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bUniversité of Marne la Vallée, Laboratory of Engineering Mechanics, 5 Boulevard

Descartes, F-77454 Marne-la-Vallée Cedex 2, France

Abstract

Impedance matrices allow for the coupling of domains with very different properties,
and possibly modeled with different methods. This paper presents the construction
of a probabilistic model for such matrices, using a nonparametric method that allows
for the consideration of data errors as well as model errors. To enable the application
of this method in the case of a domain for which no Finite Element model is available,
the identification of a ”hidden state variables model” - from the knowledge of the
impedance matrix at a discrete set of frequencies - is also described. Finally the
construction of the probabilistic model of the impedance of a pile foundation on a
layered unbounded soil illustrates the possibilities of the method.

Key words: Computational stochastic mechanics, Impedance matrix, Unbounded
domains, Nonparametric probabilistic method, Modal identification.

1 Introduction

In many fields of applied mechanics and engineering, the problems consid-
ered are composed of several parts with (very) different properties. A classical
resolution scheme consists in using domain decomposition techniques, split-
ting the global problem into several local ones interacting through boundary
impedances. When these problems are defined on bounded domains, a finite
element (FE) model is classically constructed, yielding, under hypothesis of
linearity, the matrices of mass, damping and stiffness for the whole domain.
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Afterwards, the boundary impedance matrix is computed using the appropri-
ate condensation on the boundary of the dynamic stiffness matrix.

When the local problem is defined on a domain which is unbounded or the size
of which impedes the computation of the entire FE model, other means have
to be used, bypassing the need to mesh the entire domain. Such is the case for
example in geodynamics, with applications in seismology and oil prospecting,
and in hydrodynamics and aerodynamics for marine and automotive engineer-
ing or meteorology. The most classical methods to compute the impedance
matrix for that class of problems are the Boundary Element (BE) method [1],
and the FE method with absorbing boundaries or infinite elements [2–4]. Other
means [5] aim at developing simple approximate mechanical systems, with few
degrees of freedom (DOFs), highlighting the physical phenomena taking place
inside the unbounded domain.

Both for the bounded and unbounded domains, these deterministic techniques
are often not sufficient to characterize in a realistic way the influence of the
domain on the boundary. Many sources of uncertainty exist which call for
the computation of the set of marginal laws of the impedance matrix, rather
than just the one mean value. In geotechnics for example [6], the natural
variability on the properties of the soil, the measurement errors, the scarcity
of the available data and the simplicity of the models (linearity, among other
simplifications) are factors that both make some quantification of uncertainty
unavoidable and hamper it. In Fluid Mechanics, the complexity of the physical
phenomenon of turbulence [7] also urges on the use of probabilistic methods.
Stochastic approaches have therefore been proposed to take into account, in
the computation of the impedance matrix, randomness or uncertainty on the
properties of the materials, on the boundary conditions, and, more recently,
on the models.

Many different computational methods have been considered [8], and amongst
them, the Stochastic FE method is the most widely used. It was first intro-
duced by Cornell [9] and was later derived under more efficient forms [10].
These methods are called parametric, as they describe the resolution of a
problem with uncertain parameters, modeled as stochastic random variables
or fields. They propagate the randomness of the parameters to the solution
of the problem. Incidentally, they are well suited to take into account data
uncertainties, when these can be acurately modeled, but are not appropriate
for the consideration of model errors. Additionally, they require the meshing
of the entire domain. In [11], this limitation was addressed through the cou-
pling of a bounded random domain with an unbounded mean domain, but
the limit between the deterministic and random domains remains rather ar-
tificial. In general, particularly in geotechnics, the available statistics on the
data are scarce and polluted, and the model errors are important, therefore
other techniques should be considered.
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A nonparametric method has been recently introduced, which can, for a given
mean model, take into account as a whole both model uncertainties and data
uncertainties. It was originally developped in linear structural dynamics [12,13]
with applications in vibrations and transient elastodynamics, and was ex-
tended to nonlinear dynamical systems [14] and to the medium frequency
range [15]. The coupling of structures with different levels of uncertainty has
also been considered in [16,17] and a nonparametric-parametric approach has
been presented in [18] to model each source of uncertainty with the most ap-
propriate method. The main concept of this method is to identify, for each
problem, the unquestionable information, and to use the maximum-entropy
principle to derive a probabilistic model using only that available information.
This information is scarcer than that used in the parametric methods and in-
cludes algebraic properties of the random matrices considered and a mean
model of the system.

The objective of this paper is to present the construction of a probabilistic
model for the impedance matrix following the same pattern. The main dif-
ference between the probabilistic modeling of the impedance matrix and the
cases that have been treated in the references cited in the previous paragraph
is that its dependency on frequency is a priori unknown. The definition of the
impedance matrix and its algebraic properties are therefore first recalled in
Sec. 3, with a special highlight on the property of causality. Different possible
models of the impedance enforcing that property are then studied, and the
choice is finally set upon one based on underlying matrices of mass, damping
and stiffness. Once the algebraic properties of the impedance matrix, based
on that of the matrices of mass, damping and stiffness, have been identified,
and given a mean value and a reduced set of dispersion parameters, the con-
struction of the probabilistic model is then described in Sec. 4. Very often, for
engineering applications, the only information that is really available consists
in the algebraic properties of the impedance, its mean value at a discrete set
of frequencies, and a general idea of the uncertainty of the problem. The issue
of the identification of the mean values of the mass, damping and stiffness ma-
trices of the hidden variables model using only such a mean impedance matrix
is therefore discussed in Sec. 5. The identification from experimental results is
left to be discussed in a future paper, and the choice of the dispersion parame-
ters is not presented here as it has been described in other publications [19,20].
Finally, an example illustrating the construction of the probabilistic model of
the impedance matrix of a circular superficial foundation resting on piles in a
horizontally layered soil is presented in Sec. 6.

It should be noted that, to increase the readability, some results have been
taken out of the main body of this paper and written in separate appendices.
This should not be understood as a sign that they are well-known results,
unworthy of the reader’s attention. Particularly, App. B and C describe two
problems that are, to the knowledge of the authors, original, and are central
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to the understanding of this paper.

2 Notations

In this short section, the main notations that will be used in this paper for vec-
tors and matrices are recalled. The implicit Einstein summation over repeated
indices is used throughout. Let x = (x1, ..., xn) be a vector of the euclidian
space R

n, equipped with the usual scalar product 〈x,y〉 = xTy and the as-
sociated euclidian norm ‖x‖ = 〈x,x〉1/2. The hermitian space C

n is equipped
with the hermitian scalar product (x,y) = 〈x,y〉 and its associated norm
‖x‖ = (x,x)1/2 = 〈x,x〉1/2, where x is the complex conjugate of x. Let K be
R or C when equivalent relations exist in both cases. Mmn(K) is the space
of n × m matrices [A] whose elements Aij are in Mn(K). The vectors of K

n

are identified to the column matrices in Mn1(K). [Inm] is the identity matrix
in Mnm(K), whose elements are such that Iii = 1 and Iij,j 6=i = 0, and [0nm]
denotes the null matrix in Mnm(K), whose elements are all equal to 0. When
n = m, Mn(K) = Mnn(K), [In] = [Inn] and [0n] = [0nn]. The determinant,
the trace, the transpose and the adjoint of a matrix [A] in Mn(K) are de-
noted det[A], tr[A] =

∑n
j=1 Ajj, [A]T and [A]∗ = [A]T . The subset of Mn(K) of

symmetric matrices (verifying [A] = [A]T ) is denoted M
S
n(K). The subset of

M
S
n(K) of positive definite matrices (respectively semi-positive definite), such

that 〈[A]x,x〉 > 0 (respectively 〈[A]x,x〉 ≥ 0) ∀x ∈ K
n\{[0n1]}. With the

Frobenius (or Hilbert-Schmidt) norm, defined for a matrix [A] in Mn(K) by
‖[A]‖F = (tr{[A][A]∗})1/2, the set Mn(K) is a Hilbert space. The subset of
Mn(K) of the non-singular (invertible) matrices is denoted M

∗
n(K).

3 Definition and properties of the impedance

In this section, the definition of the impedance matrix of a bounded or un-
bounded domain with respect to a bounded boundary is recalled. The property
of causality is highlighted, giving rise to a model in terms of mass, damping and
stiffness matrices. The equations are presented for an elastodynamic problem
but could have been equally derived in acoustics or fluid dynamics. In these
cases, it is customary to define the impedance matrix with respect to a velocity
field rather than a displacement field, as will be done here.
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3.1 Setting of the boundary value problem

Let Ω be an open, bounded or unbounded, subset of R
3 with a smooth bound-

ary ∂Ω, and Ωs an open bounded domain of R
3, with a smooth boundary

∂Ωs, and such that Ω ∩ Ωs = ∅. Let Σ be the coupling boundary defined by
Σ = ∂Ω ∩ ∂Ωs.

