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Abstract

This paper studies the transient dynamics of a linear dynamical system with

elastic barriers excited by a deterministic transient force whose Fourier Transform

has a bounded frequency narrow band. The system is then non-linear. In order to

measure the degree of non-linearity of the system, one looks for the mechanical

energy transferred outside the frequency band of excitation as a function of the

parameter η defined by ε/a, in which ε is the size of the barrier gap and a is the

amplitude of the excitation force. The mechanical energy transferred outside the

frequency band of excitation can potentially be a source of excitation for other

subsystems. Consequently, a quantification of this energy transfer is important for

the understanding of the non-linear dynamical system. In addition, it is well known

that this type of non-linear dynamical system is very sensitive to uncertainties. For

this reason one studies the system as being deterministic, and also stochastic in order

to take into account random uncertainties. The proposed analysis is then applied to

a Timoshenko beam having its motion constrained by a symmetric elastic barrier at

its free end. In particular, one shows the confidence region of the random mechanical

energy transferred outside the excitation band as a function of η for several levels
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of model and data uncertainties. This type of results allows the robustness of the

predictions to be analyzed with respect to model and data uncertainties.

Key words: Non-linear Dynamics, Vibro-impacts, System Uncertainties

1 Introduction

The non-linear dynamics of linear dynamical systems with barriers inducing

impacts has received considerable attention in the last two decades. Although

there are some engineering systems where impacts are part of the project,

most of the time this phenomenon is related to wear, fatigue and noise as,

for example, in the case of gear boxes. The interest in vibro-impact systems

arises due to their intrinsic non-linear characteristic which prevents their study

through more traditional methods such as modal analysis. Actually, systems

of this kind have an extremely complex dynamic behaviour, sometimes even

chaotic. Therefore, they are normally studied with bifurcation diagrams and

Poincaré maps. However, most of the vibro-impact systems investigated so far

consists of simple ones with a single degree of freedom. It is expected that the

flexibility of a structure will play an important role in its impact response,

specially through the excitations of many of its degrees of freedom. Also one

expects some exchange of energy among modes due to impacts. A lot of works

have been published concerning one single degree of freedom and multi-degrees

of freedom deterministic systems excited by deterministic harmonic signals or

by narrow- or wide-band stochastic processes (see for instance Babitsky and

Birkett [1]). Some works were also published concerning the identification of

restoring force non-linearities from system response to white noise excitation

(see for instance Dimentberg and Sokolov [2] for single degree-of-freedom sys-

tems). A review of such works can be found in the recent paper by Dimentberg

and Iourtchenko [3]. It should be noted that deterministic continuous systems

with impacts have received less attention probably due to the difficulties of
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such non-linear dynamical problems which are very hard to analyze with ana-

lytical tools or with numerical methods. However, some recent representative

works of this type can be found in Refs. [4–8].

Some of the features of this work are:

• It is not about a single, nor multiple, degree of freedom system, but deals

with a continuous system. Nevertheless, in order to simplify the presenta-

tion and also to show that the methodology applies to a general dynamical

system, we start with a discretization of the continuous system, say by using

the finite element method.

• The excitation is neither narrow- nor broad-band stochastic process (includ-

ing white noise modelling) nor deterministic harmonic signal. In this paper

the excitation will be modelled by a deterministic narrow-band signal. This

choice is important because it gives some robustness to the excitation. One

centers the band around one of the natural frequencies of the linear system

(without impact) and the width of the band is chosen in order to allow

modifications of the system to be taken into account (non-linearities and

uncertainties).

• It deals with the deterministic and also stochastic modelling of the contin-

uous system. The stochastic aspects being induced by the uncertainties in

the data and in the model (the matrices that represent the linear continuous

system are random).

