
F ≤ n ‖[Ln(x)]‖4 ‖[Gn(x)]‖2

F . (79)

Using Eqs. (35) and (74) yields

∀ x ∈ Ω , E{‖[An(x)]‖2} ≤ E{‖[An(x)]‖2
F} ≤ n c21E{‖[Gn(x)]‖2

F} < +∞ , (80)

which proves that x 7→ [An(x)] is a second-order random field on Ω.

(iii) Homogeneousness. In general, since [an(x)] depends on x, random field {[An(x)] , x ∈ Ω} is

non homogeneous. Nevertheless, if Ω =  d and if [an(x)] = [an] is independent of x, then the

random field {[An(x)] = [Ln]T [Gn(x)] [Ln] , x ∈ Ω} can be viewed as the restriction to Ω of an

homogeneous random field indexed by  d.

(iv) Mean-function. From Eqs. (36), (71), (72) and (77), we deduce that the mean function

x 7→ E{[An(x)]} from Ω into !+
n ( ) is such that

∀ x ∈ Ω , E{[An(x)]} = [an(x)] ∈ !+
n ( ) . (81)

(v) Fourth-order tensor-valued covariance function. This is the function (x, x′) 7→ CAn(x, x′)

defined on Ω × Ω such that

CAn(x, x′) = E
{
([An(x)] − [an(x)]) ⊗ ([An(x′)] − [an(x′)])

}
. (82)

The covariance tensor CAn(x, x) of random matrix [An(x)] which is such that

CAn

jk,j′k′(x, x) = E
{
([An(x)]jk − [an(x)]jk)([An(x)]j′k′ − [an(x)]j′k′)

}
, (83)

is then given (see Refs. [74,75]) by

CAn

jk,j′k′(x, x) =
δ2

n+1

{
[an(x)]j′k [an(x)]jk′ + [an(x)]jj′ [an(x)]kk′

}
. (84)

Consequently, the variance V An

jk (x) of random variable [An(x)]jk can be written as

V An

jk (x) =
δ2

n+1

{
[an(x)]2jk + [an(x)]jj[an(x)]kk

}
. (85)

Since E
{
‖[An(x)] − [an(x)]‖2

F

}
=

∑n
j,k=1 V

An

jk (x), we then have

E
{
‖[An(x)] − [an(x)]‖2

F

}
=

δ2

n+1

{
‖[an(x)]‖2

F +
(
tr [an(x)]

)2}
. (86)
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(vi) Dispersion parameter. The dispersion of random field x 7→ [An(x)] indexed by Ω is controlled

by parameter δ defined by Eq. (37) and is independent of x and n. Let δAn
(x) be the parameter

defined by

δAn
(x) =

{
E
{
‖[An(x)] − [an(x)]‖2

F

}

‖[an(x)]‖2
F

}1/2

. (87)

From Eqs. (86) and (87), we deduce that

δAn
(x) =

δ√
n+1

{
1 +

(
tr [an(x)]

)2

tr{[an(x)]2}

}1/2

. (88)

Equation (88) shows that δAn
(x) depends on x, n and δ.

(vii) Numerical simulation of the random field. The numerical simulation of the random field

x 7→ [An(x)] can easily be constructed. Let x 7→ [An(x, θ)] be such a realization for θ ∈ Θ.

Equation (77) allows this realization to be constructed as

[An(x, θ)] = [Ln(x)]T [Gn(x, θ)] [Ln(x)] , (89)

in which the realization x 7→ [Gn(x, θ)] of the random field x 7→ [Gn(x)] is calculated by using

Eq. (44), i.e.,

∀ x ∈ Ω , [Gn(x, θ)] = [gn( (x, θ))] .

The realization x 7→  (x, θ) of the Gaussian random field x 7→  (x) = {Ujj′(x), 1 ≤ j ≤ j′ ≤ n}
is constructed by using Section 3.2.3.

(viii) Invertibility. From Eqs. (46), (74) and (77), it can be deduced that there exists a finite positive

constant cn dependent on n and δ but independent of x, such that

E{‖[An(x)]−1‖2} ≤ cn < +∞ , ∀x ∈ !d . (90)

4.3. Spatial correlation lengths of the random field x 7→ [An(x)] for the homogeneous case

In this section, it is assumed that [an(x)] = [an] is independent of x. From Eq. (77), it can be

deduced that the random field x 7→ [An(x)] is such that, for all x ∈ Ω,

[An(x)] = [Ln]T [Gn(x)] [Ln] , (91)
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in which [Ln] is the upper triangular (n× n) real matrix deduced from the Chowlesky factorization

of the positive-definite symmetric (n× n) real matrix [an] such that

[an] = [Ln]T [Ln] . (92)

Consequently, the random field x 7→ [An(x)] in homogeneous on  d. In this case, from Eq. (88), it

can be deduced that δAn
(x) = δAn

is independent of x and is written as

δAn
=

δ√
n+1

{
1 +

(
tr [an]

)2

tr{[an]2}

}1/2

. (93)

Let  = (η1, . . . , ηd) 7→ rAn( ) be the function defined from  d into  by

rAn( ) =
trE

{
([An(x +  )] − [an]) ([An(x)] − [an])

}

E
{
‖[An(x)] − [an]‖2

F

} . (94)

From Eq. (87), it is deduced that

rAn( ) =
E{tr{[An(x +  )] [An(x)]}} − tr{[an]2}

δ2An
tr{[an]2} , (95)

rAn(0) = 1 , rAn(− ) = rAn( ) . (96)

For all j = 1, . . . , d, the spatial correlation length LAn

j of the homogeneous random field x 7→
[An(x)] indexed by  d, relative to coordinate xj , can be defined by

LAn

j =

∫ +∞

0

|rAn(0, . . . , 0, ηj, 0, . . . , 0)| dηj . (97)

5. Elliptic stochastic partial differential operator

In this section, we consider the second-order stochastic differential operator defined by Eq. (4),

associated with the mean elliptic partial differential operator defined by Eq. (1) in the context of

3D linear elasticity. All the results presented below can straightforwardly be extended to a general

elliptic partial differential operator [58,88].
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5.1. Mean elliptic boundary value problem (BVP)

Let Ω be an open bounded domain of  d with d = 3. Let ∂Ω = Γ0 ∪Γ be the boundary of Ω which

is assumed to be sufficiently smooth. Let  = (ν1, ν2, ν3) be the unit normal to ∂Ω external to Ω

(see Fig. 4).

x

x

x

1

2

3

Ω

ν

ν

Γ

Γ
0

Γ

surf
g

u = 0

surf

vol

g

g

Fig. 4. Geometrical configuration

We consider the following mean elliptic boundary value problem (BVP): Find a function x 7→
v(x) = (v1(x), v2(x), v3(x)) from Ω into  3 such that

−div! = gvol , in Ω , (98)

v(x) = 0 , on Γ0 , (99)! = gsurf , on Γ . (100)

For a non homogeneous anisotropic elastic material occupying domain Ω, the stress tensor ! =

{σij}ij and the strain tensor " = {εkh}kh defined by

εkh(v) =
1

2

(
∂vk

∂xh
+
∂vh

∂xk

)
, (101)

are such that (constitutive equation),

σij =
3∑

k,h=1

cijkh(x) εkh(v) . (102)

