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Abstract This paper deals with the experimental iden-
tification of the probabilistic representation of a random
field modelling the Young modulus of a non homogeneous
isotropic elastic medium by experimental vibration tests.
Experimental data are constituted of frequency response
functions on a given frequency band and for a set of
observed degrees of freedom on the boundary of speci-
mens. The random field representation is based on the
polynomial chaos decomposition. The coefficients of the
polynomial chaos are identified setting an inverse prob-
lem and then in solving an optimization problem related
to the maximum likelihood principle.

Keywords Identification · Elastic random medium ·
Polynomial chaos

1 Introduction

Analysis and modelling of random media have received
considerable attention over the past decade by scientists
and engineers (see, for instance, [5; 6; 8; 9; 12; 14; 17]).
A fundamental question concerns the experimental iden-
tification of the probabilistic model of the elastic proper-
ties of such media solving a stochastic inverse problem.
Only a few works have been published in this field (see
for instance [1; 2; 11; 16]). Such a problem has recently
be adressed in [3] for the identification of the chaos rep-
resentation of the Young modulus of an elastic random
media using experimental static tests. The method in [3]
consists (1) in using a polynomial chaos representation
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of the random field (see for instance [4; 13; 15]) to be
identified,(2) in constructing an estimation of the coeffi-
cients of the chaos representation by using the maximum
likelihood method. In this work, the experimental tests
are static which generally require a lot of experimental
measurements for a very heterogeneous random medium.
In this paper, an extension of this method is presented
in the context of experimental vibration tests. The ob-
jective is (1) to use the measured frequency response
functions which allow the quality of the construction to
be increased with respect to the case for which static
measurements are available and (2) to have a method
based on the use of experimental vibration tests which
are often easier to perform than static tests.

The proposed method is presented through a com-
plex example related to the experimental identification
of the random field modelling the Young modulus of a
linear isotropic heterogeneous random medium by vibra-
tion tests. The data used for the identification are the
frequency response functions related to the displacement
field on the boundary of a set of specimen. The same
external load are used for each specimen of the experi-
mental database. The spectrum of the external loads is
constant on the frequency band of analysis. The method
consists in (1) discretizing the elastodynamic problem
by using the finite element method for each specimen,
(2) estimating the coefficients of the finite element rep-
resentation of the random field to identify by setting an
optimization problem for each specimen of the experi-
mental database, (3) constructing the polynomial Chaos
representation of the random field and (5) estimating the
coefficients of the polynomial Chaos representation by
using the maximum likeligood method. Then, the prob-
abilistic model of the random Young modulus field will
be completely defined.

2 Construction of an ”experimental database”

The specimen is constituted of a non-homogeneous iso-
tropic linear elastic medium occupying a three-dimen-
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Fig. 1 Definition of the specimen

0 0.02 0.04 0.06 0.08 0.1 0.12

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2
x 10

10

Fig. 2 Graph of the function x 7→ E{Y (x)} where x =
(x1, x2, x3) with x2 = x3 = 0. Horizontal axis: x1. Vertical
axis: E{Y (x)}.

sional bounded domain D with boundary ∂D given in a
Cartesian system Ox1x2x3. The geometry of domain D
is a slender rectangular box shown in Fig. 1 whose di-
mensions along x1, x2 and x3 are L1 = 1.3 × 10−1m,
L2 = 2 × 10−2m and L3 = 2 × 10−2m. This elastic
medium is random. It is assumed that the Young mod-
ulus is random while the Poisson coefficient ν = 0.3 and
the mass density ρ = 2.7 × 103Kg/m3 are determinis-
tic. The random Young modulus field is modeled by a
positive-valued second-order random field Y (x) defined
in Appendix A. and independent of x2 and x3. Figure 2
shows the mean value x 7→ E{Y (x)} where E{} denotes
the mathematical expectation. Figure 3 shows the graph
of the autocorrelation function (x, x′) 7→ E{Y (x)Y (x′)}.
It can be shown that the correlation length of the ran-
dom Young modulus is much smaller than the length L1

of the specimen.
The specimen is fixed on the part Γ0 of boundary ∂D

for which the displacement field is zero. The specimen is
subjected to an external point force denoted as b(t) and
applied to the node A along x1-axis (see Fig. 1). The