• Measures of non-linearities are proposed. In order to analyze the degree of

non-linearity of the system, one looks for the mechanical energy transferred

outside the frequency band of excitation as a function of the parameter

η, defined by ε/a, in which ε is the size of the barrier gap and a is the

amplitude of the excitation force. When ε is zero or infinity, there are no

impacts. When it is between this two bounds the continuous system-barrier

behaves non-linearly for amplitude a sufficiently high. It turns out that the

non-linearity depends on η. The interest of measuring the amount of energy

that is transferred outside the band of excitation is to evaluate the dangerous

consequences like exciting sensitive subsystems whose lowest eigenfrequency

is outside the band of excitation.

• Stochastic systems are considered in order to evaluate the robustness of
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the numerical prediction of the energy transferred with respect to data and

model uncertainties.

This paper is divided into four parts. Section 2 is devoted to the modelling

and analysis of the deterministic non-linear dynamical system. In Section 3 one

presents the stochastic modelling of the system in order to take into account

data and model uncertainties. Section 4 deals with numerical applications. We

take a Timoshenko beam with an elastic barrier. Finally, general analysis and

conclusions are presented in Section 5.

2 Modelling and analysis of the deterministic non-linear dynamical

system

In this section one presents the mean model of the dynamical system with

excitation, the reduced mean model obtained by using the elastic modes of

the linear mean dynamical system and, finally, one describes the different

energies one needs to analyze the energy transferred outside the excitation

band.

2.1 Finite element model of the mean non-linear dynamical system

The main interest of the paper is to study a linear continuous system with elas-

tic barriers that induce through impact non-linearities. However the method-

ology one presents is general and can be applied to a larger class of problems,

as for example those related to a linear system interacting with a subsystem

that originates non-linearities, as the case of an elastic barrier. In order to fo-

cus in the methodology one starts with a finite dimensional system that could

be the result of a discretization process. This system, referred as the mean

model, is described by the following matrix equation in R
m,

[M] ÿ(t) + [D] ẏ(t) + [K]y(t) + fNL(y(t), ẏ(t)) = f(t) , (1)

where [M], [D], [K] are the mass, damping, and stiffness matrices, that are

supposed to be symmetric and positive-definite real matrices, y(t) is the dis-
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placement vector, fNL(y(t), ẏ(t)) describes the non-linear vector forces, f(t) the

applied vector load. The non-linear mapping (y, z) 7→ fNL(y, z) is assumed to

be such that fNL(0, 0) = 0. The vector load f(t) is written as

f(t) = a g(t) f0 , (2)

in which a is the amplitude and f0 is a normalized vector describing the position

of the applied forces. The impulse t 7→ g(t) is a square integrable real-valued

function on R whose Fourier Transform ω 7→ ĝ(ω) =
∫
R

e−iωtg(t) dt has a

bounded support B2 ∪ B2 with

B2 = [ωmin, ωmax] , B2 = [−ωmax,−ωmin] . (3)

The notation B2 will be explained in Section 2.3. In addition it is assumed

that maxω∈B2
|ĝ(ω)| = 1.

2.2 Reduced mean model

Let {φ1, . . . , φm} be an algebraic basis of R
m. The reduced mean model of

the dynamic system whose mean finite element model is defined by Eq. (1)

is obtained by projection of Eq. (1) on the subspace Vn of R
m spanned by

{φ1, . . . , φn} with n ≪ m. Let [ Φn] be the (m×n) real matrix whose columns

are the vectors {φ1, . . . , φn}. The generalized applied force Fn(t) is an R
n-

vector such that Fn(t) = [ Φn]T f(t). The generalized mass, damping, and

stiffness matrices, [ Mn], [ Dn], and [ Kn], are positive-definite symmetric (n×n)

real matrices such that [Mn] = [ Φn]T [ M ][ Φn], [ Dn] = [ Φn]T [ D ][ Φn], and

[ Kn] = [ Φn]T [ K ][ Φn]. Consequently, the reduced mean model of the non-

linear dynamic system, written as the projection yn of y on Vn, can be written

as

yn(t) = [ Φn]qn(t) , (4)

in which the vector qn(t) ∈ R
n of the generalized coordinates verifies the mean

non-linear differential equation,

[ Mn] q̈n(t) + [ Dn] q̇n(t) + [ Kn]qn(t) + Fn
NL

(qn(t), q̇n(t)) = Fn(t) , (5)
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where, for all q and p in R
n,