In Eq. (98), x 7→ gvol(x)) is assumed to be a given square integrable function (for the Lebesgue

measure dx) from Ω into  3 and {div!}i =
∑3

j=1 ∂σij/∂xj . In Eq. (100), x 7→ gsurf(x)) is

assumed to be a given square integrable function (for the surface measure ds) from Γ into  3 and

{! }i =
∑3

j=1 σij νj . The fourth-order tensor {cijkh(x)}ijkh of the elastic coefficients verifies

the properties of symmetry and positiveness defined by Eqs. (2) and (3) respectively. In addition, it

is assumed that x 7→ cijkh(x) are bounded functions on Ω.
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5.2. Weak formulation of the mean BVP

We introduce the real Hilbert space H = { v = (v1, v2, v3) , vj ∈ L2(Ω) } equipped with the inner

product

<v ,w>H=

∫

Ω

<v(x) ,w(x)> dx , (103)

and with the associated norm ‖v‖H =< v , v>
1/2
H where L2(Ω) denotes the set of all the square

integrable functions from Ω into  . Let V ⊂ H be the real Hilbert space representing the set of

admissible displacement fields with values in  3 such that

V = {v ∈ H , ∂v/∂xj ∈ H , v = 0 on Γ0} , (104)

equipped with the inner product

<v ,w>V=<v ,w>H +
3∑

j=1

<
∂v

∂xj
,
∂w

∂xj
>H , (105)

and with the associated norm ‖v‖V =<v , v>
1/2
V . The usual weak formulation of the mean boundary

value problem defined by Eqs. (98) to (102) is the following (see for instance Ref. [10,49]): find the

function {x 7→ v(x)} in V such that

k(v,w) = f(w) , ∀w ∈ V . (106)

(i)The linear form w 7→ f(w) on V is defined by

f(w) =

∫

Ω

<gvol(x) ,w(x)> dx +

∫

Γ

<gsurf(x) ,w(x)> ds(x) (107)

is continuous on V:

|f(w)| ≤ cf ‖w‖V , 0 < cf < +∞ . (108)

(ii) Thesymmetric bilinear form (v,w) 7→ k(v,w) on V × V , defined by

k(v,w) =

∫

Ω

3∑

i,j,k,h=1

cijkh(x) εkh(v) εij(w) dx , (109)

is continuous on V × V (due to the boundness of coefficients cijkh(x) on Ω) and is V-elliptic (due

to Eq. (3)), that is to say

k(v, v) ≥ c1‖v‖2
V , 0 < c1 < +∞ . (110)

Consequently, due to the Lax-Milgram theorem, there is a unique solution v ∈ V of Eq. (106) which

is the unique weak solution of Eqs. (98)-(102).
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5.3. Rewritting the bilinear form using matrix notation

Let us introduce the new indices I and J belonging to {1, . . . , 6} such that I = (i, j) and J = (k, h)

with the following correspondence: 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 = (1, 2), 5 = (2, 3) and

6 = (3, 1). Consequently, the bilinear form k(v,w) defined by Eq. (109) can be rewritten as

k(v,w) =

∫

Ω

< [an(x)] e(v(x)) , e(w(x))> dx , (111)

in which [an(x)] is the real (n× n) matrix (with n = 6) such that [an(x)]IJ = cijkh(x) and where

e(v) = (e1(v), . . . , en(v)) with e1(v) = ε11(v), e2(v) = ε22(v), e3(v) = ε33(v), e4(v) = 2 ε12(v),

e5(v) = 2 ε23(v) and e6(v) = 2 ε31(v). From the properties of symmetry, positiveness and

boundedness of tensor cijkh(x), it can directly be deduced that x 7→ [an(x)] is a matrix-valued field

from Ω into  +
n (!), bounded on Ω, which satisfies all the properties defined by Eqs. (71) to (76).

5.4. Nonparametric probabilistic modeling of the elasticity tensor

Since matrix field x 7→ [an(x)] from Ω into  +
n (!) verifies Eqs. (71) to (76), the random non

homogeneous anisotropic elastic material can be constructed in substituting in the constitutive

equation the field x 7→ [an(x)] by a random field x 7→ [An(x)] indexed by Ω with values in +
n (!), belonging to the ensemble SFE+. This random field is thus defined by Eq. (77) in which

the stochastic field x 7→ [Gn(x)] belonging to the ensemble SFG+ is defined in Section 3, where

E{[An(x)]} = [an(x)] and where [Ln(x)] is defined by Eq. (72). Therefore, the bilinear form

k(v,w) defined by Eq. (111) is replaced by the random bilinear form K(v,w) such that

K(v,w) =

∫

Ω

< [An(x)] e(v(x)) , e(w(x))> dx . (112)

5.5. Weak formulation of the stochastic BVP

Let" = L2(Θ,H) (or # = L2(Θ,V)) be the real Hilbert space of the second-order random variable

θ 7→ {x 7→ V(x, θ)} defined on probability space (Θ, T , P ) with values in H (or in V), equipped

with the inner product

≪ V ,W ≫ = E{<V ,W>H} , (or ≪ V ,W ≫!= E{<V ,W>V} ,

and with the associated norm ‖V‖ =≪ V ,V ≫1/2 (or ‖V‖! =≪ V ,V ≫1/2! ). Using the

stochastic modeling defined in Section 5.4, the mean problem defined by Eq. (106) is replaced by

the following random problem: Find the random field {x 7→ V(x)} in # such that

K(V,W) = f(W) a.s. , ∀W ∈ # , (113)
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in which the random bilinear from K is defined by Eq. (112). Taking the mathematical expectation

of the two members of Eq. (113), the weak formulation of the stochastic BVP is then the following:

Find the random field {x 7→ V(x)} in  such that

K(V,W) = E{f(W)} , ∀W ∈  , (114)

in which the symmetric bilinear form (V,W) 7→ K(V,W) on  ×  is defined by

K(V,W) = E{K(V,W)}

= E

{∫

Ω

< [An(x)] e(V(x)) , e(W(x))> dx

}
. (115)

Let us prove that the bilinear form (V,W) 7→ K(V,W) is continous on  × . From Eq. (35), it can

be deduced that

E{‖[Gn(x)]‖2} ≤ E{‖[Gn(x)]‖2
F} = c < +∞ , ∀ x ∈ !d .

From Eqs. (77), (111) and (115), we have

|K(V,W)| ≤ E

{∫

Ω

‖[Gn(x)]‖ ‖[Ln(x)]e(V(x))‖ ‖[Ln(x)]e(W(x))‖ dx
}

≤
(∫

Ω

E{‖[Gn(x)]‖2} dx
)1/2

(E{k(V,V)}E{k(W,W)})1/2
.

Since the bilinear form (v,w) 7→ k(v,w) is continuous on V × V (see Section 5.2.ii) and since Ω is

bounded, we deduce that

|K(V,W)| ≤ c ‖V‖ ‖W‖ ,

in which c is a deterministic finite real constant.