Fourier transform b̂ of b is the constant vector (1, 0, 0)
in the frequency band

 
= [0, 50] kHz. Let m = 100
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Fig. 3 Graph of the function (x,x′) 7→ E{Y (x)Y (x′)} where
x = (x1, x2, x3) and x′ = (x′

1, x
′
2, x

′
3) with x2 = x3 = 0

and x′
2 = x′

3 = 0. Horizontal axis: x1 and x′
1. Vertical axis:

E{Y (x)Y (x′)}.

be the total number of specimen used for constructing
the experimental database. For each specimen, the ex-
perimental measurements consist in Nb = 60 frequency
response functions related to the displacement along x1-
axis of the nodes belonging to the part Γ of boundary
D (see Fig. 1) and where ω is running through the fre-
quency band of analysis. Let u1

Γ (ω), . . . ,um
Γ (ω) be the m

vectors belonging to ✁ Nb whose elements correspond to
the frequency response functions of each specimen and
constituting the experimental database. In this paper,
the experimental database is constructed by numerical
simulations of the direct problem (see Annexe B).

3 Identification of the realizations of the random

Young modulus by solving an inverse problem

for each specimen of the database

The finite element mesh of the structure is shown in Fig.
1 and consists of 8-node isoparametric 3D solid finite
elements. There are Nd = 1620 degrees of freedom. The
finite element approximation of the Young modulus is

modeled by the random field Ỹ indexed by D and written
as

Ỹ (x) =

N∑

k=1

Rkhk(x1) (1)

in which h1(x1), . . . , hN(x1) are the usual linear inter-
polation functions related to the finite element mesh of
domain D, where N = 60 is the degree of this approxi-
mation and whereR1, . . . RN are random coefficients. We
introduce the ✁ N -valued random variable R such that
R = (R1, . . . , RN). Eq (1) can then be rewritten as

Ỹ (x) = h(x1)
T R (2)
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in which h(x1) = (h1(x1), . . . , hN (x1)) and where expo-
nent T means the transpose of a matrix. Let [K(R)] be
the random stiffness matrix with values in the set of all
the positive-definite symmetric (Nd ×Nd) real matrices
constructed by using the finite element approximation

Ỹ (x) of the Young modulus. Let [M ] and [D] be the
mass and the damping matrices such that [D] = a [M ]
with a = 104 s−1. Matrices [M ] and [D] are determin-
istic positive-definite symmetric (Nd × Nd) real matri-
ces. The ✁ Nd-valued random-frequency-response func-
tion ω 7→ U(ω) related to the nodal displacements is
such that

[A(ω;R)]U(ω) = f(ω) ,

in which

[A(ω;R)] = −ω2 [M ] + i ω [D] + [K(R)]

where f(ω) is the ✁
 

d -vector of the external forces. Let
ω 7→ UΓ (ω) be the ✁ Nb -valued random-frequency-response
function related to the nodal displacements along x1-axis
of nodes belonging on Γ . Let

✁
be the linear mapping

from ✁
 

d into ✁
 

b such that, for all ω belonging to the
frequency band

!
,

UΓ (ω) =
✁
(U(ω)) . (3)

Realizations R(θ1), . . . ,R(θm) of random vector R are
constructed by solving the following nonlinear optimiza-
tion problems

min
R(θj)

ℓdyn((θj), u
j
Γ ) , ∀j = 1, . . . ,m (4)

in which

ℓdyn(R(θj), u
j
Γ ) =

Nband∑

k=1

∫

Bk

∥∥∥
✁

(
[Ã(ω;R(θj))]

−1f(ω)
)
− uj

Γ (ω)
∥∥∥

2

dω . (5)

in which ‖ · ‖ is the Euclidean norm. In the right-hand
side of Eq. (5) , Bk = [ωmin,k, ωmax,k] with ωmin,k =
ωk−Beq,k/2 and ωmax,k = ωk+Beq,k/2 in which Beq,k =

π a
√

1 − (a/2ωk)2 and where Nband = 5 is the number
of bands considered for the identification. It should be
noted that the optimization problem introduced in [3] in
order to solve the inverse problem to construct the re-
alizations R(θ1), . . . ,R(θm) of random vector R is based
on an elastostatic problem. In this case, the experimental
database is constituted of static measurements related to
the displacement field on the boundary of each specimen
and the optimization problem is defined as

min
R(θj)