Fn
NL

(q,p) = [ Φn]T fNL([ Φn]q, [ Φn]p) . (6)

2.3 Quantification of the transferred energies outside the excitation band

The objective of this section is to quantify the mechanical energy transferred

outside the excitation band. It is assumed that Eq. (1) has a unique solution

t 7→ y(t) such that y and ẏ are square integrable vector-valued functions on

R. An approximation of this solution is computed using the reduced mean

model defined by Eqs. (4)-(6). The positive frequency band R
+ = [0, +∞[ is

then written as

R
+ = [0, +∞[= B1 ∪ B2 ∪ B3 , (7)

in which B1 = [0, ωmin[ and B3 =]ωmax, +∞[. The sets B1 and B3 are the bands

outside the frequency band of excitation B2. The total mechanical energy,

denoted by ẽ, of the non-linear dynamical system corresponding to the solution

mentioned above is written as,

ẽ =
∫

R

(
1

2
< [M] ẏ(t) , ẏ(t) > +

1

2
< [K]y(t) ,y(t) >) dt . (8)

Let ŷ(ω) =
∫
R

e−iωty(t) dt be the Fourier Transform of y. Using the Parseval

formula, Eq. (8) yields

ẽ =
∫

R

h(ω) dω = 2
∫

R+

h(ω) dω , (9)

in which h(ω) is the density of the mechanical energy in the frequency domain

which is written as

h(ω) =
1

2π
{
1

2
< ω2[M] ŷ(ω) , ŷ(ω) > +

1

2
< [K] ŷ(ω) , ŷ(ω) > } . (10)

From Eqs. (7) and (9), it can deduced that

ẽ = ẽ1 + ẽ2 + ẽ3 , (11)

in which

ẽj = 2
∫

Bj

h(ω) dω , j = 1, 2, 3 . (12)
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The transferred mechanical energy outside the excitation band B2 is denoted

by ẽ13 which is defined by

ẽ13 = ẽ1 + ẽ3 . (13)

Using the reduced mean model defined by Eqs. (4)-(6), the approximation

hn(ω) of h(ω) defined by Eq. (10) can be written as

hn(ω) =
1

2π
{
1

2
< ω2[Mn] q̂n(ω) , q̂n(ω) > +

1

2
< [Kn] q̂n(ω) , q̂n(ω) > } ,

(14)

in which q̂n(ω) =
∫
R

e−iωtqn(t) dt is the Fourier Transform of qn. The cor-

responding energies computed with this approximation are denoted by ẽn,

ẽn
1 , ẽn

2 , ẽn
3 , ẽn

13. In order to explore the results in a non-dimensional way one

introduces the following parameters,

en
1 =

ẽn
1

ẽn
, en

2 =
ẽn
2

ẽn
, en

3 =
ẽn
3

ẽn
, en

13 =
ẽn
13

ẽn
, (15)

Consequentely, one has,

en
1 + en

2 + en
3 = 1 , en

13 + en
2 = 1 . (16)

The en
13 represents the percentage of mechanical energy transferred outside

the frequency band of the excitation band.

3 Modelling and analysis of the non-linear dynamical system with

random uncertainties

The first source of uncertainties in this type of problem is due to the mathematical-

mechanical modelling process leading to the boundary value problem. This

type of uncertainty is structural, and cannot be represented as, simply, the

usual variation of parameters [9,10]. This uncertainties are called the model

uncertainties. Concerning the second source of uncertainties, they come from

the parameters such as geometry, material properties, boundary and initial

conditions, etc, related to the boundary value problem. The uncertainties in

these parameters are called data uncertainties. It is worthwhile to remark

that the errors related to the construction of an approximation of the solution

7



of the boundary value problem, that have to be controlled in order to meet

the specifications of the numerical approximation, are not uncertainties.