5.6. Why the exitence of a solution for the weak formulation of the stochastic BVP cannot be simply

studied

(i) If the following property is introduced (for instance, as introduced in Ref. [6]): for all x ∈ Ω and

for all !n-valued random variable Y defined on (Θ, T , P ),

< [An(x)]Y ,Y> ≥ c0 ‖Y‖2 a.s . (116)

in which 0 < c0 < +∞ is independent of x, then the bilinear form (V,W) 7→ K(V,W) on  ×  
is coercive in  (i.e.  -elliptic) because

K(V,V) ≥ c0E
{∫

Ω

‖e(V(x))‖2 dx
}

≥ cK‖V‖2 , 0 < cK < +∞ . (117)

Taking into account Eqs. (108) and (117), in view of the Lax-Milgram theorem [10], the problem

defined by Eq. (114) has a unique solution V in  .
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(ii) From Sections 3 and 4, it can be seen that the property defined by Eq. (116) does not hold

for the random field x 7→ [An(x)] belonging to SFE+ and consequently, the usual analysis given

in paragraph (i) above cannot presently be used. Another analysis has to be developed using the

fundamental property defined by Eq. (56) and which constitutes the mathematical property replacing

Eq. (116).

(iii) It can be interesting to explain why such a property defined by Eq. (116) has not been introduced

in Sections 3 and 4 for the construction of the ensemble SFE+ of the random fields x 7→ [An(x)].

From the construction of the ensemble SFE+ (see Eqs. (78), (80), (81) and (90)), we have deduced

that, for all x fixed in Ω, we have the following properties.

(C1) [An(x)] is a second-order random matrix with values in  +
n (!).

(C2) The mean value E{[An(x)]} is a matrix [an(x)] given in  +
n (!).

(C3) We have E{‖[An(x)]−1‖2} ≤ cn < +∞ for all x fixed in Ω.

In addition, for all x fixed in Ω, the probability distribution P[An(x)] on  +
n (!) of the ran-

dom matrix [An(x)] can be written as P[An(x)] = p[An(x)]([An], x) d̃An in which the probabil-

ity density function [An] 7→ p[An(x)]([An], x) from  +
n (!) into !+, with respect to the measure

d̃An = 2n(n−1)/4 Π1≤i≤j≤n d[An]ij , can easily be calculated from Eqs. (42) and (77) (see the

explicit expression of this probability density function in Refs. [74,75]). However, in Refs.[74,75],

it is proved that this probability density function [An] 7→ p[An(x)]([An], x) corresponds to the unique

probability density function constructed with the maximum entropy principle for which the con-

straints are the available information defined by (C1), (C2) and (C3) above. The constraint (C3)

allows the ellipticity condition defined by Eq. (118) to be obtained but does not allow the ellipticity

condition defined by Eq. (117) to be obtained, this last ellipticity condition being directly deduced

from Eq. (116). Equation (116) would be verified if constraint (C3) was replaced by a constraint

(C3’) related to the support of the probability density function [An] 7→ p[An(x)]([An], x) for that

Eq. (116) be verified. In this paper, we are interested in the realistic situations for which such a

constraint (C3’) is considered as a non available information, that is to say corresponds to a non

objective data. This is the case if the property defined by (C3’) and the lower bound c0 in Eq. (116)

cannot be tested and estimated by using mathematical statistics applied to experimental data.

5.7. Ellipticity of the random bilinear form

LetK(v,w) be the random bilinear form defined by Eq. (112) in which the random field x 7→ [An(x)]
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is defined in Section 5.4. Then for all random field {x 7→ V(x)} in  , we have
√
E{K(V,V)2} ≥ cK ‖V‖2 , (118)

in which cK is a positive finite real constant.

Proof. From Eqs. (110) and (111), it can be deduced that, for all random field {x 7→ V(x)}
in  , c1 ‖V‖2

V ≤ k(V,V) =
∫
Ω
< [an(x)] e(V(x)) , e(V(x)) > dx. Since [Gn(x)] is with

values in !+
n ("), we can write [ In] = [Gn(x)]−1[Gn(x)] = [Gn(x)]1/2[Gn(x)]−1[Gn(x)]1/2

and using Eq. (72) yields c1 ‖V‖2
V ≤

∫
Ω
< [Gn(x)]−1 Y(x) ,Y(x) > dx, in which Y(x) =

[Gn(x)]1/2[Ln(x)] e(V(x)). Thus, we have < [Gn(x)]−1Y(x) ,Y(x)>≤ ‖[Gn(x)]−1‖ ‖Y(x)‖2

and

‖Y(x)‖2 =< [Gn(x)]1/2[Ln(x)] e(V(x)) , [Gn(x)]1/2[Ln(x)] e(V(x))>

=< [Ln(x)]T [Gn(x)] [Ln(x)] e(V(x)) , e(V(x))>

=< [An(x)] e(V(x)) , e(V(x))> ,

due to Eq. (77). Therefore,

c1 ‖V‖2
V ≤

∫

Ω

‖[Gn(x)]−1‖ < [An(x)] e(V(x)) , e(V(x))> dx

≤ sup
x∈Ω ‖ [Gn(x)]−1‖

∫

Ω

< [An(x)] e(V(x)) , e(V(x))> dx .

From Eq. (112), this last inequality can be rewritten as

c1 ‖V‖2
V ≤

(
sup

x∈Ω ‖ [Gn(x)]−1‖
)
K(V,V) . (119)

Since in Eq. (119), the three dependent random variables are with values in "+, we can take the

mathematical expectation of the two members of the inequality. SinceE{‖V‖2
V} = ‖V‖2 and since

|E{Z1Z2}| ≤
√
E{Z2

1}
√
E{Z2

2} for two dependent real-valued random variables Z1 and Z2, we

have

c1 ‖V‖2 ≤
√
E

{
(sup

x∈Ω ‖ [Gn(x)]−1‖)2
}√

E {K(V,V)2} . (120)

Substituting Eq. (56) into Eq. (120) yields Eq. (118) with cK = c1/cG.

Remark. It should be noted that Eq. (120) differs from Eq. (117) which is written asE{K(V,V)} ≥
cK ‖V‖2 and not as

√
E{K(V,V)2} ≥ cK ‖V‖2 . This difference is due to the fact that the two

positive-valued random variables sup
x∈Ω ‖ [Gn(x)]−1‖ and K(V,V) are dependent.
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5.8. Existence of a weak second-order stochastic solution of the stochastic BVP

The random problem defined by Eq. (113) has a unique stochastic solution {x 7→ V(x)} in  which

means that

‖V‖2 = E
{∫

Ω

(
‖V(x)‖2 +

3∑

j=1

‖∂V(x)

∂xj
‖2

)
dx

}
< +∞ . (121)

This equation yields

E
{∫

Ω

‖V(x)‖2 dx
}
< +∞ , (122)

which shows that x 7→ V(x) is a second-order random field. In addition, the linear operator mapping

the right-hand side f onto the unique solutionV is continuous from  ′ to  in which  ′ = L2(Θ,V ′)

where V ′ is the continuous dual space of V .