ℓstat(R(θj), u
j
Γ ) , ∀j = 1, . . . ,m (6)

in which

ℓstat(R(θj), u
j
Γ ) =

∥∥∥
✁

(
[Ã(0;R(θj))]

−1f(0)
)
− uj

Γ (0)
∥∥∥

2
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Fig. 4 Graph of a realization x1 7→ Y (x; θ) of the Young
modulus of the experimental database (thick solid line) and

graph of a realization x1 7→ Ỹ (x, θ) with x2 = x3 = 0 con-
structed by solving the ”dynamic inverse problem” (dash line)
with Nband = 5 and the ”static inverse problem” (thin solid

line). Horizontal axis: x1. Vertical axis: Y (x; θ1) and Ỹ (x, θ)

The optimization problems defined by Eqs. (4) and (6)
are solved by using a least-squares estimation of nonlin-

ear parameters (see [7]). Realizations x 7→ Ỹ 1(x, θ1), . . . ,

x 7→ Ỹ 1(x, θm) are constructed by using Eq. (2) . We
then have

Ỹ 1(x, θj) = h(x1)
T R(θj) , ∀j = 1, . . . ,m.

Figure 4 shows the graph of one realization x1 7→ Ỹ (x, θ)
with x2 = x3 = 0 constructed by solving Eq. (4) ( ”dy-
namic inverse problem”) and Eq. (6) (”static inverse
problem”). It can be seen that the dynamical inverse
problem gives more accurate results than the static in-
verse problem. This can be explained by considering solv-
ing the dynamic inverse problem is equivalent to solve a
static inverse problem for each value of ω belonging to
the frequency band

!
. The amount of available informa-

tion used by the dynamic inverse problem is then much
greater than the amount of available information used
by the static inverse problem.

4 Statistical reduction

In order to identified the probabilistic model of the ran-

dom field Ŷ , the probabilistic model of the random vector
R has to be constructed by setting a stochastic inverse
problem using realizations R(θ1), . . . ,R(θm) constructed
in section 3. It has to be noted that the numerical cost
for solving such a stochastic inverse problem increases
with the size N of the random vector R. Consequently,
a statistical reducted representation of random vector R
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is constructed before solving the stochastic inverse prob-
lem. Let λ1 ≥ . . . ≥ λN be the eigenvalues of the covari-
ance matrix [CR] of random vector R defined by

[CR] = E{(R− R) (R− R)T } (7)

in which R = E{R}. The normalized eigenvectors asso-
ciated with the eigenvalues λ1, . . . , λN are denoted by

 
1, . . . ,

 
N . We then have

[CR]  
k = λk

 
k , (8)

and

 T
k

 
ℓ = δkk′ ∀k, k′ ≤ N . (9)

Consequently, the random vector R can be written as

R = R+

N∑

k=1

Qk

√
λk

 
ℓ , (10)

in which Q1, . . . , QN are N real-valued random variables
defined by

Qk =
1√
λk

 T
k (R− R) . (11)

From Eqs. (7) - (11) it can be deduced that Q1, . . . , QN

are N real-valued normalized centered random variables
such that for all k and ℓ,

E{Qk} = 0 , and E{QkQℓ} = δkℓ . (12)

Figure 5 displays the graph of the function n 7→ ∑n

k=1 λ
2
k.

It can be deduced that random vector R can be approx-
imated by the random vector Rn defined by

Rn = R+
n∑

k=1

Qk

√
λk

 
ℓ , (13)

with n = 15 < N . Eqs. (13) can be rewritten as

Rn = R+ [Φ] [Λ]Qn , (14)

in which the invertible (n×n) matrix [Λ] and the orthog-
onal (N × n) matrix [Φ] are such that [Λ]ℓk = δℓk

√
λℓ

and [Φ]ℓk = [  
k]ℓ and where Qn = (Q1, . . . , Qn). Futher-

more, Eqs. (12) and (14) yields

E{Qn} = 0 , and E{QnQnT } = [In] , (15)

and

Qn = [Λ]−1[Φ]T (R− R) , (16)

in which [ In] is the (n×n) unit matrix. Let Qn(θ1), . . . ,
Qn(θm) be m realizations of random vector Qn. From
Eq. (16) , it is deduced that

