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ABSTRACT : This paper deals with numerical models for prediction of transient dynamical

response induced by shocks upon structures with complex joints and shows experimental

comparisons. The usual numerical methods for analyzing such structures in the low- and

medium-frequency ranges consist in using reduced matrix models constructed with the elastic

modes. The contribution of the higher modes is very sensitive to the model errors and to the

data errors. In this paper, a nonparametric probabilistic method is applied to construct the

random matrix model allowing model errors and data errors to be taken into account. The

paper presents an extension of the nonparametric method for the case of non homogeneous

model errors through the structure. A dynamic substructuring method is then used and the

nonparametric probabilistic model of random uncertainties is used in each substructure with

its own level of uncertainties. This approach is applied to a dynamical system made of two

plates attached by a complex joint. Experiments have been performed and are used to validate

the probabilistic predictive model. 

KEYWORDS : shocks, random uncertainties, structural dynamics, probabilistic method,

modeling, simulation, experiments. 
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1.  INTRODUCTION

This paper deals with numerical model for predicting transient dynamical response of

structures with random uncertainties, excited by a shock. Shock-induced transient dynamics

phenomena are widely investigated in the literature. Two kinds of approaches are generally

used: the Finite Elements methods (FEM) (see for instance Refs. [1-4]) or the Statistical

Energy Analysis method (see for instance Refs. [5, 6]). The present paper concerns transient

phenomena for which elastic modes can be used for describing the transient response in the

low- and the medium-frequency ranges. Consequently, the FEM is used. Due to the presence

of complex substructures having a high level of model uncertainties, such as a complex joint,

a probabilistic approach is favoured. 

The FE model of such mechanical systems is uncertain (1) due to model uncertainties (for

instance, modeling a complex joint by a simple subsystem) and (2) due to data uncertainties

(geometry, boundary conditions, constitutive equations). In order to improve the robustness of

the predictions, the model uncertainties and the data uncertainties have to be considered. In

structural dynamics, data uncertainties are usually taken into account through parametric

models (see for instance Refs. [7, 8]). Recently, a nonparametric probabilistic model of

random uncertainties has been introduced [9] in structural dynamics. This nonparametric

approach allows model uncertainties and data uncertainties to be taken into account in order

to increase the robustness of the predictions. This nonparametric probabilistic approach is

constructed by using (1) the mean finite element model and (2) a set of random matrix

constructed with the Maximum Entropy Principle [10-12]. The mean model corresponds to

the nominal finite element model usually developed for the predictions of the dynamical
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responses. The random equations of the stochastic system are solved by numerical method

through a Monte-Carlo numerical simulation.

Since the nonparametric probabilistic model is a direct construction of the probability

distribution of the random operators of the structure, which can then be defined as a global

approach for a structure, for the case of non homogeneous uncertainties, the implementation

of the nonparametric probabilistic model needs a dynamic substructuring method (for

example, the Craig and Bampton method [13]). In this context, works have been carried out in

the field of harmonic responses [14]. Here the nonparametric approach is extended to the

prediction of shock-induced transient responses for structures with spatially non

homogeneous uncertainties [15]. The probabilistic numerical prediction are compared with

experiments [16]. 

In Section 2, the equations of the mean model by dynamic substructuring are presented,

Section 3 summarizes the implementation of the nonparametric probabilistic model allowing

model uncertainties to be taken into account for the non homogeneous case. The observations

of the dynamical system are carried out by shock response spectra. Section 4 deals with the

construction of the confidence regions of the shock response spectra. Section 5 is devoted to

experiments whereas Sections 6 and 7 compare the predictions with the experiments. 

2. EQUATIONS OF THE MEAN MODEL BY DYNAMIC SUBSTRUCTURING

Let us consider the transient response of a fixed structure with a linear constitutive equation,

slightly damped, subjected to a deterministic impulsive external load ( )extf t . The dynamic

subtructuring method with fixed interface (Craig and Bampton [13]) is used. The extension to
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the case of a free structure is straightforward. The structure !  is divided into
S

N  substructures

r
! , where 1, , Sr N= ! . One or several substructures are fixed on a part of their boundary.

Every substructure is connected through a coupling interface r! to one (or more) substructure.