Proof. From Eqs. (108) and (113), we deduce that K(V,V) ≤ cf ‖V‖V and consequently,

E{K(V,V)2} ≤ c2f E{‖V‖2
V}. Using Eq. (118) yields c2K ‖V‖4 ≤ c2f ‖V‖2 which can be

rewritten as ‖V‖ ≤ c < +∞ with c = cf/cK . The proof of the uniqueness is straightforward

because, if V and V′ are two solutions in  , Eqs. (113) and (118) yield ‖V−V′‖2 = 0, i.e., V = V′

in  . Finally, since the bilinear form (V,W) 7→ K(V,W) is continous on  ×  (see Section 5.5)

there is a linear operator ! which is continuous from  to  ′ such that !V = f , in which f is given

in  ′. Since the equation !V = f has a unique solution in  (see the proof above), this means that! is invertible from  ′ to  and consequently, is continuous from  ′ to  .
6. Stochastic finite element

6.1. Finite element discretization

The usual finite element method [10,91] is utilized for discretizing the deterministic Eq. (106) and

the random Eq. (113) which yields

[K ] d = f , [K ]D = f , (123)

in which the deterministic stiffness matrix [K ] and the random stiffness matrix [K ] correspond

to the finite element discretization of the bilinear forms k(v,w) defined by Eq. (111) and K(v,w)

defined by Eq. (112). The deterministic vector f corresponds to the discretization of the linear form

defined by Eq. (107). The deterministic vector d and the random vector D are the vectors of the

degrees of freedom (values of the deterministic displacement field x 7→ v(x) of the mean model and
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values of the random displacement field x 7→ V(x) of the stochastic model, at the free nodes of the

finite element mesh).

For a given finite element mesh of domain Ω, let x1, . . . , xN be the set of all the integrating points

of the finite elements of the model. The random field {[An(x)], x ∈ Ω} is then discretized in the
integrating points of each finite element of the model. Consequently, the random stiffness matrix

[K ] can be rewritten as

[K ] = [K([An(x1)], . . . , [An(xN )])] , (124)

in which ([a1], . . . , [aN ]) 7→ [K([a1], . . . , [aN ])] is a deterministic function which is completely

defined.

6.2. Constructing and solving the random matrix equation

The random matrix equation [K ]D = f (see Eq. (123)) can be solved by several methods, in

particular by using the Monte Carlo numerical method [61].

For each realization θ ∈ Θ, we have the following steps.

(i) The realizations {[An(x1, θ)], . . . , [An(xN , θ)]} of random matrices {[An(x1)], . . . , [An(xN )]}
are constructed by using Section 4.2(vii).

(ii) The realization of each finite element stiffness matrix is constructed and the assemblage of

all these finite element matrices yields the realization [K(θ)] of the random matrix [K ] such that

[K(θ)] = [K([An(x1, θ)], . . . , [An(xN , θ)])].

(iii) The linear matrix equation [K(θ)]D(θ) = f is solved to obtain D(θ) and the realizationO(θ) of

any observationO can be deduced.

Finally, the mathematical statistics are used for estimating the probability quantities related to

random vectors D and O. Convergence of the estimators with respect to the number of realizations

has to be controlled.

7. Class of random fields which can be approximated with the ensemble SFE+ and their

experimental identification

The objective of this section is to introduce some remarks concerning (1) the class of random

fields which can be approximated by a random field belonging to the ensemble SFE+ and (2) some
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remarks concerning the experimental identification of such a random field in solving a stochastic

inverse problem.

Let x 7→ [An(x)] be a random field in SFE+, defined on probability space (Θ, T , P ), indexed by

Ω, with values in  +
n (!). In this section ( Section 7), we limit the presentation to the homogeneous

case presented in Section 4.3. Consequently, in this section, x 7→ [An(x)] is viewed as the restriction

to Ω of a homogeneous random field indexed by !d.

7.1. Summary of the parameters allowing a homogeneous random field in SFE+ to be completely

defined

From Sections 3 and 4, it can be deduced that the parameters allowing a homogeneous random field

x 7→ [An(x)] indexed by !d with values in +
n (!) and belonging to SFE+, to be completely defined

are the following.

(i) The autocorrelation function  7→ RU ( ) of the random germ U in EU has to be such that

RU (0) = 1, RU is a continuous function from !d into !, Eq. (6) holds and the power spectral

density function k 7→ SU (k) has a compact support [−K1, K1] × . . . × [−Kd, Kd]. It should be

noted that the d positive real numbersK1, . . . , Kd can be defined by the d spatial correlation lengths

LU
1 , . . . , L

U
d given by Eq. (9).

(ii) The mean value [an] = E{[An(x)]} ∈  +
n (!) is independent of x.

(iii) The parameter δ is defined by Eq. (37) and verifies Eq. (28), allowing the dispersion level to be

controlled.

7.2. Some properties of a random field in SFE+

In this section, we summarize the second-order parameters and the fundamendal property of a

homogeneous random field x 7→ [An(x)] indexed by !d with values in  +
n (!) and belonging to

SFE+. The second-order properties and the fundamental property are the following.

(i) The mean value [an] = E{[An(x)]} ∈  +
n (!) is independent of x.

(ii) The dispersion parameter δAn
defined by Eq. (87) and given by Eq. (93) is a function of δ and

[an].

(iii) The fourth-order tensor-valued covariance function  7→ CAn(x +  , x) on !d is defined by

Eq. (82).

C. Soize - CMAME - revised version December 2004 35



(iv) The d spatial correlation lengths LAn

1 , . . . , LAn

d are defined by Eq. (97).

(v) For a random field in SFE+, the ellipticity property is defined by Eq. (118) in which the random

bilinear formK(v,w) is defined by Eq. (112). As explained in Section 5.8, this fundamental property

allows the stochastic boundary value problem related to the stochastic partial differential operator

defined by Eq. (4) to have a solution which is a second-order random field.

7.3. First class of approximation

(i)Setting the problem. The problematic is related to the informationwhich is available for identifying

such a random field x 7→ [An(x)] with experimental data. As we have explained in Section 1, such

a random field is constituted of 21 mutually dependent random fields. The available information

is constituted of the parameters which can be experimentally identified by using mathematical

statistics. For instance and in general, the system of the marginal probability distributions for

the 21 mutually dependent random fields do not constitute an available information because the

experimental database which is required for such an estimation is not available. This is the reason

why the class SFE+ of random fields having a small number of parameters has been constructed in

Sections 3 and 4. The first class of approximation presented in this section corresponds to the larger

class, that is to say, corresponds to the smallest number of parameters which can experimentally be

identified.

(ii) Available information. Let x 7→ [Aexp
n (x)] be the random field indexed by Ω ⊂  d with values in!+

n ( ) which has to be approximated and for which the available information is the following (see

Section 7.3.v-3 explaining why the available information has to be limited to the quantities defined

in (a) to (d) below).

(a) The mean value [aexpn ] = E{[Aexp
n (x)]} ∈ !+

n ( ) is independent of x.

(b) The dispersion parameter δAexp
n

is defined by Eq. (87).

(c) The d spatial correlation lengths LA
exp
n

1 , . . . , LA
exp
n

d are defined by Eq. (97) in which rA
exp
n ( ) is

defined by Eq. (94).

(d) The random field x 7→ [Aexp
n (x)] verifies an ellipticity condition in order that the stochastic

boundary value problem has a second-order stochastic solution.

(iii) Approximation with a random field belonging to the ensemble SFE+. A random field x 7→
[Aexp

n (x)] whose available information is defined in Section 7.3.ii can be approximated by the

restriction to the domain Ω of a homogeneous random field x 7→ [An(x)] indexed by  d with values
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in  +
n (!) and belonging to the ensemble SFE+, for which the random field germ U is any random

field belonging to EU (for instance, the random field U defined in Section 3.2.2).

(iv) Calculation of the parameters of the approximated random field. Taking into account Section

7.1, the random field x 7→ [An(x)] which approximates the random field x 7→ [Aexp
n (x)] is then

completely defined and its parameters can be calculated as follows.