For the class of systems one studies the sources of uncertainties are in the data

related to the non-linear term and in the data and model related to the linear

part.

3.1 Probabilistic modelling of uncertainties

From this point one constructs the probability model of uncertainties from

the mean reduced model defined by Eqs. (4)-(6). All the random variables are

defined in a probability space (Θ,F ,P)

(A) Parametric probabilistic model of data uncertainties for the non-linear

term. Usually, data uncertainties are modelled by using parametric probabilis-

tic approach consisting in modelling each uncertain parameter by a random

variable whose probability distribution has to be constructed using the avail-

able information. The non-linear term Fn
NL

(qn(t), q̇n(t)) in Eq. (5) is rewritten

as Fn
NL

(qn(t), q̇n(t); s) in which s is an R
ν-vector of uncertain parameters. The

probabilistic modelling of vector s is as a R
ν-valued random variable whose

probability distribution on R
ν is denoted by PS(ds). The available information

for constructing PS(ds) depends on the nature of the parameters constituting

the vector s (for instance, positivity, boundedness of components, etc). When

this information is defined the probability distribution can be constructed

using the maximum entropy principle with the constraints defined by the

available information [11,13].

(B) Non-parametric probabilistic model of model and data uncertainties for

the linear part. Model uncertainties cannot be taken into account using the

parametric probabilistic approach. A non-parametric probabilistic approach

can be used to take into account model uncertainties and data uncertainties

[9,10]. The principle of construction of such non-parametric probabilistic ap-

proach of uncertainties for the linear part of the non-linear dynamical system

whose reduced mean model is defined by Eqs. (4)-(6) consists in substituting

the generalized mass, damping, and stiffness matrices in Eq. (5) by the ran-
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dom matrices [Mn], [Dn], and [Kn] whose probability distributions have been

constructed using the maximum entropy principle with an adapted available

information. The explicit form of the probability distributions of the random

matrices [Mn], [Dn], and [Kn] are given in Refs. [9,10].

(C) Stochastic reduced model. The stochastic transient response of the non-

linear dynamic system with a non-parametric probabilistic approach of model

and data uncertainties is the stochastic process Yn(t), indexed by R, with

values in R
m, such that

Yn(t) = [ Φn]Qn(t) , (17)

in which the stochastic process Qn, defined in the probability space (Θ,F ,P),

indexed by R, with values R
n, is such that

[Mn] Q̈n(t) + [Dn] Q̇n(t) + [Kn]Q
n(t)+

Fn
NL(Qn(t), Q̇n(t);S) = Fn(t) , ∀t ∈ R . (18)

Let |||Qn||| be the norm such that

|||Qn|||2 = E{
∫

R

||Qn(t)||2 dt} , (19)

in which E is the mathematical expectation and where ||u||2 = u2
1 + . . .+u2

n is

the square of the Euclidean norm of u in R
n. It is assumed that the non-linear

term is such that Eq. (18) has a unique second-order mean-square solution

such that

|||Qn||| < +∞ , |||Q̇n||| < +∞ . (20)

3.2 Probabilistic quantification of the transferred energies outside the exci-

tation band for the uncertain system

The objective of this section is to adapt Section 2.3 to the reduced stochastic

system defined by Eqs. (17) and (18). The random total mechanical energy

associated with ẽn is denoted by Ẽ n and is such that

Ẽ n =
∫

R

(
1

2
< [M] Ẏn(t) , Ẏn(t) > +

1

2
< [K]Yn(t) ,Yn(t) >) dt . (21)
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The density of the random mechanical energy in the frequency domain associ-

ated with hn(ω) defined by Eq. (14) is denoted by Hn(ω) and can be written

as

Hn(ω) =
1

2π
{
1

2
< ω2[Mn] Q̂n(ω) , Q̂n(ω) > +

1

2
< [Kn] Q̂n(ω) , Q̂n(ω) > } ,

(22)

in which Q̂n(ω) =
∫
R

e−iωtQn(t) dt is the Fourier Transform of Qn.