The equation of the mean model for substructure r
!  with free coupling interface r! , is 

,

( ) ( ) ( ) ( ), 0

(0) 0, (0) 0

r r r r r r r

r r

t t t t t" # " # " #
$ % $ % $ %& ' & ' & '+ + = (

= =

u u u f

u u

"" "

"

" # $
(1)

( )r tu  is the 
rn

# -valued vector of the rn  degrees of freedom (DOF), ( )r tf  is the 
rn

# -

valued vector of the external and coupling forces and where 
r" #

$ %& '" , 
r" #
$ %& '#  and 

r" #
$ %& '$  are the

mass, damping and stiffness symmetric matrices. Matrix
r" #

$ %& '"  is positive definite and

matrices 
r" #
$ %& '#  and 

r" #
$ %& '$  are positive definite (e. g. fixed substructure) or positive semidefinite

(e. g. free substructure). Vectors ( )r tu  and ( )r tf  are partitioned into r
in  internal DOF and

r r r
in n n!= )  coupling interface DOF 

, ,
( )( )

( ) ( )
( ) ( )( )
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iir r

r rr
j

tt
t t

t tt !!
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+$ %$ %& ' & '
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where ( )r t!f  is relative to the coupling forces applied to the coupling interface r! , ( )r
i tf

and ( )r
j tf  are due to the external forces applied to substructure r

! . The equation of motion

for the reduced matrix model of substructure r
! can be written as 

( ) ( ) ( ) ( )
,

( )( ) ( ) ( )

r r r r
rr r r

rr r r

N
M D K

t t t t

tt t t !! ! !

" # " # " # " #$ % $ % $ % $ %" # " # " #$ % $ % $ % $ %$ % $ % $ %& ' & ' & '$ % $ % $ % $ %& '& ' & ' & '
+ + =

q q q

u u u

"" "

"" "

!

!

(3)

in which the reduced matrices 
r

M" #
$ %& ' , 

r
D" #$ %& '  and 

r
K" #
$ %& '  are such that 
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,

,

.
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(4)

In Equation (3), ( )r tq  is the 
rN

# -valued vector of the generalized DOF relative to the rN

first elastic modes with fixed coupling interface, ( )r t!u  are the coupling interface DOF and

r
H" #
$ %& '  is the transformation matrix expressed by means of the ( )r r

in N×  modal matrix 
r" #*$ %& '

and of the ( )r r
in n!×  matrix rS!

" #$ %& '  of the static boundary functions 

and ,
0

( )( )

( ) ( )

r rrr
i r r

r r
n

S
H H

I

tt

t t
!

!

! !

" #" # " #" # *" # $ %$ %$ % & '& '$ %$ % " # " # $ %= =$ %$ % $ % $ %& ' & ' $ %" #$ %$ % $ %& ' $ %& ' & '& '

qu

u u
(5)

in which nI
!

" #
$ %& '

 is the ( )r rn n! !×  unity matrix. In Eq. (3), ( )r
rN

t!  and ( )r t!!  are such that

( ) ( )
Tr r r

r iN
t t" #*$ %& '= f!  and ( ) ( ) ( ) ( )r r r rr

i jSt t t t!! !
" #$ %& '= + +f f f! . The reduced

matrix models of the substructures are usually assembled using the continuity of

displacements and the equilibrium of the interacting forces on the coupling interfaces.

3.  NONPARAMETRIC PROBABILISTIC MODEL

The structure exhibits subdomains with various levels of uncertainty (non homogeneous

uncertainties). Consequently, the substructuring is fit so that each substructure can be

considered as homogeneous with respect to its level of uncertainties. Thus, the uncertainty

level differs from one substructure to another one. The nonparametric probabilistic model of

uncertainty is implemented independently for each substructure. 
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3.1 Construction principle of a nonparametric model of random uncertainties for each

substructure

The nonparametric probabilistic approach [9] consists in directly constructing the

probabilistic model of the generalized random matrices for each substructure. Let ( )r tU  be

the random vector of the rn  DOF of substructure r
!  with free coupling interface. Vector

( )r tU  can be written as 

,
( ) ( )

( )
( ) ( )

r r
rr i

r rH
t t

t
t t! !

" # " #
" #$ % $ %= = $ %$ % $ %& '$ % $ %& ' & '

U Q
U

U U
                                    (6)

in which ( )r tQ  is the 
rN

# -valued random vector of the generalized DOF and ( )r t!U  is the

rn!
# -valued random vector of the coupling interface DOF. The stochastic process

)r r
!(Q , U  indexed by [ [0,++  with values in 

rµ
# , with rr rN nµ != + , is such that 

( )( ) ( ) ( )
, 0

( )( ) ( ) ( )

rrr r
rr r r N

rr r r

tt t t
t

tt t t!! ! !

