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Abstract

Parametric probabilistic approaches allow data uncertainties to be modeled, but have some

difficulties to represent model uncertainties. It has been recently shown that both model and

data uncertainties can be taken into account with a non-parametric approach. Moreover, it

is known that with increasing complexity of a mechanical system, model uncertainties also

increase. Based on these considerations, both parametric and non-parametric probabilis-

tic approaches are used on a complex system of aerospace engineering constituted of a

satellite coupled with its launcher. First, a parametric probabilistic model is constructed for

analysing the sensitivity of the response due to data uncertainties. Then, the non-parametric

probabilistic model is introduced with the same uncertainty level in order to study the sen-

sitivity of the response with respect to the model and the data uncertainties. The dynamical

responses obtained with these two probabilistic approaches are analysed in order to quan-

tify the sensitivity of the structure to data uncertainties as well as model uncertainties.

Key words:

Structural dynamics, complex structures, random uncertainties, parametric probabilistic

model, non-parametric probabilistic model.

1 Introduction

In structural dynamics, numerical models are used to perform dynamic analyses of complex

structural components of mechanical systems. Every manufacturing process induces physical

discrepancies. Consequently, the manufactured system is different from the designed system.

These differences can have significant effects on the dynamics of the structure. In order to

construct predictive numerical models, a mechanical-numerical model is constructed from the

designed system using the finite element method. Such a mechanical-numerical model will

be called here the mean finite element model of the structure. It should be noted that such a

deterministic model is usually not sufficient for a robust prediction of the dynamic response of

the structure. In order to increase the robustness of the predictions, this mean model is used

for implementing probabilistic models for taking into account uncertainties. In particular, the
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robustness of the predictions are of great relevance to many industrial areas such as aerospace

industry.

The uncertainties can then be splitted in two complementary classes. The first one refers the

uncertain parameters in the mean finite element model describing data uncertainties. The sec-

ond class is due to simplifications introduced in the construction of the mean finite element

model using the mathematical-mechanical-numerical modelling process, which cannot be taken

into account by the uncertain parameters of the mean finite element model. In this paper, two

probabilistic approaches for modelling random uncertainties are considered, namely the para-

metric probabilistic approach for data uncertainties in the mean finite element model and the

non-parametric probabilistic approach for model uncertainties with respect to the mean finite

element model.

The parametric probabilistic approach allows data uncertainties to be modelled by considering

the uncertain parameters of the mean finite element model as random quantities. Such uncertain

parameters are usually the geometrical parameters, the parameters of the constitutive equa-

tions and the boundary conditions. As a consequence, each random finite element matrix results

from a deterministic mapping of the random parameters. It should be noted that parametric ap-

proaches are recognised as efficient methods for modelling data uncertainties and are widely

used in computational mechanics (see for instance [1–7]).

Nevertheless, the parametric probabilistic approach has difficulties to take into account model

uncertainties. For instance, when dealing with a beam structure, the use of the Euler beam the-

ory instead of the tridimensional elasticity theory corresponds to the introduction of a reduced

admissible displacement field (reduced kinematics). An approach, called the non-parametric

probabilistic approach of model uncertainties, has recently been introduced to take into account

model uncertainties. The theoretical concepts have been introduced and developed in [8,9] and

several experimental validations [10–13] and numerical validations [14,15] have been carried

out. In this paper, the vibration amplitudes are assumed to be sufficiently small in order that

linearised equations can be used. For the vibration problem considered, the existence of lo-

cal non-linearities at certain junctions of the structure can be assumed to be negligible in the

frequency band of analysis. The non-parametric probabilistic approach of model uncertainties
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proposed here is then implemented in a linear context. Such a probabilistic approach allows the

robustness of a linear numerical model with respect to model uncertainties for the set of all the

possible linear models to be analysed. With such a non-parametric probabilistic approach, the

generalised matrices issued from a mean reduced matrix model of the structure are replaced

by random matrices. The probability distributions of these random matrices are constructed by

using the maximum entropy principle under constraints defined by the available information

and yields a new class of random matrices [8,9,14]. With such a formulation, the global disper-

sion level of each random matrix is controlled by a unique positive parameter which is called

the dispersion parameter. Moreover, it is important to note that this methodology can easily be

extended to the case of nonhomogeneous random uncertainties [10] and to the case of mistuned

cyclic structures with random uncertainties [16,17] for which dynamical substructuring meth-

ods are required and used. Furthermore, it has been shown (see for instance [14,13,15]) that

the non-parametric probabilistic approach can represent model uncertainties. In view of these

results, it would be very interesting to apply the parametric probabilistic approach and the non-

parametric probabilistic approach for a complex structure for which the mean finite element

model is simplified. Since the parametric probabilistic approach allows data uncertainties to be

modeled and since the non-parametric probabilistic approach takes into account the model un-

certainties, the main objective of this paper is to show the role played by data uncertainties and

by model uncertainties in a complex dynamical system.