Let Hn
dB(ω) be the density of the random mechanical energy in dB normalized

with respect to the total mechanical energy ẽlin of the linear mean system.

One then has

Hn
dB(ω) = log10(H

n(ω)/ẽlin) . (23)

Let Ẽn
1 , Ẽn

2 , Ẽn
3 and Ẽn

13 be the random energies associated with ẽn
1 , ẽn

2 , ẽn
3

and ẽn
13 such that

Ẽn
j = 2

∫

Bj

Hn(ω) dω , j = 1, 2, 3 , Ẽn
13 = Ẽn

1 + Ẽn
3 . (24)

Similarly to Section 2.3, this random energies are normalized as follows

En
1 =

Ẽn
1

Ẽn
, En

2 =
Ẽn

2

Ẽn
, En

3 =
Ẽn

3

Ẽn
, En

13 =
Ẽn

13

Ẽn
. (25)

Consequentely, one has the random equations,

En
1 + En

2 + En
3 = 1 , En

13 + En
2 = 1 . (26)

The En
13 represents the percentage of the random mechanical energy trans-

ferred outside the frequency band of the excitation band.

3.3 Stochastic solver and convergence

In this section one introduces the stochastic solver that is used and one anal-

yses the stochastic convergence. The Monte Carlo numerical simulation and

mathematical statistics are used for solving the stochastic equations defined

by Eqs. (17) and (18). Let S(θ) and [Mn(θ)], [Dn(θ)], [Kn(θ)] be independent

realizations of the random variable S and the random matrices [Mn], [Dn],

[Kn], for θ ∈ Θ.
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(A) Construction of realizations of random variable S. Each realization S(θ)

of random variable S is usually constructed using random generator associated

with the probability distribution PS(ds). Because the generation is standard

it will not be detailed here.

(B) Construction of realizations of random matrix variables [Mn], [Dn], [Kn].

Let [An] be any of the three random matrices above and let [An] be its mean

value which is a positive-definite matrix. Its Cholesky factorization yields

[An] = [Ln]T [Ln]. Each realization [An(θ)] can be generated using the fol-

lowing algebraic representation [9,10],

[An] = [Ln]T [Gn] [Ln] , (27)

In which the positive-definite random matrix [Gn] is written as

[Gn] = [Ln]T [Ln] . (28)

In Eq. (27), [Ln] is an upper triangular random matrix with values in Mn(R)

such that:

(1) The random variables {[Ln]jj′, j ≤ j′} are independent.

(2) For j < j′, the real-valued random variable [Ln]jj′ can be written as

[Ln]jj′ = σnUjj′ in which σn = δ(n + 1)−1/2 and where Ujj′ is a real-valued

Gaussian random variable with zero mean and variance equal to 1.

(3) For j = j′, the positive-valued random variable [Ln]jj can be written as

[Ln]jj = σn

√
2Vj in which σn is defined above and where Vj is a positive-valued

gamma random variable whose probability density function pVj
(v) with respect

to dv is written as

pVj
(v) = 1R+(v)

1

Γ
(

n+1
2δ2 + 1−j

2

) v
n+1

2δ2
−

1+j

2 e−v , (29)

in which 1R+(v) = 1 if v ∈ R
+ and = 0 if not, and where Γ is the usual

Gamma function. This algebraic representation exhibits δ which is the positive

parameter allowing the dispersion of the random matrix [An] to be controlled.

This parameter has to be given for each random matrix and controls the level

of uncertainties. In special it controls the uncertainties of mass, damping or
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stiffness of the linear continuous system of the non-linear dynamical system.