" #" # " # " #
$ %$ % $ % $ %" # " # " #$ % $ % $ % $ %$ % $ % $ %& ' & ' & ' $ %$ % $ % $ %& '& ' & ' & '

+ + = >
QQ Q

M D K
UU U

"" "

"" "

!

!
 (7) 

in which r" #$ %& 'M  is a random matrix with values in the set ( )rµ
+
#

 
"  of all the symmetric

positive-definite ( )r r
µ µ×  real matrices and, r" #$ %& 'D  and r" #$ %& 'K  are random matrices with

values in ( )rµ
+
#

 
"  (for a fixed substructure) or in the set ( )0

rµ
+
#

 
"  of all the symmetric

positive-semidefinite ( )r r
µ µ×  real matrices (for a free substructure). In Eq. (7), the random

vector ( )r t!!  is such that ( ) ( ) ( ) ( ),
Tr r r r r

i jSt t t t! ! !
" # +$ %& '= +f f F!  in which ( )r t!F  the

random vector of the coupling forces at interface r! . 

By construction of the nonparametric model, we have 

{ } { } { }, , ,
r r rr r rE M E D E K" # " # " #" # " # " #= = =$ % $ % $ %$ % $ % $ %& ' & ' & '& ' & ' & 'M D K (8)
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where E  is the mathematical expectation. In the next section, we give a short description of

the probabilistic model for random matrices r" #$ %& 'M , r" #$ %& 'D  and r" #$ %& 'K . 

3.2  Probabilistic model for the random matrices

Below, the random matrix r" #$ %& 'A  denotes random matrices r" #$ %& 'M , r" #$ %& 'D  or r" #$ %& 'K . The mean

value of random matrix r" #$ %& 'A  is denoted by 
r

A" #$ %& '  and consequently, { }r rA E" # " #= $ %$ % & '& ' A

denotes deterministic matrices 
r

M" #
$ %& ' , 

r
D" #$ %& '  or 

r
K" #
$ %& '  (see Eq. (8)). 

When real matrix 
r

A" #$ %& '  is positive definite, then an upper triangular ( )r r
µ µ×  real matrix

[ ]rAL  exists such that [ ] [ ]
T

r r
r

A AA L L" # =$ %& '  (Cholesky factorization). In this case, we let

r rm µ= . When matrix 
r

A" #$ %& '  is with a rank equal to $ r rm µ< , then a $ r rm µ×  real matrix

[ ]rAL  exists such that [ ] [ ]
T

r rA A
rA L L" # =$ %& ' . For instance, this matrix [ ]rAL  can be obtained

from the eigenvectors related to the non-zero eigenvalues of matrix 
r

A" #$ %& ' , but other

constructions exist. In this case, we let $r rm m= . For both cases, random matrix r" #$ %& 'A  can

then be written as [ ] [ ]
T

r rr
r

A AA
L L" # " #= $ %$ % & '& 'A G  in which rA

" #$ %& 'G  is an ( )rm
+
#

 
" -valued

random matrix whose probability distribution is defined below. The probability distribution

rA

P " #
$ %
& '
G

 of random matrix rA
" #$ %& 'G  is constructed by using the maximum entropy principle [9]

and is defined by a probability density function [ ] [ ]( )
rA

G p G" #
$ %
& '
G

!  from ( )rm
+
#

 
"  into

[ [0,+ = ++# , with respect to the measure (volume element) dG%  on the set ( )S
rm
#

 
"  of all

the ( )r rm m×  real symmetric matrices and defined by 
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( )
[ ]

1 /4

1
2 .

r

r

rm m

i ji j m
dG d G

)

, , ,= -%

We then have [ ]( )
r rA A

P p G dG" # " #
$ % $ %
& ' & '

=
G G

% , with the normalization condition 

[ ]( )
( )

1.
rArm

p G dG" #
$ %
& '

+
=. G#

%

 
"

Probability density function [ ]( )
rA

p G" #
$ %
& '
G

 is then written as 

( ) ( )( ) ( )
( ) ( )

[ ]

2

2

1

2

1

2
1

2

r
rA

rA
rAr rm

m r

rA A

m
exp tr GG C det Gp G

!