In section 2, the dynamical equations issued from the parametric probabilistic approach are pre-

sented. Section 3 is devoted to the dynamical equations issued from the non-parametric prob-

abilistic approach. Section 4 deals with the identification of the dispersion parameters of the

non-parametric probabilistic approach with respect to the parametric probabilistic approach in

order to introduce a similar level of uncertainty for each probabilistic approach. The method-

ology used for solving the random equations is then presented in section 5. Finally, Section 6

is devoted to the analysis of a complex aerospace engieering system. The system considered

is a satellite of the European Space Agency, whose mean model is a large tridimensional finite

element model. Both parametric and non-parametric probabilistic approaches are used for mod-

elling data uncertainties and model uncertainties in the satellite. Dynamical analyses are carried

out with a similar level of uncertainty for each probabilistic model. Convergence analyses are
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systematically performed with respect to the dimension of the reduced model and the number

of realizations for statistical estimations. Two cases are considered: the free satellite and the

satellite coupled with the launcher which is considered as deterministic in the present work.

1.1 Mathematical notation conventions

In this paper, the following conventions are adopted:

(1) A real or complex deterministic scalar is denoted by a lower case letter (for instance f )

(2) A real or complex-valued random variable is denoted by an upper case letter (for instance

F )

(3) A real or complex deterministic vector is denoted by a boldface lower case letter (for instance

f = (f1, . . . , fn))

(4) A real or complex-valued random vector is denoted by a boldface upper case letter (for

instance F = (F1, . . . , Fn))

(5) A real or complex deterministic matrix is denoted by an upper case letter between brackets

(for instance [A])

(6) A real or complex-valued random matrix is denoted by a boldface upper case letter between

brackets (for instance [A])

(7) All the deterministic quantities related to the mean model are underlined (for instance

f, f, [A])
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2 Random response of the dynamical system with data uncertainties modeled by the

parametric probabilistic approach

2.1 Mean finite element model of the dynamical system

We are interested in the linear vibrations of a lightly damped free structure around a static

equilibrium configuration considered as a natural state without prestresses in the low frequency

band
 

. For all ω in band
 

, the mean finite element matrix equation of the structure is written

as
(
− ω2 [M ] + i ω [D] + [K]

)
u(ω) = f(ω) , (1)

in which u(ω) and f(ω) are the ✁ m-vectors of the DOFs and of the external forces. Since the

structure has a free boundary, the mean mass matrix [M ] is a positive-definite symmetric (m ×

m) real matrix and the mean damping and stiffness matrices are positive semidefinite symmetric

(m×m) real matrices. Furthermore, it is assumed that the kernel of mean matrices [D] and [K]

is identical, constituted of r rigid-body modes with 0 ≤ r ≤ 6 and denoted as ✂
1
, . . . , ✂

r
.

2.2 Parametric model of random uncertainties

Let x = (x1, . . . , xµ) be the ✄ µ-vector whose components describe mechanical parameters

such as geometric parameters of the structure, coefficients of the elasticity tensor, mass den-

sity,etc. Consequently, the finite element mass, damping and stiffness matrices are considered

as a function of these parameters. Since these parameters are uncertain, one then introduces

the ✄ µ-valued random variable X = (X1, . . . , Xµ). The random finite element model is then

written as
(
− ω2 [Mpar] + i ω [Dpar] + [Kpar]

)
Upar(ω) = f(ω) , (2)

in which Upar(ω) is the ✁ m-valued random vector of the DOFs and where [Mpar] = [M(X)],

and [Dpar] = [D(X)], [Kpar] = [K(X)] are the random finite element mass and damping,

stiffness matrices with values in the set of the positive-definite symmetric (m×m) real matrices

and in the set of the positive semidefinite symmetric (m × m) real matrices. The components
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{Xi , i ∈ {1, . . . , µ}} of random vector X are independent Gaussian random variables of mean

value mi = xi and of standard deviation σi. A numerical solver adapted to the Monte Carlo

numerical simulation and using a reduced model constructed with random modal analysis [18–

21] is used for calculating the random elastic response.

3 Random response of the dynamical system with model and data uncertainties modeled

by the non-parametric probabilistic approach

Let us recall that the main idea of the non-parametric probabilistic approach of model and data

uncertainties consists in replacing the generalised matrices of a mean reduced matrix model of

the structure by random matrices whose probability model is constructed with the maximum

entropy principle. In particular, the theoretical construction and the physical concepts of this

recent probabilistic approach are detailed in [8,9,14,13]. In this Section, the main steps for

establishing the random equations are summarised.