Qn(θj) = [Λ]−1[Φ]T (R(θj) − R) , ∀j = 1, . . . ,m
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Fig. 5 Convergence analysis of the statistical reduction :
graph of function n 7→

∑n
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λ2
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k

5 Polynomial Chaos decomposition

LetWν = (W1, . . . ,Wν) be the normalized Gaussian ran-
dom vector such that E{WiWj} = δij . The Chaos repre-
sentation of the ✁ n-valued random variable Qn in terms
of Wν is written as

Qn,ν =

+∞∑
✁

,|
✁
|=1

a ✁ H ✁ (Wν) , (17)

where ✁ is a multi-index (α1, . . . , αν) belonging to ✁ ν ,
| ✁ | = α1 + . . .+ αν and where

H ✁ (Wν) = Hα1
(W1) × . . .×Hαν

(Wν) ,

in which Hαk
(Wk) is the normalized Hermite polynomial

of order αk such that
∫

✂
Hαk

(w)Hαj
(w)

1√
2π
e−

1

2
w2

dw = δαkαj
.

Considering Eqs. (15) , it can be seen that the ✁ n-valued
random variable Qn,ν has to be such that

E{Qn,ν Qn,νT } = [In] , (18)

Consequently, the coefficients a ✁ belonging to ✁ n are
such that

+∞∑
✁

,|
✁
|=1

a ✁ aT✁ = [ In] . (19)

The truncated Chaos representation of random vector
Qn,ν is denoted as Qn,ν,d and is defined by

Qn,ν,d =
d∑

✁
,|

✁
|=1

a ✁ H ✁ (Wν) . (20)
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Substituting R by Rn in Eq. (2) and Qn by Qn,ν,d in
Eq. (14) , it can be deduced that, for all x ∈ D, the

random Young modulus Ỹ (x) can be approximated by

the random variable Ỹ n,ν,d(x) defined by

Ỹ n,ν,d(x) = h(x1)
T (R+ [Φ] [Λ]Qn,ν,d) . (21)

Obviously, Eq. (21) can be rewritten as

Ỹ n,ν,d(x) = h(x1)
T (R+

d∑
✁

,|
✁
|=1

[Φ] [Λ] a ✁ H ✁ (Wν)) .

6 Remark on the identification of the coefficients

of the polynomial chaos decomposition by

solving a least square optimization problem

The objective of this section is to show that a least square
optimization method is not adapted to the available in-
formation in order to calculate coefficients {a ✁ , | ✁ | =
1, . . . , d}. Let Qn,ν,d(θ1), . . . ,Q

n,ν,d(θm) be m realiza-
tions of random variable Qn,ν,d. We then have,

Qn,ν,d(θj ;  ) =

d∑
✁

,|
✁
|=1

a ✁ H ✁ (Wν(θj)) , ∀j = 1, . . . ,m

in which  = {a ✁ , | ✁ | = 1, . . . , d} and whereWν(θ1), . . . ,
Wν(θm) are m realizations of the random variable Wν .
A least square method would consist in calculating coef-
ficients {a ✁ , | ✁ | = 1, . . . , d} by solving the least square
optimization problem

min✁ (

m∑

j=1

‖Qn,ν,d(θj ;  ) −Qn(θj)‖2) , ∀j = 1, . . . ,m. (22)

Such a method requires that the realizationsWν(θ1), . . . ,
Wν(θm) be known for each specimen of the experimen-
tal database, that is not the case. Consequently, such a
method cannot be used. This is the reason why a method
based on the maximum likelihood method is proposed
(see [3]).