!
!

/ 012 12 1123 4

" #
$ %
$ %& '

+

+ ) 5 67 7+7 77 7" # " # " #= × × × )8 9$ % & ' & '& ' 7 77 77 7: ;
GG

1
#

 
"

(9)

in which  det  is the determinant of the matrices, 

( )( )
rm

G+
" #& '1

#
 
"

 is equal to 1 if  [ ] ( )rm
G +< #"  and is equal to zero if [ ] ( )rm

G += #
 
" ,

rA
C

G
is a positive constant such that 

( ) ( )

( )
2

2

2

1

1 /4 2

1

1
2

2

1 1

2 2

r r

r r rA

m m

r
m m

rA

rA r

rA

r

j

m

m

m j

C

"
!

!

!

+

) )

=

/ 01+2 12 12 12 1123 4
=

5 6/ 07 717 7+ )27 712> + 18 92 127 71127 73 47 7: ;
-

G

where ( )z>  is the gamma function defined for 0z>  by ( ) 1

0

z tz t e dt

++
) )> = . . 

The probability distribution of random matrix rA
" #$ %& 'G  depends only on real parameter rA

!

which is independent of dimension rm  and of frequency # , and which allows the dispersion

of random matrix r" #$ %& 'A  to be controlled. This parameter is defined by



 G. Duchereau, C. Soize, submitted to MSSP, Revised Version, November 8, 2004 11

[ ]{ }
[ ]

2

2
.

rr F

r F

AA

A
rA

E G

G
!

5 67 7" # )7 7$ %& '7 77 7= 8 97 77 77 77 7: ;

G
(10)

The parameter has to be chosen such that 

0 ,
5

1r

rrA

m

m
!< <

+

+
(11)

in which [ ] { }r r rA A m
G E I" #" #= =$ % $ %& ' & 'G  and where [ ] [ ][ ]( )2 T

FB B Btr= . The dispersion

parameters of random matrices r" #$ %& 'M , r" #$ %& 'D  and r" #$ %& 'K  are then controlled by the parameters

M r! , 
D r!  and  

K r! which are independent of rm  and chosen according to Eq. (11). 

The probabilistic model of the entire structure is obtained by the assemblage of the stochastic 

substructures and the random unknown vector is ( ) ( )( )1( ) , , , ,( )S
e

N
t t t t!=U Q Q U&  in

which ( )t!U  is the union of the coupling interface DOF ( )r t!U . 

3.3  Algebraic representation of random matrix rA
" #$ %& 'G

In order to perform a Monte-Carlo numerical simulation, the following algebraic

representation of positive-definite real random matrix rA
" #$ %& 'G  is given. The random matrix

rA
" #$ %& 'G  with values in ( )rm

+
#

 
" , is written 

,
T

r G GA
" # " # " #=$ % & ' & '& 'G L L (12)

 in which G
" #& 'L  is an upper triangular matrix in ( )rm

#"  such that : 
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(1) the random variables { }'
, 'G l l

l lL" # ,& '  are mutually independent; 

(2) for 'l l< , the real random variable 
'G ll

L" #& '  is such that 

''
with ,

1
G lll l

rA

r
U

m

L $ $
!

" # =& '
+

= (13)

where 'l lU  is a real-valued Gaussian random variable with zero mean and variance equal to 1;

(3) for 'l l= , the random variable G ll
L" #& '  with values in +

#  is written as  

2 ,G lll
V$" # =& 'L (14)

with $  defined by Eq. (13) and with lV  a positive-valued gamma random variable whose

probability density function ( )
lVp %  with respect to d%  is such that 

( ){ }
1 1

2

1 1
( ) ( ) with .

22l

l

r

r

V l l

A

m l
p e

% %% % % %%
!

+

) ) ) + )
= > = +1

#
(15)

4  RANDOM SHOCK RESPONSE SPECTRA 

The analysis of the numerical model developed and its comparisons with the experiments are

carried out by means of Shock Response Spectra (SRS) [17] calculated for the acceleration

responses and denoted by ( , )aS & #  in which &  and #  are the damping ratio and the natural

frequency of a single-DOF oscillator used to generate the SRS. The SRS allows a transient

response to be described as a function of frequency (see Figure 1). 