3.1 Mean reduced matrix model

Since one is interested in the elastic motion of the structure, one then introduces the (m × n)

real matrix [Φ] whose columns are the n ≪ m eigenvectors ✂
α

related to the n strictly positive

lowest eigenfrequencies λα = ω2
α. The mean reduced matrix model is written as

u(ω) = [Φ] q(ω) , (3)

in which q(ω) is the ✁ n-vector of the generalised coordinates solution of the mean reduced

equation
(
− ω2 [M red] + i ω [Dred] + [K red]

)
q(ω) = F(ω) , (4)

in which F(ω) = [Φ]T f(ω) is the ✁ n-vector of the generalised forces and where the mean

reduced mass, damping and stiffness matrices [M red] = [Φ]T [M ] [Φ], [Dred] = [Φ]T [D] [Φ]

and [K red] = [Φ]T [K] [Φ] are positive-definite symmetric (n × n) real matrices.
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3.2 Construction of the non-parametric probabilistic model of model and data uncertainties

The use of the non-parametric probabilistic approach of model and data uncertainties yields the

random matrix equation

(
− ω2 [Mnpar

red ] + i ω [Dnpar
red ] + [Knpar

red ]
)

Q(ω) = F(ω) , (5)

in which [Mnpar
red ], [Dnpar

red ] and [Knpar
red ] are positive-definite symmetric (n×n) real-valued matrices

corresponding to the random reduced mass, damping and stiffness matrices and where Q(ω) is

the ✁ n-valued random vector of the random generalised coordinates. The ✁ m-valued random

vector Unpar(ω) is thus reconstructed by

Unpar(ω) = [Φn] Q(ω) . (6)

3.2.1 Probability distributions of the random matrices

The positive-definite random matrices [Mnpar
red ], [Dnpar

red ] and [Knpar
red ] are written as

[Mnpar
red ] = [LM ]T [GM ] [LM ] (7)

[Dnpar
red ] = [LD]T [GD] [LD] (8)

[Knpar
red ] = [LK ]T [GK ] [LK ] , (9)

in which [LM ], [LD] and [LK ] are diagonal (n×n) real matrices such that [M red] = [LM ]T [LM ],

[Dred] = [LD]T [LD] and [K red] = [LK ]T [LK ]. The probability distribution of random matrices

[GM ], [GD] and [GK ] is derived from the maximum entropy principle issued from the informa-

tion theory [22] with the available information [8]. It is shown in [8,9] that random matrices

[GM ], [GD] and [GK ] are independent random variables whose dispersion level can be con-

trolled by the positive real parameters δM , δD and δK which are independent of the dimension

n.

Below, [G] denotes [GM ], [GD] or [GK ] and δ denotes the corresponding dispersion parameter.

The probability density function of random matrix [G] with respect to the volume element

d̃G = 2n(n−1)/4
∏

1≤i≤j≤n

dGij , (10)
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is written as

p[G]([G]) = ☎
M

+
n (R)([G]) × CG × (det([G]))(1−δ2)(2δ2)−1(n+1) × e−(n+1)(2δ2)−1 tr[G] , (11)

in which ☎
M

+
n (R) denotes the indicatrix function of the set of all the symmetric (n × n) real

positive-definite matrices, det is the determinant, tr is the trace and where CG is the positive

constant such that

CG =
(2π)−n(n−1)/4

(
n+1
2δ2

)n(n+1)(2δ2)−1

∏n
j=1 Γ(n+1

2δ2 + 1−j
2

)
, (12)

in which Γ(z) is the gamma function defined for all z > 0 by Γ(z) =
∫ ∞
0 tz−1e−t dt. Eq. (11)

shows that the entries [G]jk of the random matrix [G] are dependent random variables.

The following algebraic representation of the random positive-definite symmetric real matrix

[G] allows a procedure for the Monte Carlo numerical simulation of the random matrix [G] to

be defined. The random matrix [G] is written as

[G] = [LG]T [LG] , (13)

in which [LG] is an (n × n) upper triangular random matrix resulting from the Cholesky fac-

torisation such that

(1) the random variables {[LG]jj′, j ≤ j ′} are independent;

(2) for j < j ′, the real-valued random variable [LG]jj′ can be written as [LG]jj′ = σn Ujj′ in

which σn = δ(n + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero

mean and variance equal to 1;

(3) for j = j ′, the positive-valued random variable [LG]jj can be written as [LG]jj = σn

√
2Vj

in which σn is defined above and where Vj is a positive-valued gamma random variable whose

probability density function pVj
(v) with respect to dv is written as

pVj
(v) = ☎ R+(v)

1

Γ(αn,j)
vαn,j−1 e−v , αn,j =

n + 1

2δ2
+

1 − j

2
. (14)
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4 Identification of the dispersion parameters of the non-parametric approach with re-

spect to the parametric approach

Let us recall that the main objective of thie paper is to analyse the role played by data uncer-

tainties and by model uncertainties in the dynamical response of a complex mechanical system.