[Fig. 1 about here.]

Let u = [ui]1≤i≤3 be a displacement field defined on Ω, and σ = [σij]1≤i,j≤3

and ǫ = [ǫij]1≤i,j≤3 the corresponding linear stress and strain tensors. Let
Ce = [Ce

ijkℓ]1≤i,j,k,ℓ≤3 and Cd = [Cd
ijkℓ]1≤i,j,k,ℓ≤3 be respectively the fourth

order elastic and damping tensors of the materials in Ω, having the usual
properties of symmetry (Ce

ijkℓ = Ce
jikℓ = Ce

kℓij and Cd
ijkℓ = Cd

jikℓ = Cd
kℓij)

and positive-definiteness (Ce
ijkℓeijekℓ ≥ αeijeij and Cd

ijkℓeijekℓ ≥ βeijeij, with
α, β > 0 for any second order real symmetric tensor e).

The local harmonic boundary value problem (BVP) in Ω consists in finding,
for each ω in R, a displacement field u such that





σij,j(u) + ρω2ui = 0 in Ω

σij(u) nj = 0 on ∂Ω\Σ
ui = φi on Σ

, (1)

where φ = [φi]1≤i≤3 is a given displacement field imposed on the boundary
Σ. It should be noted that, in the linear case, the study of a problem with
incident waves radiating from infinity - as in seismology - or with sources in
Ω, can be brought back to the study of a BVP, via superposition.

3.2 Variational formulation of the BVP

The classical Sobolev space on Ω, of the square integrable functions defined
on Ω, with square integrable first derivative, is denoted H1(Ω).

H1(Ω) =
{
u ∈ L2(Ω) , D1u ∈ L2(Ω)

}
, (2)

where D1 denotes the first order partial derivation operator. H1(Ω) is a Hilbert
space when associated with the norm, ‖ · ‖H1(Ω), defined for u in H1(Ω) by

‖u‖H1(Ω) =

[∫

Ω
‖u‖2 +

∑

i

‖∂iu‖2dx

]1/2

. (3)
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The space of the admissible solutions for the variational formulation of the
BVP is VΩ = {u ∈ [H1(Ω)]3}. The continuous hermitian positive definite
sesquilinear forms of mass, damping and stiffness are defined in VΩ × VΩ,
respectively, by

m(u, δu) =
∫

Ω
ρuiδuidx, (4)

k(u, δu) =
∫

Ω
Ce

ijkℓǫij(u)ǫkℓ(δu)dx, (5)

d(u, δu) =
∫

Ω
Cd

ijkℓǫij(u)ǫkℓ(δu)dx. (6)

It should be noted that in the case of a bounded domain Ω, the sesquilinear
forms of stiffness and damping are not necessarily definite as the imposed
displacement field φ might allow rigid body modes in Ω. This particular case
is treated extensively in [21] and will not be considered further in this paper.
For a given frequency ω in R, the continuous hermitian sesquilinear form of
dynamic stiffness is defined in VΩ × VΩ by

s(u, δu; ω) = −ω2m(u, δu) + iωd(u, δu) + k(u, δu). (7)

Considering an element u of VΩ, its restriction to boundary Σ, defined as a
limit for positions in Ω tending towards positions in Σ, is called the trace of
u on Σ, and denoted u|Σ. The space of the traces of the elements of VΩ on Σ

is denoted VΣ. The functional spaces V φ
Ω and V 0

Ω are then defined by

V φ
Ω = {u ∈ VΩ, u|Σ = φ}, and V 0

Ω = {u ∈ VΩ, u|Σ = 0}. (8)

The variational formulation of the BVP consists in finding, for ω in R, u ∈ V φ
Ω

such that
s(u, δu; ω) = 0 , ∀δu ∈ V 0

Ω . (9)

3.3 The impedance operator

In the static case (resp., in the dynamic case), the ellipticity of the elastic
tensor Ce (resp., of the damping tensor Cd) ensures that the dynamic stiffness
form s(·, ·) (resp., is(·, ·)) is coercive. The Lax-Milgram theorem [22], then
ensures that the variational formulation of the BVP has a unique solution,
therefore defining for each ω in R, an unique operator T from VΣ to V φ

Ω such
that

u = T (ω)φ. (10)

The impedance operator is then defined, for each ω in R, from VΣ into its dual
V ′

Σ, for each ω in R, by

〈Z(ω)φ, δφ〉Σ = s(T (ω)φ, T (ω)δφ; ω), (11)

where 〈., .〉Σ is the antiduality product between V ′
Σ and VΣ.
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3.4 The impedance matrix

u and δu can be approximated, with any desired level of accuracy, by their
expansion on a finite Hilbert basis of functions defined on Ω. The coordinates of
these expansions are denoted u and δu. In that basis, the sesquilinear forms of
mass, damping and stiffness are approximated respectively by the symmetric
positive definite real matrices [M ], [D] and [K] (rigid body modes are not
physically acceptable on Ω as they would correspond to displacements fields
out of VΩ, of infinite energy), and the sesquilinear form of dynamic stiffness can
be approximated by a second order polynomial with real matrix coefficients
[S(ω)] = −ω2[M ]+ iω[D]+[K]. For a given ω ∈ R, ω 6= 0, [S(ω)] is symmetric
and its imaginary part is positive-definite, and for ω 6= 0 sufficiently small, its
real part is also positive-definite. φ and δφ can also be expanded on a Hilbert
basis of functions defined on Σ, and compatible with the Hilbert basis defined
on Ω, and their projections are denoted Φ and δΦ. The previous matrices can
then be block-decomposed, separating the DOFs defined on Σ from the DOFs
defined in the interior of Ω.



[SΣ(ω)] [Sc(ω)]

[Sc(ω)]T [Sh(ω)]


 = −ω2




[MΣ] [Mc]

[Mc]
T [Mh]


+ iω




[DΣ] [Dc]

[Dc]
T [Dh]


+




[KΣ] [Kc]

[Kc]
T [Kh]


 .

(12)
For every frequency ω ∈ R, the impedance matrix [Z(ω)], approximation of
the impedance operator Z(ω) in the Hilbert basis defined on Σ, is then the
Schur complement of [Sh(ω)] in [S(ω)].

[Z(ω)] = [SΣ(ω)] − [Sc(ω)][Sh(ω)]−1[Sc(ω)]T . (13)

In Eq. (12), [MΣ], [DΣ] and [KΣ] are in M
+
nΣ

(R), the set of real nΣ×nΣ positive-
definite matrices, [Mc], [Dc] and [Kc] are in MnΣnh

(R), the set of nΣ ×nH real
matrices, and [Mh], [Dh] and [Kh] are in M

+
nh

(R), the set of real nH × nH

positive-definite matrices. [Z(ω)] is a symmetric matrix whose imaginary part
can be demonstrated to be positive [23]. For ω sufficiently small its real part
is also a positive matrix.

3.5 The causality of the impedance

A very important property of the impedance is that it corresponds in the
time domain to a causal function. This represents the natural condition that
an effect should never take place before the cause that creates it, that a dis-
placement of the boundary does not happen before a load is applied to it.
Mathematically, the condition is written in the time domain (with F{·} the
Fourier transform and F−1{·} the corresponding inverse operation):
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∀Φ such that Φ̂ = F{Φ} and F−1{[Z]Φ} exist in the sense of the distribu-

tions,

Φ(t) = 0 ,∀t < 0 ⇒ F−1{[Z]Φ̂}(t) = 0 ,∀t < 0. (14)

As we wish to work in the frequency domain, this definition is not appropriate.
In App. A, the impedance matrix, as defined in the frequency-domain in the
previous section, is shown to be causal.

3.6 Construction of a model of the impedance matrix

From what was seen in the previous section, any reasonable model of the
impedance matrix must ensure causality. This can be done in different ways,
which are examined in this section. First, the expansion of the impedance
matrix on a basis of Hardy functions, which are the Laplace transforms of a
subset of the causal functions, is studied; then a model based on the Kramers-
Kronig relations, linking the real and imaginary parts of the Fourier transform
of a causal function, is presented; finally, as none of these two models seems
constructive, a model based on the underlying model of the dynamic stiffness
matrix is chosen. The construction of a model of the impedance matrix then
consists in the choice of the parameters of that underlying model.