7 Identification of the coefficients of the

polynomial chaos decomposition

7.1 The maximum likelihood method

The maximum likelihood method (see for instance [10])
is used to estimate parameters a ✁ from realizations
Qn(θ1), . . . , Q

n(θm). We then have to solve the following
problem of optizimation: find  = {a ✁ , | ✁ | = 1, . . . , d}
such that

max✁ L(  ) , with
d∑

✁
,|

✁
|=1

a ✁ aT✁ = [ In] (23)

where

L(  ) = pQn,ν,d(Qn(θ1);  ) × . . .× pQn,ν,d(Qn(θm);  )

is the likelihood function associated with realizations
Qn(θ1), . . . , Q

n(θm) and where pQn,ν,d is the probabil-

ity density function of Qn,ν,d. It has to be noted that
the infinite summation

∑∞
✁

,|
✁
|=1 in Eq. (19) has to be

substituted by a finite summation
∑d

✁
,|

✁
|=1. Neverthe-

less, Eq. (19) is still verified for suffisently high values
of chaos order d. However, the optimization problem de-
fined by Eq. (23) yields a very high computational cost
induced by the estimation of the joint probability den-
sity functions pQn,ν,d(qj ,  ) (even for reasonable values

of the length n of random vector Qn,ν,d). Consequently,
it is proposed to substitute the usual likelihood function
by a pseudo-likelihood function defined as

L̃(  ) =

n∏

k=1

p
Q

n,ν,d

k

(Qk(θ1);  ) × . . .

. . .×
n∏

k=1

p
Q

n,ν,d

k

(Qk(θm);  ) , (24)

whereQn = (Q1, . . . , Qn) andQn,ν,d = (Qn,ν,d
1 , . . . , Qn,ν,d

n )
and where p

Q
n,ν,d

k

is the probability density function of

random variable Qn,ν,d
k . Finally, the following problem

of optimization is substituted to the problem defined by
Eq. (23) . Find  = {a ✁ , | ✁ | = 1, . . . , d} such that

max✁ L̃(  ) , with

d∑
✁

,|
✁
|=1

a ✁ aT✁ = [ In] . (25)

7.2 Algorithm for the maximum likelihood optimization

The solver used for constructing the solutions of the op-
timization problem defined by Eqs. (25) is based on
an incremental random search algorithm. This is not the
most efficient solver, but it is the simplest one. A key of
the method is to substitute coefficients  by realizations
of random coefficients {A ✁ , | ✁ | = 1, . . . , d} such that

d∑
✁

,|
✁
|=1

A ✁ AT✁ = [ In] . (26)

Let [A] be a rectangular matrix whose columns are con-
stituted by the random vectors {A ✁ , | ✁ | = 1, . . . , d}.
Random matrix [A] is a n×ℓmatrix where ℓ =

∑d
✁

,|
✁
|=1 Iα

with Iα = 1 for all α. From Eq. (26) , it is deduced that

[A] [A ✁ ]T = [ In] . (27)

Consequently, realizations of random coefficients {A ✁ , | ✁ | =
1, . . . , d} can be deduced from realizations of random ma-
trix [A] satisfying Eq. (27) . Realizations [A(θ)] of ran-
dom matrix [A] are constructed by using the following
algorithm.
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Fig. 6 Graphs of functions x 7→ E{Y(x)Y(x′)} (thick dashed

line) and x 7→ E{Ỹn,ν,d(x)Ỹn,ν,d(x′)} where x = (x1, x2, x3)
and x′ = (x′

1, x
′
2, x

′
3) with x1 = 0.0520, x2 = x3 = 0 and

x′
2 = x′

3 = 0 with d = 5, n = 15, ν = 2, 3 (thin dashed
lines) and ν = 4, 5, 6, 7 (thin solid lines). Horizontal axis: x1.

Vertical axis: E{Y(x)Y(x′)} and E{Ỹn,ν,d(x)Ỹn,ν,d(x′)}

1. Let [A0] be a n × ℓ random matrix whose entries
are independent uniform real random variables on
[−1 , 1].

2. Let [L] be a random upper triangular matrix cor-
responding to the Chowlesky decomposition of ran-
dom matrix [B0] = [A0][A0]

T . We then have [B0] =
[L]T [L].

3. It can be proved that Eq. (27) is satisfied by the
random matrix [A] defined as [A] = [L]−T [A0].We
then have [A(θ)] = [L(θ)]−T [A0(θ)].