The parametric probabilistic approach allows data uncertainties to be analysed while the non-

parametric probabilistic approach is proposed to analyse model and data uncertainties. In order

to quantify the role played by each one of the two kinds of uncertainties, it is necessary to intro-

duce the same level of uncertainties in the two probabilistic approaches. It is assumed that the

probability distributions of uncertain data (parametric probabilistic approach) are given. Then

the level of uncertainties of the non-parametric probabilistic approach has to be defined with

respect to the level of uncertainties of the parametric probabilistic approach. It means that the

dispersion parameters δM , δD and δK which control the dispersion of each random matrix issued

from the non-parametric probabilistic approach are then identified with respect to the paramet-

ric probabilistic approach. Since the robustness of any finite element model can be characterised

by its lowest eigenfrequency, the method which is chosen to calibrate the mass and the stiffness

dispersion parameters δM and δK of the non-parametric probabilistic approach, is the following.

Let Ωpar
1 and Ωnpar

1 be the non zero lowest eigenfrequencies of the dynamical system modeled

with the parametric and the non-parametric probabilistic approaches respectively. The probabil-

ity density functions of the random eigenfrequencies Ωpar
1 and Ωnpar

1 denoted by pΩ
par
1

and pΩ
npar
1

are then compared in the least square sense. The two-dimensional cost function J(δM , δK) is

then introduced such that

J(δM , δK) =
||pΩnpar

1
(δM , δK) − pΩpar

1
||L2

||pΩ
par
1
||L2

, (15)

in which the norm ||f ||L2 is given by

||f ||L2 =
( ∫

R

|f(x)|2 dx

)1/2

. (16)

The identification is then carried out such that parameters δM and δK minimize the cost function,
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i.e., are solution of the optimization problem

min
δM ,δK

J(δM , δK) . (17)

The dispersion parameter δD is identified by using the identification method proposed in [16].

Let [Dpar
red] be the random generalized damping matrix of the parametric probabilistic approach.

The dispersion parameter δD is then calculated by

δD =

√√√√ W par
D (n + 1)

tr([Dred])2 + tr([Dred]2)
, (18)

in which W par
D is given by

W par
D = E{||[Dpar

red] − [Dred]||
2
F}, (19)

and where ||[A]||2F = tr([A] [A]T ).

5 Methodology for solving the random equations and for analysing the random re-

sponses

5.1 Convergence analysis of the stochastic system

The Monte Carlo numerical simulation is carried out with ns realisations denoted by θ1, . . . , θns
.

The forced response of the stochastic dynamical system is studied in the low-frequency band
 

. The numerical values of the dispersion parameters δM , δD and δK are obtained by using

the identification procedure described in Section 4. For each realisation θi, a sample of the

random variable U npar(θi; ω) is calculated in solving Eqs. (5) and (6). A stochastic convergence

analysis is carried out in order to define the number n of modes to be kept and the number

ns of realisations used in the Monte Carlo numerical simulation. The second-order stochastic

convergence is based on the use of the sequence |||Unpar||| defined by

|||Unpar|||2 = E
{ ∫

ω∈B

||Unpar(ω)||2 dω
}

, (20)
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in which ||Unpar(ω)||2 is the hermitian norm of random vector Unpar(ω). The convergence is then

analysed in studying the function (ns, n) 7→ Conv(ns, n) defined by

Conv(ns, n)2 =
1

ns

ns∑

j=1

∫

B

||Unpar(ω, θj)||
2 dω . (21)

5.2 Confidence region of the random response

The confidence region of the random response is constructed for a given probability level Pc.

The following reasoning is valuable for both probabilistic approaches. The exponents npar or par

are then omitted in the notations used below.

Let jobs be an observation node. Let ujobs
(ω) be the ✁ 3-vector and let Ujobs

(ω) be the ✁ 3-

valued random variable related to the three translational DOFs of node jobs. One then in-

troduces the scalar wjobs
(ω) = 20 log10 (||ujobs

(ω)||) and the random variable Wjobs
(ω) =

20 log10 (||Ujobs
(ω)||).

The mean value W 0
jobs

(ω) of the random response is then defined by

W 0
jobs

(ω) = 20 log10(|E{||Ujobs
(ω)||}|) . (22)

Let ω fixed in
!

. The quantile function QWjobs
(α; ω) of the random variable Wjobs

(ω) is defined

by

QWjobs
(α; ω) = inf

w
FWjobs

(w; ω) ≥ α , (23)

in which FWjobs
(w; ω) is the cumulative distribution function of the random variable Wjobs

(ω).

Let W̃jobs
(θ1; ω) < . . . < W̃jobs

(θns
; ω) be the order statistic associated with Wjobs

(θ1; ω) , . . . ,

Wjobs
(θns

; ω). The unbiased estimation of cumulative distribution function FWjobs
(w; ω) is de-

fined by

F̂Wjobs
,ns

(w; ω) =
1

ns

ns∑

k=1

H0(w − W̃jobs
(θk; ω)) , (24)

in which H0 is such that H0(x) = 1 if x ≥ 0 and H0(x) = 0 if not. The upper envelope wjobs,+

and the lower envelope wjobs,− delimiting the confidence region with probability level Pc is then

given by
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wjobs,+(ω) = W̃jobs
(θk+

; ω) , k+ = fix(0.5 ns (1 + Pc)) , (25)

wjobs,−(ω) = W̃jobs
(θk−

; ω) , k− = fix(0.5 ns (1 − Pc)) , (26)

(27)

in which fix(x) is the integer part of real x.