3.6.1 Expansion on a basis of Hardy functions

A first approach consists in trying to model the impedance as an expansion
on a basis of some subspace of all Laplace transforms of causal functions, the
space of Hardy functions. A function f defined on C

+ = {p = ξ + iη, ξ >
0, η ∈ R} is said to be a Hardy function if it is holomorphic on C

+ and
supa>0

∫
R
|f(ξ + iη)|2dη < +∞. It can be shown [24] that f is a Hardy function

if and only if it is the Laplace transform of some square integrable causal
function. A nice feature of that functional space is that it is equipped with an
explicit orthonormal basis, the functions {p 7→ eℓ(p)}ℓ≥0, with

eℓ(p) =
(−1)ℓ+1

√
π

(
1

1 − p

)(
1 + p

1 − p

)ℓ

. (15)

This space only contains square integrable functions, whereas the pseudodif-
ferential part of the impedance matrix is not. The expansion of the impedance
matrix in Eq. (13) would therefore be in the form [Z(p)] = p2 [R2] + p [R1] +
[R0] +

∑
ℓ≥0 [Zℓ]eℓ(p). Unfortunately, there is no algebraic information on the

matrices {[Zℓ]}ℓ≥0. Also, since this construction is purely mathematical, the
coefficients of this expansion are not easily related to physical parameters of
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the system. More important the rate of convergence of the infinite sum is not
known so a very large number of terms might be required to yield a good
approximation.

3.6.2 Kramers-Kronig relations

The Kramers-Kronig relations were originally developped for electromagnetic
problems to link the real and imaginary parts of the polarization coefficients [25]
and of the index of refraction [26], and were proved without any explicit ref-
erence to causality. Later, they were shown (see [27] for example for a demon-
stration) to be verified by any complex causal function, and state that the real
and imaginary parts of its Fourier transform ω 7→ f(ω) verify, equivalently,

ℜ{f(ω)} =
1

π

∮

R

ℑ{f(ω′)}
ω − ω′

dω′, or ℑ{f(ω)} = − 1

π

∮

R

ℜ{f(ω′)}
ω − ω′

dω′. (16)

They are widely used in experimental physics because, in many applications,
the imaginary part of a quantity of interest can be measured experimentally,
and then the whole function constructed with Eq. (16). Unfortunately, nu-
merically, the real and imaginary parts of the impedance matrix cannot be
computed separately. Therefore these relations can be used to prolongate an
impedance matrix that was computed on a bounded frequency interval to the
entire frequency domain [28], but are not constructive for the modeling of an
impedance matrix from scratch. Moreover these formulas apply only for func-
tions f in L1, which is not the case for [Z], and the accurate evaluation of the
singular integral might require a large band of frequency, highly refined, to be
studied.

3.6.3 Hidden state variables model

Ultimately, a given algebraic structure can be proposed to construct an ap-
proximation of the boundary impedance matrix, satisfying a priori the desired
causality condition. Following [29], the structure of the boundary impedance
matrix of a mechanical system whose vibrations in the time domain are gov-
erned by a second-order differential equation with constant coefficients is cho-
sen. This algebraic structure may not span the entire space of possible bound-
ary impedance matrices arising from real physical systems and it is only a
sufficient condition for causality to be satisfied. However, the similarities be-
tween this structure and the underlying system considered in Eq. (12) is ap-
pealing in the sense that the approach may give some interesting insights on
the mechanical system hidden behind the boundary impedance matrix.

Let us therefore consider such a mechanical system and its discretization in n
DOFs. We will denote n = nΣ + nH , where nΣ is the number of DOFs of the
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part of the boundary with respect to which the boundary impedance matrix
is constructed. In the frequency domain, the hypothesis in the time domain
means that the dynamic stiffness ω 7→ [S(ω)] is a second-order polynomial in
(iω) with real matrix coefficients. Denoting [M ], [D] and [K] in M

+
n (R) those

coefficients, we have

[S(ω)] = −ω2[M ] + iω[D] + [K], (17)

and [Z(ω)] is the condensation on the first nΣ DOFs of [S(ω)]. These matrices
[M ], [D] and [K] correspond to generalized mass, damping and stiffness ma-
trices, but it should be clear that they are not necessarily the classical mass,
damping and stiffness matrices, e.g. constructed using a FE method. As the
only quantity we are eventually interested in is the impedance, and since there
are infinitely many mechanical systems yielding, by condensation on Σ, the
same impedance, we are free to choose the set of generalized matrices [M ], [D]
and [K] as we wish in the set of matrices yielding the appropriate impedance.
This will be discussed in more details in Sec. 5.2.1. For the same reasons, the
DOFs on which these matrices are defined are not necessarily physical degrees
of freedom, but rather state variables that are hidden in the background of
the physical model; hence the name ”hidden state variables model”.

4 Construction of the nonparametric model of random uncertain-

ties for the impedance matrix

In the previous section, we constructed a model of the impedance matrix
which ensures that the causality condition is satisfied. It was implicitely as-
sumed that the problem (mechanical model, constitutive equation, mechanical
parameters, boundary conditions) was perfectly deterministic. The real-life
experiments are very far from that situation. The models are approximate,
as much from our lack of understanding of the underlying physics as from
economic or time limitations, and the scarcity and pollution of the data hin-
ders our ability to feed these models. That uncertainty in the model of the
impedance matrix that was constructed in Sec. 3 should therefore be consid-
ered, and a probabilistic model prefered to a deterministic one. Using one of
the classical parametric methods would require the identification of the un-
certain parameters and their statistical caracterization, which is often out of
reach. Also, a complete parametric probabilistic model of the impedance ma-
trix would require the determination of all the marginal laws. Obviously, as the
number of variables to be considered generally increases with the size of the
domain, this approach is not feasible for the construction of the probabilistic
model of the impedance matrix of a domain possibly unbounded.

We will use here a nonparametric method in which the uncertainty is not
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considered on the parameters and propagated to the matrices of the model
but where it is rather taken into account directly in these matrices, which are
to be chosen in appropriate ensembles of random matrices. Such ensembles,
e.g. the Gaussian Orthogonal Ensemble [30], have been used for a long time
in theoretical physics, but are not appropriate to model the positive matri-
ces that are encountered in structural mechanics. We will work here with two
ensembles that have been more recently introduced and are more adapted to
the stiffness, mass and damping matrices of a dynamical system: the nor-
malized positive-definite ensemble SG+ and the positive-definite ensemble
SE+ [31,12,13]. The probability density functions of the matrices of these
ensembles are constructed using the entropy maximization principle [32,33]
constrained by knowledge on their algebraic properties and mean value.

The idea here is to replace the matrices [M ], [D], [K], [S(ω)] and [Z(ω)] of
Eq. (12)-(13) by random matrices [M], [D], [K], [S(ω)] and [Z(ω)], the prob-
ability density functions of which have to be derived. The probabilistic model
of each of the matrices [M], [D] and [K] is constructed in SE+, and those
of [S(ω)] and [Z(ω)] are simply derived using Eq. (12)-(13). To improve the
readability, we first recall the construction of these two ensembles SG+ and
SE+, and their important properties. Then, the construction of an approxi-
mation of the probability density function of the random impedance matrix
[Z(ω)] by Monte Carlo techniques is described.

4.1 The normalized positive definite ensemble of random matrices

The normalized positive-definite ensemble of random matrices , denoted SG+,
is defined as the set of the random matrices [Gn] defined on a probability space
(A, T ,P), with values in M

+
n (R) verifying:

(1) [Gn] ∈ M
+
n (R), almost surely;

(2) Matrix [Gn] is a second-order random variable: E{‖[Gn]‖2
F} < +∞;

(3) The mean value [Gn] of [Gn] is the identity matrix [In] in M
+
n (R): E{[Gn]} =

[Gn] = [In];
(4) [Gn] is such that E{ln(det[Gn])} = ν[Gn] , |ν[Gn]| < +∞.

The last constraint yields the fundamental property that the inverse of [Gn]
is also a second-order random variable: E{‖[Gn]−1‖2

F} < +∞. For the com-
putation of the probability density function of [Gn], it was also shown that
rather than considering ν[Gn], whose exact value does not bear a simple physi-
cal meaning, it was interesting to replace it by a parameter δ, which measures
the dispersion of the probability model of the random matrix [Gn] around the
mean value [Gn].
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4.2 The dispersion parameter

The dispersion parameter δ is a real parameter defined by

δ =

{
E{‖[Gn] − [Gn]‖2

F}
‖[Gn]‖2

F

}1/2

=
1

n
E{‖[Gn] − [In]‖2

F}1/2, (18)

where ‖ · ‖F is the Frobenius norm (see Sec. 2). The dispersion parameter
should be chosen independent of n and such that

0 < δ <

√
n + 1

n + 5
, (19)

to ensure that the fourth condition in the definition of SG+ is verified.