(a) The mean value is such that [an] = [aexpn ] ∈  +
n (!).

(b) The dispersion parameter δ defined by Eq. (37) is calculated by using Eq. (88),

δAexp
n

=
δ√
n+1

{
1 +

(
tr [aexpn ]

)2

tr{[aexpn ]2}

}1/2

. (125)

(c) The spatial correlation lengths LU
1 , . . . , L

U
d , defined by Eq. (9), are calculated by solving the

following system of nonlinear algebraic equations

LAn

1 (LU
1 , . . . , L

U
d ) = LA

exp
n

1

. . . = . . . (126)

LAn

d (LU
1 , . . . , L

U
d ) = LA

exp
n

d ,

in which, for all j in {1, . . . , d}, the mapping (LU
1 , . . . , L

U
d ) 7→ LAn

j (LU
1 , . . . , L

U
d ) is defined by

Eq. (97) with the model of the random field x 7→ [An(x)] defined in Sections 3 and 4. In pratice, it

should be noted that, for all j in {1, . . . , d}, LU
j is closed to LAn

j (see for instance Section 8). This

means that the system of nonlinear algebraic equations defined by Eq. (126) allowing LU
1 , . . . , L

U
d

to be calculated can be solved by iteration, the mapping (LU
1 , . . . , L

U
d ) 7→ (LAn

1 , . . . , LAn

d ) being

easily calculated by using the construction defined in Sections 3 and 4 with a given random field

germ U in EU (for instance with the random field defined in Section 3.2.2).

(v) Statistical estimation of the available information. In this subsection, we show how the avail-

able information defined in Section 7.3.ii can be estimated by using mathematical statistics. Let

x1, . . . , xN beN points in Ω ⊂ !d. It is assumed that ν > 1 independent realizations [Aexp
n (xk, θℓ)]

for k = 1, . . . , N and θℓ ∈ Θ with ℓ = 1, . . . , ν are known from experiments.

(v-1) Estimations. In this subsection, in order to limit the developments, we directly give an

estimation of each quantity to be estimated without defining the sequence of estimators and without

studying the properties of such a sequence of estimators (see [35,38,55,64,72]). Nevertheless, the
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convergence of each estimator is fundamental to construct a good estimation. Some important

comments concerning this aspect are given in the following subsection 7.3.v-2.

An estimation [âexpν,N ] of the mean value [aexpn ] = E{[Aexp
n (x)]} of the random field x 7→ [Aexp

n (x)] can

be written as

[âexpν,N ] =
1

Nν

N∑

k=1

ν∑

ℓ=1

[Aexp
n (xk, θℓ)] . (127)

An estimation  7→ Ĉexp

ν,N ( ) of the fourth-order tensor-valued covariance function  7→ CA
exp
n ( ) =

E
{
([Aexp

n (x +  )] − [aexpn ]) ⊗ ([Aexp
n (x)] − [aexpn ])

}
can be written as

Ĉexp

ν,N ( kk′

) =
1

ν

ν∑

ℓ=1

(
[Aexp

n (xk, θℓ)] − [âexpν,N ]
)
⊗

(
[Aexp

n (xk′

, θℓ)] − [âexpν,N ]
)

, (128)

in which  kk′

= xk − xk′

, (k, k′) ∈ {1, . . . , N} × {1, . . . , N} . (129)

An estimation  7→ r̂expν,N ( ) of the function  7→ rA
exp
n ( ) from  d into  and defined by Eq. (94)

can be written as

r̂expν,N ( kk′

) =
1

ν Ĉexp

ν,N (0)

ν∑

ℓ=1

tr
{
([Aexp

n (xk, θℓ)] − [âexpν,N ])([Aexp
n (xk′

, θℓ)] − [âexpν,N ])
}

. (130)

An estimation δ̂expν,N of the dispersion parameter δAexp
n

defined by Eq. (87) can be written as

δ̂expν,N =
1

‖[âexpν,N ]‖F

{ 1

Nν

N∑

k=1

ν∑

ℓ=1

‖[Aexp
n (xk, θℓ)] − [âexpν,N ]‖2

F

}1/2
. (131)

Since Ω ⊂  d is a bounded domain and since x1, . . . , xN are any points in Ω, a direct construction

of an estimation L̂exp

1,ν,N , . . . , L̂
exp

d,ν,N of the spatial correlation lengths LA
exp
n

1 , . . . , LA
exp
n

d cannot be

deduced from Eq. (97). For all j fixed in {1, . . . , d}, an estimation L̂exp

j,ν,N ofLA
exp
n

j can be constructed

as the solution in Lj of the following optimization problem

min
Lj

{ N∑

k=1

N∑

k′=1

∣∣ |r̂expν,N (0, . . . , 0, xk
j − xk′

j , 0, . . . , 0)| − e−(xk
j −xk′

j )/Lj
∣∣} , (132)

in which the double summation over k and k′ is limited to the points such that xk
j − xk′

j ≥ 0.

(v-2) Convergence of the estimations. In the experimental context, the value of ν is generally small

(limitation of the number of specimens which can experimentally be tested). Nevertheless, it is
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assumed that this small value of ν and the value of N are such that the estimation [âexpν,N ] defined

by Eq. (127) is sufficiently converged (if not, then the estimation problem is an ill-posed problem).

However, if the values of ν andN allow themean value [aexpn ] to be reasonably estimated, these values

do not generally allow the ellipticity property defined by Eq. (117) to be really tested or the fourth-

order tensor-valued covariance function  7→ CA
exp
n ( ) to be estimated by Eq. (128) with a good rate

of convergence. Similarly, the function  7→ rA
exp
n ( ) defined by Eq. (94) cannot be estimated by

Eq. (130) with a good rate of convergence. However, if the estimation of  7→ rA
exp
n ( ) is generally

not converged, the estimation δ̂expν,N defined by Eq. (131) and the estimations L̂exp

1,ν,N , . . . , L̂
exp

d,ν,N

defined by Eq. (132) can be assumed to be converged.

(v-3) Limitation of the available information induced by the experimental identification context. In

Section 7.3.ii, we have introduced the mean value, the dispersion parameter, the spatial correlation

lengths and the ellipticity property as the available information. For applications and in the ex-

perimental identification context, this limitation of the available information is due to the lack of

convergence of the estimators introduced in Section 7.3.v-1 because the number ν of independent

realizations corresponds to the number of specimens which can experimentally be tested and which

is then generally small.

7.4. Second class of approximation

(i) Setting the problem. The second class of approximation presented in this section corresponds to

the class for which the parameters related to all the second-order quantities can experimentally be

identified.

(ii) Available information. Let x 7→ [Aexp
n (x)] be the random field indexed by Ω ⊂  d with values in!+

n ( ) which has to be approximated and for which the available information is the following.

(a)The mean value [aexpn ] = E{[Aexp
n (x)]} ∈ !+

n ( ) is independent of x.

(b) The fourth-order tensor-valued covariance function is given and is written as 7→ CA
exp
n ( ) = E

{
([Aexp

n (x +  )] − [aexpn ]) ⊗ ([Aexp
n (x)] − [aexpn ])

}
. (133)

(c) The random field x 7→ [Aexp
n (x)] verifies an ellipticity condition in order that the stochastic

boundary value problem has a second-order stochastic solution.
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(d) It should be noted that, as soon as the function  7→ CA
exp
n ( ) is known, then the dispersion

parameter δAexp
n

defined by Eq. (87) and the function  7→ rA
exp
n ( ) defined by Eq. (94) can be

calculated.