6 Analysis of a complex aerospace engineering system

6.1 Mean finite element model of the free satellite

The mean (nominal) model of the satellite is a refined finite element model with about 120, 000

DOFs, provided by the European Space Agency (ESA). It is shown in Fig. 1, where the model is

rotated by 90◦, as the z-axis is the vertical axis. The external applied load consists of a harmonic

base excitation in the range [5, 100]Hz, prescribed in terms of the acceleration at the interface of

the satellite. In Fig. 1 the interface is located on the hidden face of the structure, with the surface

vector pointing in the negative z-axis. The prescribed acceleration is enforced with the so-

called large mass approach, in which a single, large, fictitious mass is applied at the base of the

structure and a proportionately large force is applied to this mass. In the present case, the node

with the large mass is located at the center of the circular interface ring and is connected with the

interface nodes through rigid beam elements. To avoid unwanted interface rotations, large mass

moments of inertia in the order of the mass have been assigned to the point mass, too. In the

range [5, 25]Hz, the imposed acceleration is 1 g and in the range [25, 100]Hz, the acceleration

amplitude is reduced to 0.8 g. A frequency response analysis has been carried out for the range

[5, 100]Hz. The mean damping ratios ξ
j

= 0.015 and ξ
j

= 0.025, for j = 1, . . . , M have

been assumed for frequencies below 30 Hz and for frequencies above 30 Hz respectively.

6.2 Data for the parametric probabilistic approach

In the parametric probabilistic model, the uncertain parameters of the mean finite element model

are modeled by random variables. This relates both to material and geometric properties of the
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satellite finite element model, such as beam section dimensions, composite material fiber orien-

tation, non structural masses, elastic moduli etc. For such a complex structure, it is very difficult

to make an a priori assessment of whether the uncertainty in a given parameter is influential and

should be considered or if it can be neglected. Therefore, the parameters have been classified

into various types and for each occurence of a certain parameter type, an independent random

variable has been defined. The assumed probability distribution and the magnitude of the vari-

ability depend on the parameter type and are reported in Table 1 in Appendix A. For instance,

for Young’s moduli of isotropic materials, the coefficient of variation σ/µ was assumed to be

0.08. In summary this approach leads to a total of 1319 independent random variables with

coefficient of variations between 0.04 and 0.12. Moreover, in order to adequately account for

the significant uncertainty associated with damping, the coefficient of variation for damping has

been assumed to be 0.4 with a log-normal distribution. It should be noted that the magnitude of

the scatter has been selected on the basis of data available in the literature [23–26].

6.3 Estimation of the dispersion parameters of the non-parametric probabilistic approach

The probability distribution pΩpar
1

introduced in Section 4 is estimated with ns = 1500 realisa-

tions. Then the minimisation of function J(δM , δK) yields δM = 0.14217 and δK = 0.13487.

The Fig. 2 shows the probability distributions Ω 7→ pΩ
par
1

(Ω) (thin line) and Ω 7→ pΩ
npar
1

(Ω)

(thick line). It can be seen that the two probability density functions issued from both proba-

bilistic approaches match reasonably well. Concerning the dispersion parameter δD whose ex-

pression is given by Eq. (18), the Fig. 3 shows the estimation of δD with respect to the number

ns of realisations used for the Monte Carlo simulation. It can be seen that a good convergence

is reached for ns = 300 and yields δD = 0.4166.

6.4 Convergence analysis of the stochastic system

The Monte Carlo numerical simulation is carried out with ns realisations denoted by θ1, . . . , θns
.

The stochastic mechanical system is studied in the low-frequency band
 

= [5 ; 100] Hz with

the following values of the dispersion parameters δM = 0.1422 , δD = 0.4166 , δK = 0.1349.
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The Fig. 4 displays the graph of the function ns 7→ 20 log10 (Conv(ns, n)) for n = 294. It

can be seen that a good convergence with respect to the Monte Carlo numerical simulation is

obtained for ns = 750. The Fig. 5 shows the graph of the function n 7→ 20 log10 (Conv(ns, n))

for ns = 750. It can be seen that a good approximation is obtained for n = 150.

6.5 Context of the analysis

In previous works, it has been shown that the confidence region constructed with the non-

parametric probabilistic approach from a mean model of a structure was able to capture the

experimental frequency response function in presence of model uncertainties which was not the

case for the confidence region constructed with the parametric probabilistic approach adopted to

take into account data uncertainties (see for instance for theoretical explanations [14,13] and for

numerical and experimental validations [10,12,15]). These previous works observations show

that the non-parametric probabilistic approach is representative of actual model uncertainties.