Several procedures for the estimation of δ have been derived, depending on
the type of information available:

(1) when no objective information is known about δ, a sensitivity analysis
must be performed with δ as the parameter and its value estimated de-
pending on the level of stochastic fluctuations (level of uncertainty);

(2) when a sufficient amount of experimental data is available, δ can be esti-
mated using statistics;

(3) when a parametric model has been constructed in the low-frequency
range, where data uncertainties are, in general, more important than
model uncertainties, δ can be estimated through statistics on the first
eigenfrequency;

(4) when the uncertain system pertains to a class of systems for which δ has
already been studied, the same value can be re-used.

This estimation will not be considered here, and will be left for future study.
In the numerical application that will be considered at the end of this paper,
we will consider the fourth possibility and choose the value δ = 0.1 for all the
matrices.

4.3 The probability density function of a random matrix [Gn] in SG+

The probability density function of a matrix in SG+ is then computed using
the entropy maximization principle with the constraints defined in Sec. 4.1.
It is defined with respect to the measure d̃Gn on the set M

S
n(R) of n × n real

symmetric matrices, where d̃Gn is such that

d̃Gn = 2n(n−1)/4
∏

1≤i≤j≤n

d[Gn]ij (20)
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with dGn =
∏

1≤i,j≤n d[Gn]ij the Lebesgue measure on R
n. With the usual

normalization condition on the probability density function, it is

p[Gn]([Gn]) = 1
M

+
n (R)([Gn]) × C[Gn] × (det[Gn])(n+1)(1−δ2)/(2δ2)

× exp
{
−n + 1

2δ2
tr[Gn]

}
, (21)

in which [Gn] 7→ 1
M

+
n (R)([Gn]) is a function from Mn(R) into {0, 1} that is

equal to 1 when [Gn] is in M
+
n (R) and 0 otherwise, and where constant C[Gn]

is equal to

C[Gn] =
(2π)−n(n−1)/4

(
n+1
2δ2

)n(n+1)/(2δ2)

∏n
j=1 Γ

(
n+1
2δ2 + 1−j

2

) , (22)

where z 7→ Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫+∞
0 tz−1e−tdt.

4.4 Monte-Carlo simulation of a random matrix [Gn] in SG+

Having values in M
+
n (R), [Gn] can be written [Gn] = [Ln]T [Ln], where [Ln] is

an upper triangular random matrix with values in Mn(R). Let us introduce
σn = δ(n + 1)−1/2. It can been shown that

(1) random variables ([Ln]ij)1≤i≤j≤n are independent;
(2) for i < j, [Ln]ij can be written [Ln]ij = σnUij, where Uij is a Gaussian

random variable with real values, zero mean and unit variance.
(3) for i = j, [Ln]ii can be written [Ln]ii = σn

√
2Vi, where Vi is a gamma

random variable with positive real values and a probability density func-
tion pVi

(v) (with respect to dv) in the form

pVi
(v) = 1R+(v)

1

Γ(n+1
2δ2 + 1−i

2
)
v

n+1

2δ2
− 1+i

2 e−v (23)

This algebraic structure of [Gn], allows an efficient procedure to be defined
for the Monte Carlo numerical simulation of random matrix [Gn].

4.5 The positive-definite ensemble of random matrices

The normalized positive-definite ensemble of random matrices, denoted SE+,
was developed simultaneously with SG+, the ensemble of normalized positive-
definite ensemble of random matrices. The matrices [An] in SE+ verify prop-
erties similar to those in SG+, with any given matrix for the mean:

(1) [An] ∈ M
+
n (R), almost surely;

13



(2) Matrix [An] is a second-order random variable: E{‖[An]‖2
F} < +∞;

(3) The mean value [An] of [An] is a given matrix in M
+
n (R): E{[An]} = [An];

(4) [An] is such that E{ln(det[An])} = νAn
, |νAn

| < +∞.

Since [An] is positive definite, there is an upper triangular matrix [Ln] in
Mn(R) such that

[An] = [Ln]T [Ln], (24)

and the ensemble SE+ can be defined as the set of random matrices [An]
which are written as

[An] = [Ln]T [Gn][Ln], (25)

in which [Gn] is in SG+.

4.6 Probability model of a set of random matrices in SE+

Let us consider a set of m random matrices [A1

n
], .., [Am

n
] in SE+, for which

the mean values are given, but no information is available concerning the
correlation tensor between any two of the random matrices. Applying the
maximum entropy principle, it can be proved that the probability density
function ([A1

n], .., [Am
n ]) 7→ p[A1

n
],..,[Am

n
]([A

1
n], .., [Am

n ]) from (M+
n (R))m into R+

with respect to the measure d̃A1
n × ... × d̃Am

n on (MS
n(R))m is written as

p[A1
n
],..,[Am

n
]([A

1
n], .., [Am

n ]) = p[A1
n
]([A

1
n]) × ... × p[Am

n
]([A

m
n ]), (26)

which means that the [A1

n
], .., [Am

n
] are independent random matrices.

4.7 Nonparametric model of random uncertainties for the impedance matrix

The principle of construction of the nonparametric probabilistic model of ran-
dom uncertainties for the impedance matrix consists in replacing the matrices
of mass, damping and stiffness of the mean model defined in Sec. 3.6.3 by
random matrices [M], [D], [K] in SE+. The mean value and a dispersion pa-
rameter have to be known for each of them. Using Monte Carlo techniques,
independent samples (Sec. 4.6) of these matrices can be drawn and the cor-
responding dynamic stiffness matrix computed for all frequencies. The re-
alizations of the impedance matrix {[Z]} corresponding to these triplets of
realizations of {([M ], [D], [K])} are then computed by condensation, for all
frequencies, of the dynamic stiffness matrix on the DOFs of the boundary,
using Eq. (13).
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5 Methodology for the construction of the probabilistic model of

an impedance matrix

In the previous sections, the theoretical material needed for the construction of
a probabilistic model of the impedance matrix was presented. In this section,
the practical methodology for that construction is introduced. Three main
steps are identified:

(1) The impedance of the mean model is computed. The mean model is the
usual model which is used for deterministic mechanics studies. There-
fore, among the very numerous models that exist in the literature (some
of them were briefly recalled in the introduction of this paper), any can be
chosen, usually depending on the specific field of study. For the computa-
tion of the soil impedance matrix in soil-structure interaction problems,
for example, a BE model is often chosen, or sometimes a mixed BE-FE
model, as will be the case in the application that is presented at the
end of this paper. More specifically, a set of values {[Z̃(ωℓ)]}1≤ℓ≤L of the
mean impedance matrix at a finite number of frequencies (ωℓ)1≤ℓ≤L is
computed.

(2) The set of values {[Z̃(ωℓ)]}1≤ℓ≤L is interpolated to yield a matrix-valued
rational function in the form ω 7→ [N(ω)]/q(ω), which approximates the

behavior of the impedance matrix [Z̃(ω)] of the mean model. The function
ω 7→ [N(ω)] is a matrix-valued polynomial in (iω), and the function
ω 7→ q(ω) is a scalar polynomial in (iω). This interpolation problem is
very general and has been treated extensively in the literature [34–36].
Many methods can be applied, of which one was chosen and will be
described in this section.

(3) The identification of the matrices [M ], [D], and [K] from the polynomials
ω 7→ [N(ω)] and ω 7→ q(ω) is then presented. This step does not involve
any approximation, but it will be shown that multiple solutions can arise,
which means that several sets of matrices {[M ], [D], [K]} may correspond
to the same rational function ω 7→ [N(ω)]/q(ω).

(4) Finally, once the matrices [M ], [D], and [K] have been computed, and
supposing the values of the dispersion parameters given (see Sec. 4.2), the
results of the previous section can be used to compute the probabilistic
model of the random matrices [M], [D] and [K], and, by condensation,
that of the random impedance matrix [Z(ω)].

The first step consists in the usual computation of the impedance matrix of
a deterministic dynamical system, and will not be described any further. The
user of the methodology described herein is supposed to have computed the
set of values {[Z̃(ωℓ)]}1≤ℓ≤L of the mean impedance matrix using methods ap-
propriate for his specific mechanical problem. The fourth step was extensively
described in the previous section, and will neither be further commented. The
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remainder of this methodological section will therefore concentrate on the sec-
ond and third steps: the computation of the mean matrices [M ], [D], and [K]
from the knowledge of the set of values {[Z̃(ωℓ)]}1≤ℓ≤L.