(iii) Approximation with a random field belonging to the ensemble SFE+. A random field x 7→
[Aexp

n (x)] whose available information is defined in Section 7.4.ii can be approximated by the

restriction to the domainΩ of a homogeneous random field x 7→ [An(x)] indexed by  d, with values

in!+
n ( ) and belonging to the ensemble SFE+, for which the random field germ U is a random field

in EU and for which the autocorrelation function  7→ RU ( ) has to be constructed (see Section

7.4.iv.

(iv) Calculation of the parameters of the approximated random field. Taking into account Section

7.1, the random field x 7→ [An(x)] which approximates the random field x 7→ [Aexp
n (x)] is then

completely defined and its parameters can be calculated as follows.

(a) The mean value is such that [an] = [aexpn ] ∈ !+
n ( ).

(b) The dispersion parameter δ defined by Eq. (37) is calculated by using Eq. (125).

(c) For a given function  7→ RU ( ) from  d into  such as the random field germ U belongs

to EU (see Section 3.2.1), the function  7→ rAn( ;RU) from  d into  defined by Eq. (94) can

be calculated by using the model of the random field x 7→ [An(x)] defined in Sections 3 and 4.

Consequently, RU can be constructed as the solution of the following optimization problem,

min
RU

∫ d

|rA
exp
n ( ) − rAn( ;RU )|2 d , (134)

in which RU has to verify the properties defined in Section 3.2.1 in order that U belongs to EU .

(v) Statistical estimation of the available information. In this subsection, it is shown how the

available information defined in Section 7.4.ii can be estimated by using mathematical statistics. Let

x1, . . . , xN beN points in Ω ⊂  d. For k = 1, . . . , N , it is assumed that ν independent realizations

{[Aexp
n (xk, θℓ)], θℓ ∈ Θ, ℓ = 1, . . . , ν} are known from experiments.

(v-1) Estimations. An estimation [âexpν,N ] of the mean value [aexpn ] = E{[Aexp
n (x)]} of the random field

x 7→ [Aexp
n (x)] is given by Eq. (127). An estimation  7→ Ĉexp

ν,N ( ) of the fourth-order tensor-valued

covariance function  7→ CA
exp
n ( ) defined by Eq. (133) is given by Eqs. (128) and (129). An

estimation  7→ r̂expν,N ( ) of  7→ rA
exp
n ( ) is given by Eqs. (130) and (129). An estimation δ̂expν,N
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of δAexp
n

defined by Eq. (87) is given by Eq. (131). Since Ω ⊂  d is a bounded domain and since

x1, . . . , xN are any N points in Ω, the following approximation of Eq. (134) is introduced

min
RU

N∑

k=1

N∑

k′=1

|rA
exp
n (xk − xk′

) − rAn(xk − xk′

;RU)|2 , (135)

in which RU have to verify the properties defined in Section 3.2.1 in order that U belongs to EU .

(v-2) Convergence of the estimations. For this second class of approximation, it is assumed that ν is

sufficiently large for that the convergence of the estimation defined by Eqs. (128)-(129) is reached.

(v-3) Limitation of the second class of approximation with respect to the experimental identification

context. In Section 7.4.ii, we have introduced the available information constituted of themean value,

the fourth-order tensor-valued covariance function, and the ellipticity property. In the experimental

identification context, the convergence of the estimation of the fourth-order tensor-valued covariance

function has to be reached which means that the number of specimens which can experimentally be

tested has to be sufficiently large.

7.5. Difficulties related to the construction of the realizations of the random field to be identified

In Sections 7.3.v and 7.4.v, for k = 1, . . . , N , it is assumed that ν independent realizations

{[Aexp
n (xk, θℓ)], θℓ ∈ Θ, ℓ = 1, . . . , ν} are known (from experiments) in which x1, . . . , xN are N

points in Ω ⊂  d. Each realization {[Aexp
n (xk, θℓ)], θℓ ∈ Θ} is associated with a given specimen

ℓ which is experimentally tested. In practice, such a realization is not directly obtained from

the measurements but is indirectly constructed by using a model as follows. Let us assume that

the random field x 7→ [An(x)] (with n = 6) models the fourth-order elasticity tensor of a non

homogeneous anisotropic linear elastic random material. A set of ν "identical" specimens are

manufactured with this material using the same process. The mechanical-mathematical model of

these specimens is the boundary value problem defined in Section 5. Each specimen occupies the

same bounded domain Ω with the same boundary conditions. For each specimen, the experimental

test consists in measuring the displacement field on a part Γb of the boundary Γ due to the same

set of Q external loads applied to the other part Γg of the boundary Γ. The finite element model

defined by Eq. (123) is used. The random vector D of the degrees of freedom (DOF) is then written

asD = (Db,Di) in whichDb is the vector of themb measured DOF in Γb and where Di is the vector

of the other DOF. From Eqs. (123) and (124), it can be deduced that, for each applied external load
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q, the displacement of the degrees of freedom in Γb is the random vector denoted as Db,q and which

can be written as

Db,q = b([An(x1)], . . . , [An(xN )] ; q) , (136)

where ([a1], . . . , [aN ]) 7→ b([a1], . . . , [aN ]) ; q) is a deterministic function which can easily be

constructed and which depends on the applied external load q. The measurements are then

constituted of the familly of vectors D
exp

b,q(θℓ) for ℓ = 1, . . . , ν (the ν specimens) and for q =

1, . . . , Q (the Q applied external loads). In general, D
exp

b,1, . . . ,D
exp

b,Q are mutually dependent ran-

dom vectors but D
exp

b,1(θℓ), . . . ,D
exp

b,Q(θℓ) are assumed to be algebraically independent. For ℓ fixed,

[Aexp
n (x1, θℓ)], . . . , [A

exp
n (xN , θℓ)] can be constructed as the solution in [a1], . . . , [aN ] of the following

optimization problem,

min
[a1]∈ +

n (!),...,[aN ]∈ +
n (!)

Q∑

q=1

‖Dexp

b,q(θℓ) − b([a1], . . . , [aN ] ; q)‖2 . (137)

Such a method can be used if the optimization problem defined by Eq. (137) has a unique solution.

Clearly, a necessary, but not sufficient condition, is

Q×mb ≫ 21 ×N , (138)

in which the factor 21 corresponds to the independent entries of each symmetric (6× 6) real matrix

[ak]. In general, Q is small (for instance 2, 3 or 4) and N is large (for instance 1 000, 10 000 or

100 000). Let us assume that Ω is a box for which the finite element model is a regular mesh of

(n+ 1)× (m+1)× (p+1) nodes and n×m× p finite elements which are 8-nodes solid elements

with 2 × 2 × 2 integrating points. Therefore, we have N = 8 × n×m× p. Assuming that all the

DOF of the boundary are measured, we then have mb = 6 × (n + m) × (p + 1). The criterion

defined by Eq. (138) can then be rewritten as

Q

28

(p+ 1)

p
≫ n×m

n+m
. (139)

For Q = 4, Eq. (139) is never verified. More generally, for regular finite element mesh of the

domain Ω, the criterion defined by Eq. (138) is not verified. These potential difficulties lead us to

introduce below another experimental identification of the random field x 7→ [An(x)] without using

the realizations [Aexp
n (x1, θℓ)], . . . , [A

exp
n (xN , θℓ)].