In addition, the differences between the confidence region obtained with each probabilistic ap-

proach are justified by the fact that the parametric probabilistic approach takes into account data

uncertainties while the non-parametric one takes into account both model and data uncertain-

ties. For the complex structure investigated here, no experimental data concerning the dynamic

response of the manufactured satellite is available. For such a complex aerospace system, all the

internal equipments of the satellite cannot be represented by the mean finite element, inducing

model uncertainties. The parametric probabilistic model is constructed in order to analyse data

uncertainties.

6.6 Confidence region estimation of the random response of the free satellite

In order to simplify the notations, indicial exponents npar and par are omitted.

One considers the random response of the free satellite at the node jobs (see Fig. 1) in low

frequency band
 

. The numerical calculations are carried out with n = 150 and ns = 1500.

Figs. 6 and 7 display the graphs of the confidence region of the random displacements of the
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node jobs obtained for a probability level equal to 0.96 and constructed with the quantile method.

The thick dashed-dotted line shows the graph ν 7→ wjobs
(ν), in which ν = ω/(2 π) is the

circular frequency in Hertz. The thin dotted line corresponds to ν 7→ W 0
jobs

(ν). The confidence

region corresponds to the gray filled zone whose envelopes are delimited by the mappings ν 7→

w−
jobs

(ν) and ν 7→ w+
jobs

(ν) and calculated for the frequency band [15, 100] Hz. Fig. 6 corresponds

to the parametric probabilistic modelling whereas Fig. 7 corresponds to the non-parametric

probabilistic modelling. From Figs. 6 and 7, it can be seen that the confidence region obtained

are similar for frequencies lower than 25 Hz which means that model uncertainties are small

with respect to data uncertainties in this low frequency band. For frequencies greater than 25 Hz,

Figs. 6 and 7 show that model uncertainties are significant and increase with the frequency.

In addition, it should be noted that the mean of the random response obtained with the non-

parametric approach is very different from the response of the mean model. Furthermore, there

exist frequencies for which the response of the mean model is outside from the confidence

region. On the contrary, this phenomenon is not present for the random response obtained with

the parametric probabilistic model displayed in Fig. 6. This is due to the fact that the non-

parametric probabilistic approach has the capability to take into account model uncertainties and

not only data uncertainties. From these results, it can be concluded that the numerical model

of the free satellite is robust to data and model uncertainties in frequency band [15, 25]Hz,

stays robust to data uncertainties in [25, 58]Hz and is not robust to model uncertainties in the

frequency band [25, 100]Hz.

6.7 Mean finite element model of the satellite coupled with its launcher

The mean model of the coupled mechanical system is three dimensional finite element model.

The finite element model of the launcher is decomposed in four subdomains which are two

symmetric solid propellant boosters (EAPM, EAPP), a main stage with liquid propellant tanks

(EPC) and the upper composite (UC) which contains the satellite. The assembled finite element

model of the mechanical system is shown in Fig. 8. The coupled launcher-satellite system is

subjected to a deterministic excitation which corresponds to a pressure oscillation distributed

along the longitudinal direction of the each booster with opposite phases.
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6.8 Confidence region estimation of the random response of the coupled launcher-satellite

system

In the present case, the launcher is assumed to be without uncertainties while the satellite has

uncertainties. Hence, the uncertainties in the coupled system are nonhomogeneous. The im-

plementation of the non-parametric probabilistic approach for nonhomogeneous uncertainties

requires to describe the mechanical system by dynamic substructuring [10]. The coupled system

is constituted of five substructures. The dynamic substructuring method used is the Craig and

Bampton modal synthesis method [27].

For the non-parametric probabilistic approach of uncertainties in the solution for the cou-

pled system, the numerical analysis is carried out in the low frequency band [5 , 54] Hz with

ns = 1500. The dispersion parameters for the solution are those defined in Section 6.4. Fig. 9

displays the graph of the confidence region for the random displacements at the node jobs with

a probability level equal to 0.96. The thick dashed-dotted line shows the graph ν 7→ wjobs
(ν)

with ν = ω/(2 π) the circular frequency. The thin dotted line corresponds to ν 7→ W 0
jobs

(ν).

The confidence region corresponds to the gray filled zone whose envelop are delimited by the

mappings ν 7→ w−
jobs

(ν) and ν 7→ w+
jobs

(ν). Fig. 9 shows that the larger the frequency, the larger

the confidence region, which is coherent with the fact that the sensitivity of model uncertain-

ties increases with frequency. Again two frequency zones can be distinguished. For frequencies

lower than 30 Hz, the confidence region is narrow and centered around the response of the mean

model. This means that the numerical model of the coupled system is robust to model and data

uncertainties in the satellite. On the other hand, Fig. 9 shows that the sensitivity to model and

data uncertainties increase with the frequency and is significant in frequency band [30, 54]Hz.