5.1 Interpolation of the set of values {[Z̃(ωℓ)]}1≤ℓ≤L

Considering the hidden state variables model that was chosen in Sec. 3.6.3,
its block-decomposition, and the corresponding projection on the nΣ DOFs of
the boundary, we have, for any frequency ωℓ in R,

[Z(ωℓ)] = [SΣ(ωℓ)] − [Sc(ωℓ)][SH(ωℓ)]
−1[Sc(ωℓ)]

T =
[N(ωℓ)]

q(ωℓ)
, (27)

where ω 7→ [N(ω)] is a polynomial in (iω) with real matrix-valued coefficients,
of even degree nN , and ω 7→ q(ω) is a polynomial in (iω) with real scalar
coefficients, of even degree nq. We have nN = nq + 2. We suppose here that
we have a set of values of the impedance matrix {[Z̃(ωℓ)]}1≤ℓ≤L, evaluated at
a finite set of frequencies, and consider the interpolation of that data set to
yield the polynomials [N ] and q.

5.1.1 Choice of the number of hidden variables

The method is presented assuming that the degrees of [N ] and q are known. In
the course of an interpolation process, iterations are performed on the number
nH of hidden variables in the model until a given level of accuracy is reached.
nN and nq are chosen such that nN = 2nH + 2 and nq = 2nH .

5.1.2 Choice of the cost function and of the resolution scheme

This interpolation problem requires the choice of a cost function to be min-
imized, and of a minimization scheme. Virtually hundreds of these exist in
the literature [34–36], even if we restrict ourselves to the multidimensional
(MIMO) case. We chose here to set the problem in terms of a linear least
square cost function, minimizing it by projection on an orthonormal basis
of functions [37–39]. This should in no way be seen as a limitation for the
method presented in this article: any cost function associated with any reso-
lution scheme would be appropriate as long as the interpolation is performed
in terms of a numerator and denominator functions with nN = nq +2, and nN

even. It appears rather to be a nice asset of the method to allow for the choice
of the cost function and of the resolution scheme to be performed depending
on the type of mean impedance matrix that is available: computed by a given
numerical method, measured experimentally, or even read from charts. For
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example, a given cost function might be more adapted for the extraction of a
function measured in presence of noise and another one more appropriate for
a noise-free function.

5.1.3 Weighted discrete linear least square rational approximation using or-

thogonal vectors of polynomials

The polynomials [N ] and q will be chosen so as to minimize the cost function

ǫ =
L∑

ℓ=1

w(ωℓ)
2‖N(ωℓ) − q(ωℓ)[Z̃(ωℓ)]‖2

F , (28)

where the weight function ω 7→ w(ω) can be used to control numerical prob-
lems that appear when one of the frequencies ωℓ is close to a pole of q [40]. The
interpolation method that we consider here consists in expanding ω 7→ [N(ω)]
and ω 7→ q(ω) on a basis of vectors of polynomials, orthonormal with respect

to a discrete scalar product depending on the set of values {[Z̃(ωℓ)]}1≤ℓ≤L of
the target matrix function ω 7→ [Z̃(ω)]. The minimization of the weighted least
squares cost function in Eq. (28) will be seen to reduce to a simple algebraic
relation. All computational activity will in fact go into the construction of the
orthonormal basis of vectors of polynomials, which is a far easier problem in
terms of condition number.

For a given m in N, let C[ω]m be the set of all the m-vectors whose elements
are constituted of polynomials of any degree with complex coefficients. Let ∆
be a vector of N

m allowing the degree of each of the elements of the vector to
be specified, and let C[ω]m∆ ⊂ C[ω]m be the set of all m-vectors of polynomials
with complex coefficients and degrees ∆(1), ..., ∆(m). For example, the vector

[P (ω)] =




(iω)2 − 1

(iω) + 2

(iω)7




(29)

is in C[ω]3(2,1,7). For the remainder of the section, we will work with vectors

of polynomials of length m1 = n2
Σ + 1, and we choose ∆ in N

m1 such that
∆ = (nN , nN , ..., nN , nq). We now introduce an operator allowing a square
matrix to be transformed into a vector, the operator [A] 7→ vec([A]) from
MnΣ

(C) into C
n2

Σ which stacks the columns of matrix [A] on top of each other.
The vector of polynomials P is then defined in C[ω]m1

∆ by

[P (ω)] =



vec([N(ω)])

q(ω)


 =

m2∑

k=1

αk[ek(ω)], (30)
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where m2 = n2
Σ(nN + 1) + nq + 1, ([ek(ω)])1≤k≤m2

is a basis of C[ω]m1

∆ , that
has to be chosen, and (αk)1≤k≤m2

the coordinates of P in that basis. Eq. (28)
can then be rewritten

ǫ =
L∑

ℓ=1

[P (ωℓ)]
∗[W (ωℓ)][P (ωℓ)] =

m2∑

j=1

m2∑

k=1

L∑

ℓ=1

αjαk[ej(ωℓ)]
∗[W (ωℓ)][ek(ωℓ)],

(31)
where the star denotes the conjugate transpose of a matrix, and the weight
matrix ω 7→ [W (ω)], with values in M

0+
m1

(C), the set of m1 × m1 complex
positive matrices, is defined, for ω ∈ R, by

[W (ω)] = w2(ω)




[In2
Σ
] − vec([Z̃(ω)])

− vec([Z̃(ω)])∗ ‖[Z̃(ω)])‖2
F


 . (32)

The hermitian sesquilinear form

([P1], [P2])W = ℜ
{

L∑

ℓ=1

[P1(ωℓ)]
∗[W (ωℓ)][P2(ωℓ)]

}
(33)

will be called a ”semi-inner product”, in the sense that the corresponding lin-
ear form ‖[P1]‖W = ([P1], [P1])W is a semi-norm on C[ω]m1

∆ . An algebraic basis
([ek(ω)])1≤k≤m2

of C[ω]m1

∆ can then be constructed for that semi-inner prod-
uct using the Gram-Schmidt orthonormalization procedure [41], such that
([ej(ω)], [ek(ω)])W = δjk. Using that basis for the expansion of [P (ω)] in
Eq. (30), Eq. (31) yields

ǫ =
m2∑

j=1

m2∑

k=1

L∑

ℓ=1

αjαk([ej(ωℓ)], [ek(ωℓ)])W =
m2∑

k=1

α2
k. (34)

The problem of interpolating an impedance matrix ω 7→ [Z̃(ω)] by a matrix-
valued rational function ω 7→ [N(ω)]/q(ω), which was originally presented as
the minimization of the cost function ǫ in Eq. (28), was recast into a prob-
lem of minimizing independently each coordinate αk of a vector of polynomials
[P (ω)] of C[ω]m1

∆ in a basis orthonormal for a certain semi-inner product (·, ·)W .
To avoid the trivial solution [P (ω)] = 0, q or [N ] should be constrained, for
example by imposing that the coefficient of highest degree of q be 1. The only
computational costs therefore lie in the construction of the orthonormal basis
(ek)1≤k≤m2

. The Gram-Schmidt orthonormalization procedure is an appropri-
ate method for that purpose.

5.1.4 Optimization of the algorithm

This algorithm has reached a more mature level of development than what
is presented here. All issues are not discussed as it is not the purpose of this
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paper, and the reader is refered to the literature [42,43] on the subject. Among
the issues concerning the optimization of this method, the parallelization of the
process is treated in [37] and the construction of the orthonormal basis using
a recurrence relation between the elements of the basis is presented in [38],
both allowing for greater accuracy and speed. Finally it should be observed
that all the elements of the matrix-valued polynomial N have been chosen of
equal degree when each could be chosen independently in ∆, also diminishing
unnecessary computational costs.

5.2 Identification of the matrices [M ], [D], and [K]

Once the coefficients of the polynomials ω 7→ [N(ω)] and ω 7→ q(ω) have been
determined for a given number nH of hidden variables, matrices [M ], [D], and
[K] have to be constructed in M

+
n (R) such that Eq. (17) and (27) are verified,

for all ω in R. This identification problem is not uniquely defined. In a first
section, an equivalence relation will be introduced, allowing for a simplification
of the form of the matrices [M ], [D], and [K] that are sought. Then the actual
identification is described.