7.6. Experimental identification with the first class of approximation without using the realizations

of the random field which has to be identified
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(i) Simulating the random responses with the first class of approximation of the random field which

has to be identified. The hypotheses introduced in Section 7.5 and the finite element model defined

by Eq. (123) are used. The random vector D is always written as D = (Db,Di) and Db,q is the

random vector of the measured displacements induced by the applied external load q. For the first

class of approximation, the random field x 7→ [An(x)] is completely defined by the parameters

defined in Section 7.1 in which the random field germ U is defined in Section 3.2.1. Consequently,

the random field x 7→ [An(x)] is completely defined by the following parameters: the mean value

[an] = E{[An(x)]} ∈  +
n (!) which is independent of x, the parameter δ defined by Eq. (37)

and verifying Eq. (28) and the d spatial correlation lengths LU
1 , . . . , L

U
d defined by Eq. (9). Let  

representing the set of the parameters [an], δ and LU
1 , . . . , L

U
d , = {[an], δ, LU

1 , . . . , L
U
d } . (140)

The random vetor Db,q can then be written as

Db,q = B( ; q) , (141)

in which  7→ B( ; q) is a random function which can easily be constructed with Eq. (123) and

with Sections 3 and 4. For any θ in Θ, the realization Db,q(θ) of random vector Db,q is given by

Db,q(θ) = B( ; q; θ)

= b([An(x1, θ)], . . . , [An(xNθ)] ; q) , (142)

in which [An(x1, θ)], . . . , [An(xNθ)] depend only on  . Equation (142) allows any probabilistic

quantity related to the random vector Db,q to be estimated by using the Monte Calo numerical

simulation and the mathematical statistics. The mean vector and the correlation matrix are defined

by

mDb,q
( ; q) = E{Db,q} , [RDb,q

( ; q)] = E{Db,qD
T
b,q} . (143)

The variation index is defined by

δDb,q
( ; q) =

(
E{‖Db,q −mDb,q

‖2}
)1/2

‖mDb,q
‖ . (144)

Let us introduce the random vector " = (Db,1, . . . ,Db,Q) whose components Db,1, . . . ,Db,Q are

mutually dependent random vectors. The probability distribution P of the random vector " is

assumed to be defined by a probability density function with respect to the Lebesgue measure d!
which is written as

P (d! ; ) = p (! ; ) d! . (145)
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(ii) Estimating the random responses with the measurements. The measurements are constituted of

the familly of vectors  exp(θℓ) = (Dexp

b,1(θℓ), . . . ,D
exp

b,Q(θℓ)) for ℓ = 1, . . . , ν (the ν specimens) and

for q = 1, . . . , Q (the Q applied external loads). For a given applied external load q, an estimation

m̂exp
q,ν of the mean valuemD

exp
b,q

of the random vector D
exp

b,q can be written as

m̂exp
q,ν =

1

ν

ν∑

ℓ=1

D
exp

b,q(θℓ) . (146)

For a given applied external load q, the estimations [R̂exp
q,ν] and δ̂expq,ν of the correlation matrix [RD

exp
b,q

]

and the variation index δDexp
b,q

of the random vector D
exp

b,q can be written as

[R̂exp
q,ν] =

1

ν

ν∑

ℓ=1

D
exp

b,q(θℓ)D
exp

b,q(θℓ)
T , (147)

δDexp
b,q

=
1

‖m̂exp
q,ν‖

(
1

ν

ν∑

ℓ=1

{‖Dexp

b,q(θℓ) − m̂exp
q,ν‖2}

)1/2

. (148)

In the experimental identification context, there is generally a lack of convergence of the estimation

defined by Eq. (147) due to a small value ν of specimens which can experimentally be tested.

Nevertheless, it is assumed that this value of ν allows a convergence of the estimations defined by

Eq. (146) and Eq. (148) to be reached.

(iii) Second-order moment method for estimating the parameters of the random field which has to

be identified. The first method consists in performing the experimental identification of  defined

by Eq. (140) in solving the following optimization problem,

min ∈S Q∑

q=1

(δDexp
b,q

− δDb,q
( ; q))2 , (149)

in which  = {[an], δ, LU
1 , . . . , L

U
d } runs though the set S defined by

S = !+
n (") × [0 , δn[×"+ × . . .× "+ , (150)

and where δn is defined by Eq. (28).
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(iv) Maximum likelihood method for estimating the parameters of the random field which has to

be identified. We introduce the function  7→ L( ; exp(θ1), . . . , exp(θν)) from S defined by

Eq. (150) into ]0 ,+∞[ such that

L( ; exp(θ1), . . . , exp(θν)) = Πν
ℓ=1 p ( exp(θℓ) ; ) , (151)

in which the probability density function p (! ; ) is defined by Eq. (145). We deduce that

log{L( ; exp(θ1), . . . , exp(θν))} =
ν∑

ℓ=1

log{p ( exp(θℓ) ; )} . (152)

The maximum likelihood principle consists in estimating  as the solution of the following opti-

mization problem,

min ∈S log{L( ; exp(θ1), . . . , exp(θν))} , (153)

in which S is defined by Eq. (150).
(v) Experimental identification with the second class of approximation without using the realiza-

tions of the random field which has to be identified. The second-order moment method and the

maximum likelihood method presented in Sections 7.6.iii and 7.6.iv for estimating the parameter = {[an], δ, LU
1 , . . . , L

U
d } of the random field x 7→ [An(x)] with the first class of approximation

can be used for estimating the parameter  = {[an], δ, RU} of the random field x 7→ [An(x)] with

the second class of approximation, in substituting S defined by Eq. (150) by
S = !+

n (") × [0 , δn[×RU , (154)

where δn is defined by Eq. (28) and where RU is the set of all the functions " 7→ RU (") verifying

the properties defined in Section 3.2.1.

8. Numerical example

In this section, a numerical example is presented. It consists of a three-dimensional linear elastostatic

problem. The mean model of the material is homogeneous and isotropic. The stochastic model is a

random homogeneous and anisotropic linear elastic material whose elasticity tensor is a fourth-order

tensor-valued random field depending on the three coordinates x1, x2 and x3 with three different

spatial correlations lengths LU
1 , L

U
2 and LU

3 .
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8.1. Mean model, finite element discretization and static response

The open bounded domain Ω of  3 is such that Ω =]0, 10[×]0, 1[×]0, 0.8[ in meters. This slender

domain is fixed on the two sections x1 = 0 and x1 = 10 which means that a Dirichlet condition is

applied to the boundary Γ0 = {x1 = 0, x2 ∈ [0, 1], x3 ∈ [0, 0.8]} ∪ {x1 = 10, x2 ∈ [0, 1], x3 ∈
[0, 0.8]}. The Young modulus and the Poisson coefficient of the homogeneous and isotropic linear
elasticmaterial of themeanmodel areE = 1010N/m2 and ν = 0.15. Thematrix [an(x)] introduced

in Section 5.3, belonging to !+
n ( ) with n = 6, is independent of x and is written as

[an] =
E

(1 + ν)(1 − 2ν)




1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 (1−2ν)/2 0 0
0 0 0 0 (1−2ν)/2 0
0 0 0 0 0 (1−2ν)/2



. (155)

Th elastic domain Ω is subjected to the static point load (0, 1, 0) in Newton, applied to the point

(3.5, 1, 0.4) in meter. The finite element model is a regular mesh of 41 × 3 × 3 = 369 nodes

and 40 × 2 × 2 = 160 finite elements which are 8-nodes solid elements with 2 × 2 × 2 integrating

points (see Fig. 5). Therefore there are 1053 degrees of freedom and N = 1280 integrating points.