7.3 Convergence Analysis

In order to perform a convergence analysis of the method
proposed in this paper, the normalized random variables

Y(x) and Ỹn,ν,d(x) are introduced and defined by

Y(x) = Y (x)/E{Y (x)} , ∀x ∈ D
and

Ỹn,ν,d(x) = Ỹ n,ν,d(x)/E{Ỹ n,ν,d(x) . ∀x ∈ D
Figure 6 shows the graphs of functions x 7→ E{Y(x)Y(x′)}
(thick dashed line) and x 7→ E{Ỹn,ν,d(x)Ỹn,ν,d(x′)} where
x = (x1, x2, x3) and x′ = (x′1, x

′
2, x

′
3) with x2 = x3 = 0

and x′2 = x′3 = 0, for x′1 = 0.0888 and with d = 5,
n = 15, ν = 2, 3 (thin dashed lines) and ν = 4, 5, 6, 7, 8
(thin solid lines). It can be seen that the probabilistic
model is converged for ν = 4. The remaining error is due
to the truncating of the statistical reduction defined in
Section 5.

7.4 Identification of the probabilistic model

Each Fig. 7 shows the graphs of x 7→ E{Y(x)Y(x′)}
(thick dashed line) and x 7→ E{Ỹn,ν,d(x)Ỹn,ν,d(x′)} (thin

solid line) where x = (x1, x2, x3) and x′ = (x′1, x
′
2, x

′
3)

with x2 = x3 = 0 and x′2 = x′3 = 0, for x′1 = 0.0173
(Fig. 7a), x′1 = 0.0520 (Fig. 7b), x′1 = 0.0888 (Fig.
7c), x′1 = 0.1105 (Fig. 7d) and with d = 5, n = 15,
ν = 4. For all x ∈ D, let y 7→ pY(x)(y; x) and y 7→
p
Ỹn,ν,d(x)

(y; x) be the probability density functions of the

random variables Y(x) and Ỹn,ν,d(x). Each Fig. 8 shows
the graphs of y 7→ log10(pY(x)(y; x)) (thick solid line)
and y 7→ log10(pỸn,ν,d(x)

(y; x)) (thin solid line) where

x = (x1, x2, x3) with x2 = x3 = 0 and x1 = 0.0152 (Fig.
8a), x1 = 0.1018 (Fig. 8b) and with d = 5, n = 15 and
ν = 4. It can be seen that the probabily density function
is accurately identified.

8 Conclusion

A method for solving the stochastic inverse problem us-
ing chaos representation of the stochastic field to be iden-
tified and an experimental database is proposed. This
method extends the method proposed in [3] to the case
of experimental vibration tests. The proposed method
uses the maximum likelihood principle to identify the
coefficients of the chaos representation. For presented ex-
ample, this method allows any probabilistic quantities to
be identified such as the autocorrelation function of the
random field and the marginal probability density func-
tions. It should be noted that the proposed method can
easily be extended to the case of a viscoelastic random
medium for which the elastic properties depend on fre-
quency.

Appendix A. Probabilistic model of the random

field modelling the Young modulus of the speci-

mens

The Young modulus of the specimens is modeled by a
random field denoted as Y defined by

Y (x) = c0 g(c1, c2 V (x)) , ∀x ∈ D (28)

in which c0 = 1.6663 × 1010 N.m−2, c1 = 1.5625 and
c2 = 0.2. The function θ 7→ g(α, θ) from ✁ into ]0 ,+∞[
is such that, for all θ in ✁ ,

h(α, θ) = F−1
Γα

(FΘ(θ)) ,

in which θ 7→ FΘ(θ) = P (Θ ≤ θ) is the cumulative dis-
tribution function of the normalized Gaussian random
variable Θ and where the function p 7→ F−1

Γα
(p) from

]0 , 1[ into ]0 ,+∞[ is the reciprocal function of the cumu-
lative distribution function γ 7→ FΓα

(γ) = P (Γα ≤ γ))
of the gamma random variable Γα with parameter α.
In the right-hand side of Eq. (28) , {V (x), x ∈ D} is a
second-order random field such that

E{V (x)} = 0 and E{V (x)2} = 1,



7

0 0.02 0.04 0.06 0.09 0.11 0.13
−1

−0.5

0

0.5

1

0 0.02 0.04 0.06 0.09 0.11 0.13

−1

−0.5

0

0.5

1

0 0.02 0.04 0.06 0.09 0.11 0.13

−1

−0.5

0

0.5

1

0 0.02 0.04 0.06 0.09 0.11 0.13

−1

−0.5

0

0.5

1

(a) (b)