5.2.1 Non-unicity of the solution

By definition, two triplets {[M1], [D1], [K1]} and {[M2], [D2], [K2]} in (M+
n (R))3

are said by definition to be equivalent if the corresponding impedance matri-
ces ω 7→ [Z1(ω)] and ω 7→ [Z2(ω)] are equal for all frequencies ω ∈ R. This
relation is denoted

{[M1], [D1], [K1]} ≡ {[M2], [D2], [K2]}. (35)

Since there are many such triplets that correspond to the same impedance
matrix, we can choose, in some limited manner, the form of the matrices of
the triplet that we try to identify, without restricting the generality of the
identification process. More specifically, it is shown in App. B that, rather
than looking for the matrices [M ], [D], and [K] in the entire M

+
n (R), we can

seek them in subspaces where they have the following form:

[M ] =




[MΣ] [0nΣnH
]

[0nHnΣ
] [InΣ

]


 , [D] =




[DΣ] [Dc]

[Dc]
T [dH ]


 , [K] =




[KΣ] [Kc]

[Kc]
T [kH ]


 , (36)

where [MΣ], [DΣ] and [KΣ] are in M
+
nΣ

(R), [Dc] and [Kc] are in MnΣnH
(R),

and [dH ] and [kH ] are diagonal matrices of M
+
nH

(R). In general, [dH ] is not
a diagonal matrix, but we will assume it, as is usually done in structural
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dynamics (see App. B for details). We introduce the parameters (dℓ)1≤ℓ≤nH

and (kℓ)1≤ℓ≤nH
such that [dH ] = diag (dℓ)1≤ℓ≤nH

and [kH ] = diag (kℓ)1≤ℓ≤nH
.

5.2.2 Identification

On the one hand, with the triplet {[M ], [D], [K]} in the form of Eq. (36), the
impedance matrix is

[Z(ω)] = [SΣ(ω)] −
nH∑

ℓ=1

(iω[Dc]
ℓ + [Kc]

ℓ)(iω[Dc]
ℓ + [Kc]

ℓ)T

−ω2 + iωdℓ + kℓ

, (37)

where [Dc]
ℓ and [Kc]

ℓ represent the ℓth columns of [Dc] and [Kc]. Expanding
this equation, we get

[Z(ω)] = −ω2[MΣ] + iω[DΣ] +

(
[KΣ] −

nH∑

ℓ=1

[Dc]
ℓ[Dc]

ℓT

)

−
nH∑

ℓ=1

iω
[Dc]

ℓ[Kc]
ℓT + [Kc]

ℓ[Dc]
ℓT − dℓ[Dc]

ℓ[Dc]
ℓT

−ω2 + iωdℓ + kℓ

−
nH∑

ℓ=1

[Kc]
ℓ[Kc]

ℓT − kℓ[Dc]
ℓ[Dc]

ℓT

−ω2 + iωdℓ + kℓ

(38)

On the other hand, assuming that there are no real poles nor repeated poles,
the matrix-valued rational function computed in Sec. 5.1 can be expanded in
an unique pole-residue expansion:

[N(ω)]

q(ω)
= −ω2[R−2] + iω[R−1] + [R0] +

2nH∑

ℓ=1

[Rℓ]

iω − pℓ

, (39)

where the ([Rℓ])−2≤ℓ≤0 are in M
S
nΣ

(R) (by construction), the ([Rℓ])1≤ℓ≤2nH

are in M
S
nΣ

(C) and the poles (pℓ)1≤ℓ≤2nH
are complex. Noting that each pair

(pℓ, [Rℓ]) is associated with its associated complex conjugate pair (pℓ, [Rℓ]), we
reorder and regroup the terms of Eq. (39) as

[N(ω)]

q(ω)
= −ω2[R−2] + iω[R−1] + [R0] +

nH∑

ℓ=1

2iωℜ{[Rℓ]} − 2ℜ{[Rℓ]pℓ}
−ω2 − 2iωℜ{pℓ} + ‖pℓ‖2

. (40)

This pole-residue expansion is known to present computational issues, partic-
ularly when two poles of the expansion are close to each other. Special care
should therefore be put in this operation. Comparing Eq. (38) and Eq. (40),
that hold for all frequencies in R, we get three sets of equations, to be solved
one after the other:
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(1) the first one is an uncoupled system of 2nH + 2 equations





[MΣ] = [R−2],

[DΣ] = [R−1],

dℓ = −2ℜ{pℓ}, 1 ≤ ℓ ≤ nc,

kℓ = ‖pℓ‖2, 1 ≤ ℓ ≤ nc,

(41)

that gives directly the values of [MΣ], [DΣ] and dℓ and kℓ, for 1 ≤ ℓ ≤ nH ;
(2) the second one is a coupled system of 2nH equations





[Kc]
ℓ[Kc]

ℓT − kℓ[Dc]
ℓ[Dc]

ℓT = 2ℜ{[Rℓ]pℓ}, 1 ≤ ℓ ≤ nc,

[Dc]
ℓ[Kc]

ℓT + [Kc]
ℓ[Dc]

ℓT − dℓ[Dc]
ℓ[Dc]

ℓT = −2ℜ{[Rℓ]}, 1 ≤ ℓ ≤ nc,

(42)
setting the values of the [Dc]

ℓ and [Kc]
ℓ, given those of dℓ and kℓ, for

1 ≤ ℓ ≤ nH ;
(3) finally, the third one gives directly the value of [KΣ] when the second

system has been solved,

[KΣ] −
nH∑

ℓ=1

[Dc]
ℓ[Dc]

ℓT = [R0]. (43)

.

The only system that has got to be explicited is the second one. It is in fact
partially decoupled, as the equations are coupled only in pairs for each ℓ, for
1 ≤ ℓ ≤ nH . The nH systems of equations are all in the form





[X][X]T − αα[Y ][Y ]T = α[A] + αA,

[X][Y ]T + [Y ][X]T + (α + α)[Y ][Y ]T = −(A + A),
(44)

where the [X] and [Y ] are the unknowns, in MnΣ
(R), α is a given complex

scalar, and [A] is a given matrix in M
S
nΣ

(C). In App. C, a solution ([X], [Y ])
to the system of Eq. (44) is described.

This final step allows us to identify completely the matrices [M ], [D] and [K]
representing an approximate hidden state variables model corresponding to an
impedance matrix function given at a discrete set of frequencies. The number
of hidden variables is chosen in order to provide sufficient accuracy between
the impedance matrix computed from the approximate hidden state variables
model and the impedance matrix that was given as input.
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6 Numerical Applications

In this section, two applications of the methods described in this paper are
presented. The first one is a simple problem that illustrates the process of
identification of the hidden variables model, as described in Sec. 5. The second
one describes the entire process of constructing the probabilistic model of the
impedance matrix of a circular rigid foundation on piles in a layered soil.
subsectionIdentification of the hidden variables model This first example is
a very simple one for which we choose a mechanical model in terms of mass,
damping and stiffness matrices, compute the corresponding impedance matrix
[Z̃(ω)], and try to recover the matrices [M ], [D] and [K] of the corresponding
mean hidden state variables model. These last matrices are then compared to
the original ones. The probabilistic model of the random impedance matrix
[Z(ω)] is not constructed here as we just aim at showing the accuracy of the
identification process of the mean hidden variables model, as described in
Sec. 5.

Consider therefore a mechanical system with a boundary constrained to a
single-DOF and 10 internal DOFs. The resonance frequencies of the internal
DOFs are f0 = {1, 2, 4, 4.5, 5, 7, 7, 10, 12, 15}Hz. We suppose that the reso-
nance modes at 1Hz and 5Hz are not coupled to the DOF of the boundary
and therefore should not appear in the impedance function. The real and imag-
inary parts of the impedance function are drawn (dashed line) on Fig. C.2.

[Fig. 2 about here.]

In order to illustrate the process of identification of the hidden state variables
model, we perform it using two different impedance inputs: the first one is
the impedance given on the frequency range B1 = [0, 10]Hz, and the second
one is the same impedance but given on the entire range B2 = [0, 17]Hz. The
graphs of the approximate impedance corresponding to each of the two hid-
den variables model, identified for the input ranges B1 and B2, are represented
in Fig. C.2, respectively in solid and dash-dotted line. In the first case, only
the first resonance frequencies are identified, while in the second there are all
perfectly computed. In that last cases, all the dynamic characteristics of the
original system are almost perfectly identified, with the exception of those
corresponding to the resonance frequencies at 1Hz and 5Hz, which are com-
pletely unseen. This shows that the method is only able to identify dynamic
characteristics that were present in the input impedance matrix. To identify
the two frequencies that are lacking in our hidden variables model, we would
need to add more information in the input impedance matrix, for example,
the impedance function for another DOF, that these resonance frequencies
actually impact.
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The CPU time necessary to compute the hidden variables model is completely
negligible (15s and 60s with a 1Ghz-processor, for the first and second cases
respectively). This time increases with the number of frequency points (1000
and 1700 here), the number of hidden variables (5 and 7 here), and the number
of elements in the impedance matrix (1 in both cases here).