In presence of uncertainties, the transient response is a time stochastic process and

consequently, for fixed & , every SRS is a stochastic process indexed by frequency. The

stochastic solution of such a problem can be formally written, but the solution involves high-
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dimensional multiple integrals which can only be computed by the Monte-Carlo numerical

method. Then a direct Monte-Carlo numerical simulation of stochastic Eq. (7) is performed.

Each realization of the random matrices is constructed according to the probabilistic model

described in Section 3 and using the algorithm presented in Section 3.3. The transient

responses for every realization are carried out using the Newmark method (unconditionally

stable step-by-step numerical integration scheme [18]). The probabilistic magnitudes

describing the random SRS are estimated by the usual mathematical statistics allowing a

confidence region to be constructed.

4.1 Confidence region for the random responses

Every random SRS is calculated for a damping ratio 0.001& = . Each realization of random

SRS is computed by using the Newmark integration scheme of the equation of motion. The

SRS scale is normalized with respect to 29.81 .g m s)= . Then, we introduce the normalized

random shock response spectra ( ) ( , ) /S g
a

s # & #= . The confidence region of random

process ( ) ( ){ }1 2, ,s # # # #<  associated with a given probability level 0.95Pc= , is

defined by an upper envelope ( )S #+  and a lower envelope ( )S #)  such that 

( ) ( )( ) ( ){ }. 10 ,10Prob S log s S Pc# # #+) < < (

( ) ( )
( )

110 ,
1

10S log m
Pc

#
# #

$+
/ 012 12= + 12 12 12 )3 4

( ) ( ) ( )02 ,S S S# # #+) = )

with ( ) ( )( )0
110 10S log m# #=  which is related to the mean value of the stochastic

response and with the first and second order moments ( ) ( ){ }1m E s# #= ,
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( ) ( ){ }2
2m E s# #=  and ( ) ( ) ( )2

2 1m m# # #$ = )   estimated by the usual

mathematical statistics. 

5. EXPERIMENTS 

Experiments are used for validating the proposed nonparametric approach of random

uncertainties for transient dynamics induced by shocks in a structure having a complex joint.

Experimental results are made up of 21 experiments carried out for the same test specimen. 

5.1 Experimental model description

The test specimen [16] consists of two 3mm-thick aluminium (Dural) plates connected

together through a complex joint and excited by a deterministic impulsive load. Plate 1 is

0.4m width and 0.6m length. Plate 2 is 0.5m width and 0.6m length. The complex joint is

constituted of 2 smaller plates (2mm-thick, 0.14m width, 0.6m length), tightened by 2 lines of

20 bolts (see Figure 2). 

The experimental database is constituted of the accelerograms measured with 29

accelerometers for 21 experimental configurations corresponding to 21 random distributions

of bolt-prestresses having the same mean values [16]. The experimental set-up corresponds to

a free-free structure.

The impulsive loads used in the experiments are deterministic. The two loads that we have

chosen to display here range in the medium-frequency band: [1000-1200] Hz (see Figure 3)

and [1800-2000] Hz (see Figure 4). The experimental loads for 200 Hz bandwidth are
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digitally generated and consequently, the 21 configurations are excited with the same

deterministic impulsive load.

5.2 Analysis of experimental results

For each configuration and for the driven force (impulsive load applied to the excitation

point), the experimental database is constituted of the normal accelerations measured by 29

accelerometers located to the nodes of a regular grid constituted of 29 points which coincide

with nodes of the mean finite element model. In order to limit the number of figures presented

in this paper, the experimental results and the comparisons of the experiments with the

predictions are limited (for a given impulsive load applied to the excitation point 1 in plate 2,

see Fig. 2) to 3 observation points (3 accelerometers). The first one is the driven point (point 1

in plate 2), the second one is an observation point located in the plate where is located the

driven point (point 3 in plate 2) and the third point is located in the other plate, through the

complex joint (point 2 in plate 1). Additional results and comparisons can be found in Ref.

[15]. 

The experimental results are expressed in terms of SRS and displayed for two observation

points (Fig. 2): point 2 is situated on plate 1, whereas point 3 is in plate 2 which is the excited

one. In Figure 5 and Figure 6, the pencil of solid lines represents the SRS for 21 experimental

configurations at observation points 2 and 3 (see Fig. 2). Figure 5 corresponds to an excitation

in band [1000-1200] Hz and Figure 6 corresponds to an excitation in band [1800-2000] Hz.