(C)Construction of realizations of the solution of the stochastic reduced system.

The realization Yn(t, θ) for θ ∈ Θ of Yn(t) defined by Eq. (23) is given by

Yn(t, θ) = [ Φn]Qn(t, θ) , (30)

in which the realization {Qn(t, θ), t ∈ R} of the stochastic process {Qn(t), t ∈

R}, is the solution of the following deterministic non-linear reduced equation,

[Mn(θ)] Q̈n(t, θ) + [Dn(θ)] Q̇n(t, θ) + [Kn(θ)]Qn(t, θ)+

Fn
NL(Qn(t, θ), Q̇n(t, θ);S(θ)) = Fn(t, θ) , ∀t ∈ R . (31)

This equation is solved by using an implicit unconditionnally stable scheme

such as Newmark algorithm. At each time step, the non-linear algebraic equa-

tion coming from the scheme is solved by iteration.

(D)Stochastic convergence The mean-square convergence of the second-order

stochastic solution of Eq. (18) with respect to dimension n of the stochas-

tic reduced model and to the number ns of realizations used in the Monte

Carlo numerical simulations is controlled by the norm |||Qn||| defined by Eq.

(19). Using the usual estimation of the mathematical expectation operator E ,

convergence with respect to n and ns is studied by constructing the function

(ns, n) 7→ conv(ns, n) defined by

conv(ns, n) =

{
1

ns

ns∑

k=1

∫

R

‖Qn(t, θk)‖
2 dt

}1/2

, (32)

in which Qn(t, θ1), . . . ,Q
n(t, θns

) are ns independent realizations of Qn(t).

(E) Statistical estimations of the random energies. One is interested in con-

structing statistical estimations for the stochastic process {Hn(ω), ω ∈ R}

defined by Eq. (22) and for the random variables En
1 , En

2 , En
3 , En

13 defined by

Eq. (24), whose realizations are directly deduced from the realizations of Qn.

Let X be the positive-valued random variable representing either Hn(ω) for

ω fixed in R or any of the random variables En
1 , En

2 , En
3 , En

13. The mean value

12



mX = E{X} is estimated by

m̃X =
1

ns

ns∑

k=1

X(θk) , (33)

in which X(θ1), . . . , X(θns
) are ns independent realizations of X. The con-

fidence region of random variable X is constructed by using the quantiles.

Let FX be the cumulative distribution function (continuous from the right)

of random variable X such that FX(x) = P (X ≤ x). For 0 < p < 1, the pth

quantile (or fractile) of FX is defined by

ζ(p) = inf{x : FX(x) ≥ p} . (34)

Then the upper envelope x+ and the lower envelope x− of the confidence region

with probability level Pc are defined by

x+ = ζ ((1 + Pc)/2) , x− = ζ ((1 − Pc)/2) . (35)

The estimations of x+ and x− are performed by using the sample quantiles.

Let x1 = X(θ1), . . . , xns
= X(θns

). Let x̃1 < . . . < x̃ns
be the order statistics

associated with x1 < . . . < xns
. Therefore, one has the following estimations,

x+ ≃ x̃j+ , j+ = fix(ns (1 + Pc)/2) , (36)

x− ≃ x̃j− , j− = fix(ns(1 − Pc)/2) , (37)

in which fix(z) is the integer part of the real number z.

4 Application to a Timoshenko beam with an elastic barrier

This section deals with the application of the theory developed in the previous

sections. The linear part of the continuous system is a Timoshenko beam with

added dissipation. The non-linear force is due to a symmetrical linear elastic

barrier.
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4.1 Description of the non-linear elastic dynamical system

The geometrical properties of the beam are: length 1m, width 0.1 m, height

0.1 m. The boundary conditions are of a cantilever beam, with the free end

having its motion limited by an elastic barrier distant of ε, in both sides of

the beam. The gap ε is considered as a parameter. The beam is homogeneous,

isotropic, whose material properties are: density 7500 kg/m3, Young’ s modu-

lus 2.1 × 1010 N/m2, Poisson’s coefficient 0.3, shearing correction factor 5/6.