6.1 Impedance of a FE-BE model

We now consider the construction of the probabilistic model of the random
impedance matrix [Z(ω)] of a rigid circular foundation on piles in a layered
soil (Fig. C.3).

[Fig. 3 about here.]

The first step in that construction consists in computing a mean impedance
matrix [Z̃(ω)] by classical means. Here, the piles and a bounded volume of
soil around the piles are modeled using a FE method, and the rest of the
soil is modeled using a BE method. The stiffness matrix of the bounded FE
model is computed using 6 rigid body modes on the foundation interface,
2000 DOFs for the interface with the external soil, and 200 internal modes
(highest resonance frequency at 19.2Hz). That stiffness matrix is coupled to the
impedance matrix of the external soil computed using the BE method, and the
impedance matrix of the entire soil-pile system with respect to the foundation
interface is computed by condensation of that coupled BE-FE stiffness matrix
on the 6 rigid body modes of the foundation. The FE model is a 19 m high, 40
m radius cylinder, with volumic elements for the soil and beam elements for
the piles. The soil is composed of one layer for the first 15 m (Young’s modulus
E = 150× 106 N/m2, Poisson coefficient ν = 0.48, unit mass ρ = 1900 kg/m3

and viscoelastic damping ζ = 2 × 10−5) and another one for the last 4 m
(E = 2500×106 N/m2, ν = .44, ρ = 2100 kg/m3, ζ = 2×10−5). The damping
matrix is taken proportional to the stiffness matrix (C = 2ω0ζK, with the first
eigenfrequency ω0 = 38.7 rad/s), and hysteretic damping is also considered in
the soil (β = 0.1 in the first layer and β = 0.06 in the second).

Considering the symmetry of the problem, only eight terms of the impedance
matrix [Z̃(ω)] have to be computed. They are the shaking terms in both hor-
izontal directions, the pumping in the vertical direction, the rocking terms
around the two horizontal directions, the torsion around the vertical and the
coupling terms between the shaking in one horizontal direction and the rock-
ing in the other one. Also the two shaking, rocking and coupling terms are
the same. For computational efficiency, the identification is performed inde-
pendently on the torsion and the pumping and jointly on the shaking, rocking
and coupling.
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In Fig. C.4-C.9, are represented the real and imaginary parts of these five terms
of the impedance matrix, as well as those of the shaking-pumping coupling
term.

[Fig. 4 about here.]

[Fig. 5 about here.]

[Fig. 6 about here.]

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

The impedance computed from the FE-BE model [Z̃(ω)] is drawn in solid
line, that of the approximate corresponding hidden variables model [Z(ω)]
in dashed line. The approximation is very accurate. 4 hidden variables only
were introduced in the hidden variables model (1 for the pumping element,
1 for the torsion, and 2 for the shaking-rocking submatrix). As before, the
computational time required to compute the hidden variables model is very
small, and negligible when compared to the time necessary to compute the
mean model. It is interesting to note that the hysteretic damping, which cor-
responds to a non-causal behavior of the model, induced a non-zero value of
the imaginary part of the diagonal terms of the impedance. In the hidden
variables model, this does not appear since the model imposed the causality
(compare, for example, the solid line and the dotted line in Fig. C.7).

With this hidden variable model, the probabilistic model of the impedance
matrix [Z(ω)] can be constructed, and realizations drawn. In Fig. C.4-C.9, the
0.95-confidence bounds obtained from the computation of 1000 Monte Carlo
trials are painted in grey, and one particular realization is drawn in dotted
line. Although not drawn here, the convergence of the first two moments is
verified for 1000 trials.

It should be noted that although we started from a mean model where sym-
metry of the problem induced a relative independence of the terms of the
impedance matrix, this no longer holds for the realizations of the random
matrix. Therefore, in Fig. C.9, we see that in the mean model, the shaking-
pumping term is evaluated at zero for all frequencies, but that it can reach
important values when uncertainty is considered.
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7 Conclusions

In this paper, a method is presented that allows for a nonparametric proba-
bilistic model of an impedance matrix to be constructed, from the knowledge
only of the values of a mean impedance matrix at a discrete set of frequencies
and of a small set of dispersion parameters. This mean impedance matrix can
be computed by any available computational method. The methodology pre-
sented here does not rely on the knowledge of a previously built FE model of
the domain Ω, and therefore is appropriate even for impedances of unbounded
domains. A hidden state variables model is extracted from the values of the
mean impedance matrix, and the probabilistic model is constructed around
the random mass, damping and stiffness matrices, with given means.

An interesting direction for future work is the extension of the ideas pre-
sented in this paper to the construction of nonparametric probabilistic models
of impedances measured experimentally. The main difference with what was
presented here lies in the choice of the cost function (and consequently of the
resolution scheme) for the interpolation problem. Indeed, noise has to be taken
into account and the weighted least squares cost function is not necessarily
the best fitted for that matter.

Deeply connected with this first question, the identification of the set of dis-
persion parameters has been left aside in this paper, and also represents an
interesting challenge. Some work has already been done in that field, and
the methodologies developed in these papers should be applied to the case
of impedance matrices. In [16], the coupling of two substructures with differ-
ent levels of uncertainty is considered. It is of a primary interest to consider
this as, e.g. between a soil and a structure, the expected levels of uncertainty
are very different. Previous work on uncertain soil-structure interaction prob-
lems [44,11], where the uncertainty was considered only on bounded regions
of the entire domain, could then be re-examined.

Finally, the construction of a probabilistic model from charted normalized
impedance functions [45] would also be interesting as it would open ways for
the comparison of the levels of uncertainty between impedances of different
domains.
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A Causality of the impedance matrix in the frequency domain

In order to show that [Z(ω)], defined by Eq. (13) is causal, with no explicit
reference to the time domain, it is recalled [22] that a function p 7→ f̂(p)
with values in a Hilbert space H is the Laplace transform of a causal function
f if and only if there exists a ξ0 ∈ R such that f̂ is holomorphic in Cξ0 =
{p = ξ + iη, ξ ∈]ξ0, +∞[, η ∈ R} and there exists a polynomial of |p|, Pol(|p|),
such that ‖f(p)‖H ≤ Pol(|p|), where ‖ · ‖H is the norm associated with H,
and the coefficients of Pol may depend on ξ0. The definitions of [S(ω)] and
[Z(ω)] in the frequency domain are extended to the domain of the complex
frequencies with ω = −ip, p ∈ C, which leads to the classical definition of the
Laplace transforms of the dynamic stiffness matrix [Ŝ(p)] and the impedance
matrix [Ẑ(p)]. Being a polynomial in p, p 7→ [Ŝ(p)] is holomorphic on the
entire complex plane, and p 7→ ‖[Ŝ(p)]‖F is a polynomial in p, ensuring that
[Ŝ(p)] is the Laplace transform of a causal function in the time domain. The
positive definiteness of [M ], [D] and [K] ensures that of [MH ], [DH ] and [KH ],
and therefore p 7→ [ŜH(p)] is invertible on Cξ0 . For ξ0 > 0, p 7→ [Ẑ(p)] is

holomorphic in Cξ0 , and the inverse of the determinant of [ŜH(p)] can be

bounded so that [Ẑ(p)] corresponds in the time domain to a causal function.

B Choice of the form of the matrices [M ], [D] and [K]

We first try to show in this appendix, that, given

(1) any triplet {[M ], [D], [K]} of (M+
n (R))3, such that, for all ω in R, the

matrix −ω2[MH ]+ iω[DH ]+[KH ] is invertible, where the matrices [MH ],
[DH ] and [KH ] are the ”hidden parts” of the matrices [M ], [D] and [K],
defined by Eq. (12),

(2) any matrices [F ] and [G], respectively in MnΣnH
(R) and M

+
nH

(R),
(3) and [U ] in Mn(R), such that

[U ] =




[InΣ
] [F ]

[0nHnΣ
] [G]


 , (B.1)

then

{[M ], [D], [K]} ≡ {[U ][M ][U ]T , [U ][D][U ]T , [U ][K][U ]T}, (B.2)

where the equivalence sign ≡ is defined in Sec. 5.2.1.