The neutral fiber is the line defined by {x = (x1, x2, x3), x1 ∈ [0, 10], x2 = 0.5, x3 = 0.4} and is
constituted of 41 nodes.
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Fig. 5. Finite element model

The displacement field of the mean model is calculated by solving the deterministic linear matrix

equation [K ] d = f (see Eq. (123)). Figure 6 displays the static deformation of the elastic domain

Ω subjected to the point load.
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Fig. 6. Static deformation of the three-dimensional domain due to the static point load

8.2. Stochastic model, computational parameters and stochastic response

The nonparametric probabilistic model of the elasticity tensor is performed as explained in Section

5.4. The randomfield x 7→ [An(x)], indexed byΩ, with values in +
n (!), withn = 6, is such that (see

Eq. (77)), [An(x)] = [Ln]T [Gn(x)] [Ln] in which the matrix [an], defined by Eq. (155), is written

(see Eq. (72)) as [an] = [Ln]T [Ln]. The stochastic field x 7→ [Gn(x)], indexed by !3, with values

in  +
n (!), is defined in Section 3.3.2 by Eqs. (29) to (33). The dispersion parameter δAn

defined by

Eq. (87), is δAn
= 0.1829. Using Eq. (88), the corresponding parameter δ defined by Eq. (37), is

δ = 0.2. The spatial correlation lengths of random field germ U , defined by Eq. (13), are such that

LU
1 = 2 m and LU

2 = LU
3 = 1 m. The realizations of the random matrices [An(x1)], . . . , [An(xN )]

at theN = 1280 integrating points x1, . . . , xN (see Section 6.1) are constructed by using the method

presented in Section 4.2(vii) and the representation of the random field germ U defined in Section

3.2.3 (ii) (that is to say by Eqs. (19) and (20)). The functions η1 7→ rAn

1 (η1) = rAn(η1, 0, 0),

η2 7→ rAn

2 (η2) = rAn(0, η2, 0) and η3 7→ rAn

3 (η3) = rAn(0, 0, η3) are calculated with Eq. (95) in

which the mathematical expectation is estimated by using the Monte Carlo simulation with 20000

realizations. Since LU
2 = LU

3 , then function r
An

2 is equal to function rAn

3 . The graphs of functions

η1 7→ rAn

1 (η1) and η2 7→ rAn

2 (η2) are shown in Fig. 7. For j = 1, 2, 3, the spatial correlation

lengths LAn

j are calculated by Eq. (97) and yields LAn

1 = 1.97 and LAn

2 = LAn

3 = 0.99.
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Fig. 7. Graph of the function η1 7→ rAn

1 (η1) (on the left) and graph of the function η2 7→ rAn

2 (η2)
(on the right).

The random displacement field of the stochastic model is constructed by solving the random linear

matrix equation [K ]D = f (see Eq. (123)) with the Monte Carlo numerical simulation presented in

Section 6.2. Let ns be the number of realization used for the construction of the statistical estimators.

Let Dnf be the  41-valued random vector constituted of the x2-DOF for the 41 nodes located in the

neutral fiber. The following norm |||Dnf ||| = (E{||Dnf ||2})1/2 of the second-order random vector

Dnf can be approximated by conv(ns) defined by

conv(ns) =

{
1

ns

ns∑

k=1

‖Dnf(θk)‖2

}1/2

, (156)

in which θ1, . . . , θns
correpond tons independent realizations inΘ. Mean-square convergence of the

random vector Dnf with respect to the number ns of realization used in the Monte Carlo numerical

method, can then be studied by constructing the function ns 7→ conv(ns) which is displayed in

Fig. 8.
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Fig. 8. Mean-square convergence. Graph of function ns 7→ conv(ns)

We are interested in the construction of the confidence region associated with a probability level

Pc = 0.98 for the random transversal static displacement field x1 7→ W (x1) = U2(x1, 0.5, 0.4) of

the neutral fiber (x1 ∈ [0, 10]). In fact, this random transversal static displacement field is evaluated

at the 41 nodes in the neutral fiber. This confidence region is constructed by using the quantiles. For

x1 fixed, let FW (x1) be the cumulative distribution function (continuous from the right) of random

variableW (x1) which is such that FW (x1)(w) = P (W (x1) ≤ w) . For 0 < p < 1, the pth quantile

or fractile of FW (x1) is defined as

ζ(p) = inf{w : FW (x1)(w) ≥ p} . (157)

Then, the upper envelope w+(x1) and the lower envelope w−(x1) of the confidence region are

defined by

w+(x1) = ζ(Pc) , w−(x1) = ζ(1 − Pc) . (158)

The estimation of w+(x1) and w−(x1) is performed by using the sample quantiles [64]. Let

w1(x1) = W (x1; θ1), . . . , wns
(x1) = W (x1; θns

) be the ns independent realizations of random

variableW (x1) associated with the independent realizations Dnf(θ1), . . . ,Dnf(θns
). Let w̃1(x1) <

. . . < w̃ns
(x1) be the order statistics associated with w1(x1), . . . , wns

(x1). Therefore, one has the

following estimation

w+(x1) ≃ w̃j+(x1) , j+ = fix(nsPc) , (159)

w−(x1) ≃ w̃j−(x1) , j− = fix(ns(1 − Pc)) , (160)
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in which fix(z) is the integer part of the real number z. Figure 9 displays the confidence region of the

random transversal static displacement x1 7→ W (x1) of the neutral fiber (x1 ∈ [0, 10]), estimated

with ns = 7200.
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Fig. 9. Confidence region prediction for the random transversal static displacement of the neutral
fiber. (1) Graphs of the functions x1 7→ {w+(x1)} and x1 7→ {w−(x1)} delimiting the confidence
region (grey region) of the random transversal static displacement x1 7→ W (x1) of the neutral
fiber for the stochastic system. (2) Graph of the function x1 7→ u2(x1, 0.5, 0.4) (dotted line) of
the transversal static displacement of the neutral fiber for the mean model. (3) Graph of the mean
function x1 7→ E{W (x1)} (mid solid line) of the random field x1 7→W (x1).

9. Conclusions

We have presented themathematical construction of a class of non Gaussian positive-definite (n×n)

real matrix-valued randomfields, indexed by any domain of d, depending only on a positive-definite

matrix-valuedmean function and on a smaller number of scalar parameters constituted of a dispersion

parameter and d spatial correlation lengths. Such a random field is adapted to the inverse problem

relative to the experimental identification. A fundamental mathematical property is proved and

allows the ellipticity of stochastic partial differential operators to be obtained. Such a stochastic

field can then be used for a nonparametric probabilistic modeling of elliptic partial differential

operators. As an example, this non Gaussian positive-definite real matrix-valued random field is

used for constructing a nonparametric probabilistic model of the fourth-order elasticity tensor for a

random linear elastic material. A numerical example is presented.
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