For both bands, the influence of the bolt-prestresses upon the experimental responses is

noticeable and increases with the frequency; This emphasizes the sensitivity of higher elastic

modes to uncertain parameters of  such a system. Moreover, the peaks of the SRS  are
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smoother as frequency grows. Nevertheless, the dispersion of the experimental responses is

more significant for band [1800-2000] Hz than for band [1000-1200] Hz.

6. COMPARISON OF THE EXPERIMENTS WITH THE MEAN MODEL PREDICTION

A FE model is developed for the mean model of this test specimen and allows the response of

the mean model to be calculated. Further, the nonparametric probabilistic approach of random

uncertainties due to the complex junction is constructed from the mean FE model. 

6.1 Mean model 

6.1.1 Finite Element model of the mean system

The three substructures of the mean model are represented by a uniform FE model of 4 nodes

plates elements following the Kirchhoff thin plate assumptions (e.g. DOF Tz, Rx and Ry are

retained). The complete structure is constituted of the 3 substructures (Figure 2): there are

6222 DOF (34x61 nodes) in plate 1, 2745 DOF (15x61 nodes) in the Complex Joint (CJ) and

8052 DOF (44x61nodes) in plate 2, e.g. a total amount of more than 16000 DOF. Plates 1 and

2 are isotropic whereas the complex joint needs an orthotropic description. The updating of

the first 3 elastic modes of the complete structure and the associated damping ratios of the

mean FE model has been performed using experiments. It should be noted that the responses

measured at the 29 accelerometers are sufficient for identifying the first 3 elastic modes which

are global bending modes of the complete structure. The mean FE model has to be able to

give a reasonable prediction of the mean dynamical response of the mechanical system in the

frequency band analysis [0 , 2000] Hz. in order to successfully apply the nonparametric
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probabilistic approach. For the numerical mean FE model, there are 64 elastic modes below

1000 Hz, 77 below 1200 Hz, 113 elastic modes below 1800 Hz and 127 elastic modes below

2000 Hz. It should be noted that the mesh of the complete structure constituted of (61x91)

nodes is adapted to the frequency band [0 , 2000] Hz. The spatial sampling is the same for the

two spatial directions and corresponds to 6 points for the smallest half wave length appearing

in the elastic mode having the highest eigenfrequency (close to 2000 Hz) .

6.1.2 Damping model of the mean system 

For each substructure r
! , the damping matrix of the mean FE model has then been chosen

[19] such that

1

2r r r r rT
N

'
' '

'
'

'

#
&
µ=

" # " # " #=$ % $ % $ %& ' & ' & '? V V# " "

in which N  is such that 1 rN n, ,  and where 

r
ir

r

'
'

' !

" #
$ %= $ %
$ %& '

V
V

V
 ,  '#  and  '&  are

respectively the eigenmode, the eigenfrequency and the modal damping rate relative to the

th'  free interface mode. This mean damping model allows the mean damping matrix of each

substructure to be easily constructed, for which the data corresponds to the modal damping

rates of the substructure. Taking the same value &  for the modal damping rates '& of all the

elastic modes and for all the substructures, it can easily be verified that the modal damping

rates of the complete structure are the same and equal to &  which is then called the “mean

damping rate”.  We have then chosen rN N n!= + ,  '& &= ,  1'µ =  and we directly

construct the reduced damping matrix such that 
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1

2r T
N

D ' ' '
'

& #
=

" # =$ %& ' ? C C

with 
Tr r r

H ''
" # " #= $ % $ %& ' & 'C V" . The value of this mean damping rate &  has been estimated

from the measurements related to the modal damping rates of the first 12 elastic modes of the

complete structure and yields 0.0021& = . Clearly there is an uncertainty with such a

damping model of the substructures, the level of model uncertainties being very important for

the complex joint and very small for plates 1 and 2 (see Section 7).

6.2 Mean model results 

In Figures 5 ([1000-1200] Hz) and 6 ([1800-2000] Hz), the thick dashed lines denote the

responses of the mean model at observation points 2 and 3 (see Fig. 2). For band [1000-1200]

Hz, the mean reduced model has 125 = (50 + 8 + 67) elastic modes for the 3 substructures

with fixed coupling interfaces and, for band [1800-2000] Hz, the mean reduced model has

205 = (80 + 20 + 105) elastic modes for the three substrucres with fixed coupling interfaces.