Let us therefore start from a triplet {[M ], [D], [K]} such that, for all ω in R,
the matrix −ω2[MH ] + iω[DH ] + [KH ] is invertible, and consider the dynamic
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stiffness matrix ω 7→ [S(ω)] corresponding to that triplet.

[S(ω)] = −ω2[M ] + iω[D] + [K] =




[SΣ(ω)] [Sc(ω)]

[Sc(ω)]T [SH(ω)]


 . (B.3)

The corresponding impedance matrix with respect to the first nΣ DOFs is
denoted [Z(ω)] and is given by Eq. (27). We denote [S ′(ω)] and [Z ′(ω)] the dy-
namic stiffness matrix and the impedance matrix corresponding to the triplet
{[U ][M ][U ]T , [U ][D][U ]T , [U ][K][U ]T}. Dropping the dependency in ω for read-
ability, we have

[S ′(ω)] = [U ][S(ω)][U ]T

=



[SΣ(ω)] + [Sc(ω)][F ]T + [F ][Sc(ω)]T + [F ][SH(ω)][F ]T [Sc(ω)][G]T + [F ][SH(ω)][G]T

[G][Sc(ω)]T + [G][SH(ω)][F ]T [G][SH(ω)][G]T


 .

(B.4)

Since [SH(ω)] and [G] are invertible, ([G][SH(ω)][G]T )−1 exists and is equal to
[G]−T [SH(ω)]−1[G]−1. The corresponding impedance is then

[Z ′(ω)] = [SΣ(ω)] − [Sc(ω)][SH(ω)]−1[Sc(ω)]T = [Z(ω)], (B.5)

and the result proposed in Eq. (B.1-B.2) is proved.

The choice of [F ] and [G] is not important here if the only information available
is that of the impedance ([G] must be invertible). Let us therefore introduce
[Φ] the (invertible) matrix whose columns are the eigenvectors φ solution of
the generalized eigenvalues problem

[KH ]φ = λ[MH ]φ, (B.6)

normalized with respect to the mass matrix [MH ], and choose [G] = [Φ].
The matrices [Φ][MH ][Φ]T and [Φ][KH ][Φ]T in M

+
nH

(R) are then diagonal,
and we will suppose, as is usually done in structural dynamics, that [DH ] is
also diagonalized by [Φ]. With such a choice of [G], we get that the ”hidden”
parts of matrices [U ][M ][U ]T , [U ][D][U ]T and [U ][K][U ]T are diagonal. Let us
then choose [F ] = −[M c][MH ]−1. This ensures that the ”coupling” part of
[U ][M ][U ]T is null.

We have therefore shown that, for any triplet of matrices, there exists an
equivalent one such that

[M ] =




[MΣ] [0nΣnH
]

[0nHnΣ
] [InΣ

]


 , [D] =




[DΣ] [Dc]

[Dc]
T [dH ]


 , [K] =




[KΣ] [Kc]

[Kc]
T [kH ]


 , (B.7)
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where [MΣ], [DΣ] and [KΣ] are in M
+
nΣ

(R), [Dc] and [Kc] are in MnΣnH
(R),

and [dH ] and [kH ] are diagonal matrices of M
+
nH

(R).

C Solution of the coupled system in [Dc]
ℓ and [Kc]

ℓ

We concentrate in this appendix on the resolution of a coupled system of
matrix equations in the following form





[X][X]T − αα[Y ][Y ]T = α[A] + α[A]

[X][Y ]T + [Y ][X]T + (α + α)[Y ][Y ]T = −([A] + [A])
(C.1)

where the [X] and [Y ] are the unknowns, in MnΣ
(R), α is a given com-

plex scalar (with nonvanishing imaginary part), and [A] is a given matrix
in M

S
nΣ

(C).

For any square complex symmetric (non-hermitian) matrix [U ], the Takagi
factorization [46] is a special case of the singular value decomposition, stating
that there always exists a unitary matrix [Q] such that

[U ] = [Q][Σ][Q]T , (C.2)

where [Σ] is the diagonal matrix of the singular values of [U ]. Denoting [
√

Σ]
the diagonal matrix of the square roots of these singular values, and [Lu] =
[Q][

√
Σ], we have that

[Lu][Lu]
T = [U ]. (C.3)

Going back to the problem of Eq. (C.1), and since the decomposition of
Eq. (C.3) is true for any matrix in M

S
n(C), it is always possible to find [L]

in Mn(C) such that

[L][L]T = 2i
[A]

ℑ{α} . (C.4)

It is then easy to check that the pair ([X], [Y ]) defined by





[X] = ℑ{α}ℜ{[L]} − ℜ{α}ℑ{[L]}
[Y ] = ℑ{[L]} , (C.5)

is a solution of the system of Eq. (C.1).

Indeed, we have

[X][X]T = ℑ{α}2ℜ{[L]}ℜ{[L]}T + ℜ{α}2ℑ{[L]}ℑ{[L]}T

−ℜ{α}ℑ{α}(ℑ{[L]}ℜ{[L]}T + ℜ{[L]}ℑ{[L]}T ), (C.6)
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[Y ][Y ]T = ℑ{[L]}ℑ{[L]}T , (C.7)

α[A] + α[A] = ℑ{α}2(ℜ{[L]}ℜ{[L]}T −ℑ{[L]}ℑ{[L]}T )

−ℜ{α}ℑ{α}(ℑ{[L]}ℜ{[L]}T + ℜ{[L]}ℑ{[L]}T ), (C.8)

[X][Y ]T + [Y ][X]T = ℑ{[α]}(ℑ{[L]}ℜ{[L]}T + ℜ{[L]}ℑ{[L]}T )

− 2ℜ{[α]}ℑ{[L]}ℑ{[L]}T , (C.9)

and

−([A] + [A]) = ℑ{[α]}(ℑ{[L]}ℜ{[L]}T + ℜ{[L]}ℑ{[L]}T ). (C.10)
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Fig. C.2. Real and imaginary parts of the impedance (normalized by the static value)
for the given input impedance (dash-dotted line), the impedance computed from the
hidden variables model identified on B1 (solid line) and the impedance computed
from the hidden variables model identified on B2 (dashed line, superimposed on the
dash-dotted line).
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Fig. C.3. Model of the foundation on piles in a layered half space: the piles and a
bounded volume of soil around the piles are modeled with FE, and the rest of the
soil is modeled with BE. The impedance is considered with respect to displacement
on Σ, on top of the foundation.
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(a) real part (b) imaginary part

Fig. C.4. Real and imaginary parts of the shaking element of the impedance matrix:
condensation of the FEM-BEM model (solid line), condensation of the hidden vari-
ables model (dashed line), 0.95-confidence bounds for the 1000 Monte Carlo trials
(grey patch), and value for one particular Monte Carlo trial (dotted line).
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(a) real part (b) imaginary part

Fig. C.5. Real and imaginary parts of the pumping element of the impedance ma-
trix: condensation of the FEM-BEM model (solid line), condensation of the hidden
variables model (dashed line), 0.95-confidence bounds for the 1000 Monte Carlo
trials (grey patch), and value for one particular Monte Carlo trial (dotted line).
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(a) real part (b) imaginary part

Fig. C.6. Real and imaginary parts of the rocking element of the impedance matrix:
condensation of the FEM-BEM model (solid line), condensation of the hidden vari-
ables model (dashed line), 0.95-confidence bounds for the 1000 Monte Carlo trials
(grey patch), and value for one particular Monte Carlo trial (dotted line).
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(a) real part (b) imaginary part

Fig. C.7. Real and imaginary parts of the torsion element of the impedance matrix:
condensation of the FEM-BEM model (solid line), condensation of the hidden vari-
ables model (dashed line), 0.95-confidence bounds for the 1000 Monte Carlo trials
(grey patch), and value for one particular Monte Carlo trial (dotted line).
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(a) real part (b) imaginary part

Fig. C.8. Real and imaginary parts of the shaking-rocking coupling element of the
impedance matrix: condensation of the FEM-BEM model (solid line), condensation
of the hidden variables model (dashed line), 0.95-confidence bounds for the 1000
Monte Carlo trials (grey patch), and value for one particular Monte Carlo trial
(dotted line).
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(a) real part (b) imaginary part

Fig. C.9. Real and imaginary parts of the shaking-pumping coupling element of the
impedance matrix: condensation of the FEM-BEM model (solid line), condensation
of the hidden variables model (dashed line), 0.95-confidence bounds for the 1000
Monte Carlo trials (grey patch), and value for one particular Monte Carlo trial
(dotted line).
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