Then, a gap between the mean of the random response and between the response of the mean

model appears at 30 Hz, and goes on increasing with respect to the frequency. Consequently,

the random response seems to be very sensitive to model uncertainties for frequencies greater

than 30 Hz.
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6.9 Robustness of the numerical model of the coupled system with respect to model and data

uncertainties

The analysis is performed in the frequency band [30 , 54] Hz for the parametric and the non-

parametric probabilistic approaches. Fig. 10 displays the confidence region constructed with the

parametric probabilistic approach and Fig. 11 with the non-parametric probabilistic approach.

Fig. 10 shows that the random response of the satellite coupled with the launcher is more robust

with respect to data uncertainties in the frequency band [44 , 54] Hz than in the frequency band

[36 , 44] Hz. Fig. 11 shows that the robustness of the response is small with respect to model

uncertainties in the frequency band [36 , 54] Hz. It should be noted that the response is more

sensitive to model uncertainties in the frequency band [44 , 54] Hz than in the frequency band

[36 , 44] Hz.

7 Synthesis of the results and conclusion

Although the dispersion level related to the random uncertainties of the satellite is the same

for both probabilistic approaches, the random forced responses do not look similar. The aim

of this paper is not to compare these responses because the two probabilistic approaches do

not model the same kind of random uncertainties. The parametric one models data uncertain-

ties while the non-parametric one models both data and model uncertainties. In the frequency

band [15 , 25 Hz] (for the free satellite) or [5 , 30 Hz] (for the coupled launcher-satellite sys-

tem), the numerical model is relatively robust with respect to data uncertainties and to model

uncertainties and, in addition is not really sensitive to model uncertainties, data uncertainties

being preponderant. For higher frequencies, [25 , 100 Hz] (for the free satellite) or [30 , 54 Hz]

(for the coupled launcher-satellite system), it can be seen that the numerical model is not robust

to model uncertainties. The results show then that the numerical model used for the satellite

and the coupled launcher-satellite system are more sensitive to model uncertainties than to data

uncertainties. Hence, it can concluded that the two probabilistic approaches are complementary.

The parametric probabilistic approach is useful to estimate the robustness with respect to the
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data uncertainties. Both parametric and non-parametric probabilistic approaches are required to

give an estimation of the robustness with respect to model uncertainties.
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Appendix A Assumptions for the parametric probabilistic approach

Table 1 shows the assumptions made for the random variables representing the uncertain model

parameters in the parametric probabilistic approach. Specifically, the table specifies the distri-

bution type and the magnitude of the scatter, expressed in terms of the coefficient of variation

(C.o.V.), i.e. the ratio between standard deviation σ and the mean µ. An exception is made for

the fiber orientation angle, where the mean is zero and the C.o.V. thus not defined; the stan-

dard deviation is provided instead. A truncated normal distribution has been assumed for all

uncertain parameters, with the exception of the damping parameters modeled by a log-normal

distribution.
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Table 1

Table of random properties of uncertain parameters for modeling data uncertainties in the para-

metric probabilistic approach.
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Figure 1

Finite element model of the satellite.

Figure 2

Identification of dispersion parameters δM and δK : Graph of the probability distributions Ω 7→

pΩ
par
1

(Ω) for the parametric approach (thin line) and Ω 7→ pΩ
npar
1

(Ω) for the non-parametric

approach (thick line) with dispersion parameters such that δM = 0.14217 and δK = 0.13487.

Horizontal axis Ω in rad.s−1.

Figure 3

Identification of dispersion parameter δD: Graph of ns 7→ δD.

Figure 4

Convergence analysis : Graph of the function n 7→ 20 log10{Conv(ns, n)} for the stochastic

system with ns = 750.

Figure 5

Convergence analysis : Graph of the function n 7→ 20 log10{Conv(ns, n)} for the stochastic

system with ns = 750.

Figure 6

Confidence region of random displacement related to the node jobs (in dB) over a low frequency

band
 

= [15 , 100] Hz and obtained with the parametric probabilistic approach: deterministic

response of the mean model (thick dashed-dotted line), mean of the random response for the

stochastic model (mid thin dotted line), lower and upper envelopes of the confidence region

corresponding to a probability level equal to 0.96 (dark gray filled zone).

Figure 7

Confidence region of random displacement related to the node jobs (in dB) over a low frequency
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band
 

= [15 , 100] Hz and obtained with the non-parametric probabilistic approach: deter-

ministic response of the mean model (thick dashed-dotted line), mean of the random response

for the stochastic model (mid thin dotted line), lower and upper envelopes of the confidence

region corresponding to a probability level equal to 0.96 (dark gray filled zone).

Figure 8

Finite element model of the coupled launcher-satellite structure.

Figure 9

Confidence region of random displacement related to the node jobs (in dB) over the low fre-

quency band [5 , 54] Hz and obtained with the non-parametric probabilistic approach: deter-

ministic response of the mean model (thick dashed-dotted line), mean of the random response

for the stochastic model (thin dotted line), lower and upper envelopes of the confidence region

corresponding to a probability level equal to 0.96 (dark gray filled zone).