The mean model prediction’s SRS do not agree with the experimental SRS. These significant

errors between the experimental and the mean numerical responses cannot be due to the bolt-

prestresses. On the contrary, they point out that the model uncertainties in the mean model are

important and require model (and data) uncertainties to be taken into account through the

proposed nonparametric probabilistic approach. 
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7. RESULTS OF THE PROBABILISTIC MODEL

A confidence region of the stochastic response of the model with random uncertainties can

then be used to predict the responses of the uncertain system and can be compared with the

experiment.

In order to evaluate the role played by the nonhomogeneity of uncertainties which are

assumed to be larger in the complex joint, a sensitivity analysis with respect to parameters r!

has been carried out. Below, we limit the presentation to a sampling of the values used. The

results are displayed for the following values of the dispersion parameters: 

0CJ
M! = ,  0.8CJ

D! =  and  0.7CJ
K! = ,

0
plates
M! = ,  0

plates
D! =  and  0.1

plates
K! =  ,

for both excitation bands: [1000-1200] Hz and [1800-2000] Hz. 

The mass of the mean model has been updated with experiments and consequently, there is a

negligible error on the mass matrices. The Monte-Carlo numerical simulation method has

been carried out for a sufficiently high amount of realizations (600 to 1200), depending on the

uncertainty level assigned. A convergence analysis with respect to the number of elastic

modes (  in the reduced matrix models has been performed as well. As a consequence, the

results are displayed for the 2 following cases: 

1 2 3
150N N N( = + + =   for [1000-1200] Hz, 

1 2 3
232N N N( = + + =  for [1800-2000] Hz.

Figures 5 and 6 show the results obtained for these values. The grey region is the 95%

confidence region of the random responses, computed with the nonparametric model of

random uncertainties. It should be noted that the nonparametric probabilistic model of random
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uncertainties allows the 95% confidence region (grey region) to include the experiments

although the response of the mean model (dashed lines) does not well fit the experiments

(pencil of solid lines). 

The nonparametric probabilistic approach of random uncertainties improve significantly the

mean model predictions. The confidence regions grow wider as frequency goes up for fixed

dispersion parameters r! . This outlines the sensitivity of  high rank elastic modes to model

uncertainties (and data uncertainties).

8.  CONCLUSIONS

About uncertainty modeling, the comparisons of the developed model with the experiments

show the capability of the nonparametric probabilistic approach to predict the shock-induced

transient response in the low- and the medium-frequency ranges. In spite of a rather large

number of  DOF used in the mean FE model, significant errors appear between experiments

and numerical prediction. These errors are mainly due to the simplified model used for

modeling the complex junction. It implies that some model uncertainties exist in the mean FE

model. The nonparametric approach of non homogeneous uncertainties proposed in this paper

allows the robustness of the numerical prediction to be increased. The comparison of the

experiments with the confidence region predicted by this probabilistic approach is satisfying

for a low- and a medium-frequency band. A general methodology to estimate the values of the

dispersion parameters is in progress. The value of the dispersion parameter CJ
K!  is expected to

be almost constant whatever the excitation band. For the range of frequency presented here (e.

g. medium-frequency bands), the dispersion parameters  
plates
K!  are small but not negligible. 
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FIGURE 1



 G. Duchereau, C. Soize, submitted to MSSP, Revised Version, November 8, 2004 25

FIGURE 2
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FIGURE 3
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FIGURE 4
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FIGURE 5
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FIGURE 6
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FIGURE LEGENDS

Figure 1. Shock response spectrum method 

Figure 2. Geometry of the experimental configuration

Figure 3. Excitation load in [1000-1200] Hz

Figure 4. Excitation load in [1800-2000] Hz

Figure 5. SRS at the observation points 2 and 3 for an impulsive load in the band [1000-1200]

Hz with 0CJ
M! = ,  0.8CJ

D! = , 0.7CJ
K! = , 0

plates
M! = ,  0

plates
D! =  and  0.1

plates
K! = .

Figure 6. SRS at the observation points 2 and 3 for an impulsive load in band [1800-2000] Hz

with 0CJ
M! = ,  0.8CJ

D! = , 0.7CJ
K! = , 0

plates
M! = ,  0

plates
D! =  and  0.1

plates
K! = .

 