(c) (d)

Fig. 7 Graphs of x 7→ E{Y(x)Y(x′)} (thick dashed line) and x 7→ E{Ỹn,ν,d(x)Ỹn,ν,d(x′)} (thin solid line) where x =
(x1, x2, x3) and x′ = (x′

1, x
′
2, x

′
3) with x2 = x3 = 0 and x′

2 = x′
3 = 0, for x′

1 = 0.0173 (Fig. 7a), x′
1 = 0.0520 (Fig. 7b),

x′
1 = 0.0888 (Fig. 7c), x′

1 = 0.1105 (Fig. 7d) and with q = 5, n = 15, ν = 4. Horizontal axis: x1. Vertical axis: E{Y(x)Y(x′)}

and E{Ỹn,ν,d(x)Ỹn,ν,d(x′)}
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Fig. 8 Graphs of y 7→ log10(pY(x)(y; x)) (thick solid line) and y 7→ log10(pỸn,ν,d(x)
(y; x)) (thin solid line) where x =

(x1, x2, x3) with x2 = x3 = 0 and x1 = 0.0152 (Fig. 8a), x1 = 0.1018 (Fig. 8b) and with d = 5, n = 15 and ν = 4. Horizontal
axis: y. Vertical axis: log10(pY(x)(y;x)) and log10(pỸn,ν,d(x)

(y;x)).
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defined by

V (x) =

3∑

|
✁
|=1

H ✁ (Z1, Z2, Z3, Z4)
√
γ ✁ ψ ✁ (x/2) , (29)

in which {Z1, Z2, Z3, Z4} are independent normalized
Gaussian random variables, ✁ is a multi-index belonging
to  4 and where H ✁ (z1, z2, z3, z4) is the multi-indexed
Hermite polynomials (see section 5). In the right-hand
side of Eq. (29) , {γ ✁ }1≤|

✁
|≤3 and {ψ ✁ }1≤|

✁
|≤3 are de-

fined as the eigenvalues and the eigenfunctions of the
integral linear operator C defined by the kernel

C(x, x′) = exp (−|x1 − x′1|/L)

in which L = L1/40 and where x = (x1, x2, x3) and
x′ = (x′1, x

′
2, x

′
3) belong to D. This means that the cor-

relation length of the random field is much smaller than
the length L1 of the specimen. The eigenvalue problem
related to operator C is then written as
∫

D

C(x, x′)ψ ✁ (x′)dx′ = γ ✁ ψ ✁ (x) . (30)

It should be noted that, Y (x) = Y (x1) and consequently,
Y (x) is independent of x2 and x3.

Appendix B. Construction of the experimental

database by numerical simulation of the direct

problem.

In this paper, the experimental database is constructed
by numerical simulations of the direct problem. The fi-
nite element mesh of the structure is shown in Fig. 1
and consists of 8-node isoparametric 3D solid finite el-
ements. There are Nd = 1620 degrees of freedom. Let
Z = (Z1, Z2, Z3, Z4) be the ✁ 4-valued random variable
constituted of the 4 independent random variables in
Eq. (29) (the random germ of uncertainties). Let [K(Z)]
be the random stiffness matrix with values in the set of
all the positive-definite symmetric (Nd × Nd) real ma-
trices. The ✁ Nd-valued random-frequency-response func-
tion ω 7→ U(Z;ω) related to the nodal displacements is
such that

[A(ω;Z)]U(Z;ω) = f(ω) ,

in which

[A(ω;Z)] = −ω2 [M ] + i ω [D] + [K(Z)]

where matrices [M ] and [D] are defined in section 3 and

where f(ω) is the ✁
 

d -vector of the external forces. Let
z1, . . . , zm be m realizations of random vector Z. The ex-
perimental database is then constitued of the m vectors
u1

Γ (ω), . . . , um
Γ (ω) defined as, for all ω in the frequency

band of analysis,

u1
Γ (ω) =

✁
(U(z1;ω)) , . . . , um

Γ (ω) =
✁
(U(zm;ω)) ,

where the mapping
✁

is defined by Eq. (3) .
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