Figure 10

Confidence region of random displacement related to the node jobs (in dB) over the low fre-

quency band [30 , 54] Hz and obtained with the parametric probabilistic approach: deterministic

response of the mean model (thick dashed-dotted line), mean of the random response for the

stochastic model (thin dotted line), lower and upper envelopes of the confidence region corre-

sponding to a probability level equal to 0.96 (dark gray filled zone).

Figure 11

Confidence region of random displacement related to the node jobs (in dB) over the low fre-

quency band [30 , 54] Hz and obtained with the non-parametric probabilistic approach: deter-

ministic response of the mean model (thick dashed-dotted line), mean of the random response

for the stochastic model (thin dotted line), lower and upper envelopes of the confidence region

corresponding to a probability level equal to 0.96 (dark gray filled zone).
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Element/Material Type Property C.o.V. (σ/µ) Probability Distribution

Isotropic Material Young’s modulus 8% truncated Gaussian

Poisson’s ratio 3%

Shear modulus 12 %

Mass density 4%

Orthotropic Shell Young’s modulus 8% truncated Gaussian

Element Material Poisson’s ratio 3%

Shear modulus 12%

Mass density 4%

Solid Element Anisotropic Mat. property matrix 12% truncated Gaussian

Isotropic Material Mass density 4%

Simple Beam Section dimension 5% truncated Gaussian

Non-structural mass 8%

Layered Composite Non-structural Mass 8% truncated Gaussian

Material Thickness of plies 12%

Orientation angle σ = 1.5

Spring element property Elastic prop. value 8% truncated Gaussian

Shell element Membrane Thickness 4% truncated Gaussian

Non-structural Mass 8%

Spring element Stiffness 10% truncated Gaussian

Concentrated mass Mass 3% truncated Gaussian

Damping Modal Damping 40% lognormal

Structural Damping 25%

Table 1

Table of random properties of uncertain parameters for modeling data uncertainties in the parametric

probabilistic approach.
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Fig. 1. Finite element model of the satellite.
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Fig. 2. Identification of dispersion parameters δM and δK : Graph of the probability distributions

Ω 7→ pΩ
par
1

(Ω) for the parametric approach (thin line) and Ω 7→ pΩ
npar
1

(Ω) for the non-parametric ap-

proach (thick line) with dispersion parameters such that δM = 0.14217 and δK = 0.13487. Horizontal

axis Ω in rad.s−1.
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Fig. 3. Identification of dispersion parameter δD: Graph of ns 7→ δD.
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Fig. 4. Convergence analysis: Graph of the function ns 7→ 20 log10{Conv(ns, n)} for the stochastic

system with n = 294.
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Fig. 5. Convergence analysis : Graph of the function n 7→ 20 log10{Conv(ns, n)} for the stochastic

system with ns = 750.
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Fig. 6. Confidence region of random displacement related to the node jobs (in dB) over a low frequency

band
 

= [15 , 100] Hz and obtained with the parametric probabilistic approach: deterministic response

of the mean model (thick dashed-dotted line), mean of the random response for the stochastic model

(thin dotted line), lower and upper envelopes of the confidence region corresponding to a probability

level equal to 0.96 (dark gray filled zone).
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Fig. 7. Confidence region of random displacement related to the node jobs (in dB) over a low frequency

band
 

= [15 , 100] Hz and obtained with the non-parametric probabilistic approach: deterministic

response of the mean model (thick dashed-dotted line), mean of the random response for the stochastic

model (mid thin dotted line), lower and upper envelopes of the confidence region corresponding to a

probability level equal to 0.96 (dark gray filled zone).
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Fig. 8. Finite element model of the coupled launcher-satellite structure.
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Fig. 9. Confidence region of random displacement related to the node jobs (in dB) over the low frequency

band [5 , 54] Hz and obtained with the non-parametric probabilistic approach: deterministic response of

the mean model (thick dashed-dotted line), mean of the random response for the stochastic model (thin

dotted line), lower and upper envelopes of the confidence region corresponding to a probability level

equal to 0.96 (dark gray filled zone).
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Fig. 10. Confidence region of random displacement related to the node jobs (in dB) over the low frequency

band [30 , 54] Hz and obtained with the parametric probabilistic approach: deterministic response of the

mean model (thick dashed-dotted line), mean of the random response for the stochastic model (thin

dotted line), lower and upper envelopes of the confidence region corresponding to a probability level

equal to 0.96 (dark gray filled zone).
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Fig. 11. Confidence region of random displacement related to the node jobs (in dB) over the low frequency

band [30 , 54] Hz and obtained with the non-parametric probabilistic approach: deterministic response of

the mean model (thick dashed-dotted line), mean of the random response for the stochastic model (thin

dotted line), lower and upper envelopes of the confidence region corresponding to a probability level

equal to 0.96 (dark gray filled zone).
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