The damping model is introduced by the model damping rate which is 0.02 for

the first three modes, 0.01 for the fourth mode and 0.005 for the others. The

elasticity constant of the barrier is kb = 107 N/m. The function fNL defined in

Eq. (1) is then independent of the velocity and is written as

fNL(y) =





0, |y| ≤ ε

−kb (y − ε sign(y)) , |y| > ε

(38)

4.2 Mean model

(A) Mean finite element model. The mean finite element model of the cantilever

beam is constituted of 100 2-nodes Timoshenko beam elements. The first six

computed eigenfrequencies are 26.9, 162.7, 432.9, 794.1, 1219.2 and 1685.3 Hz.

(B) Description of excitation force. The vector load is defined by Eq. (2). The

amplitude a is considered as a parameter. The force is a point force applied

at the middle point of the beam. The impulse function g is such that

g(t) =
1

π t
{sin(t(Ωc + ∆Ω/2)) − sin(t(Ωc − ∆Ω/2))} , (39)

whose Fourier Transform is ĝ(ω) = 1B
2
∪B2

. The frequency band B2 is defined

by Eq. (3) with ωmin = 2πfmin and ωmax = 2πfmax with fmin = 148 Hz and

fmax = 178 Hz. The corresponding bandwidth ∆Ω = 2π∆f is then such that

∆f = 30 Hz and the central frequency Ωc = 2π fc is such that fc = 163

Hz. Consequently, the frequency band of excitation is centered in the second
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eigenfrequency of the linear system.

(C) Reduced mean model. The numerical results presented in this section are

computed with n = 40, and the modes were calculated with the finite element

model. This value was chosen to assure good convergence for the deterministic

and the stochastic solutions.

4.3 Probabilistic model of uncertainties

(A) Parametric probabilistic model of the barrier. Since the gap is taken as

a parameter of the problem it is not considered as uncertain. On the other

hand, the stiffness of the barrier is uncertain and modelled by a positive-

valued random variable Kb whose mean value is kb, for which the coefficient of

variation δb is 0 (no uncertainty) or 0.05 (uncertainty) and whose probability

distribution is the Gamma law.

(B) Nonparametric probabilistic model of the beam. As explained in Section

3.3(B), the uncertainty levels for the mass, damping, and stiffness of the lin-

ear system are controlled by the dispersion parameters δM , δD, and δK , re-

spectively. In order to simplify the presentation, one only consider the cases

δM = δD = δK . The common valued will be denoted by δm. Two values are

considered δm = 0 (no uncertainty) and δm = 0.1 (uncertainty).

4.4 Numerical integration parameters

Let f0 > fmax be the upper frequency such that the total energy of the response

of the non-linear dynamical system is included in the frequency band [−f0 , f0].

For all the numerical results presented below, a convergence analysis has been

performed with respect to the value of f0. The smallest value of f0 for which

all the results are converged is f0 = 600 Hz and all the results presented

below correspond to this value of f0. The integration time step is taken as

∆t = 1/(2f0) and the time integration T = ntime ∆t with ntime = 8192. The

integration in R is approximated by an integration over the interval [t0, t1] in

which t0 = −T/2 and t1 = T/2 − ∆t. The sampling time points are tk = t0 +
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k∆t, k = 0, . . . , ntime−1. To compute the Fourier Transform by FFT algorithm,

the integration frequency step is taken as ∆ω = 2ω0/nfreq with nfreq = ntime.

The sampling frequency points are ωk = −ω0 + k∆ω, k = 0, . . . , nfreq − 1.

Equation (31) is integrated over [t0, t1] with zero initial conditions at t0. The

given choice of the parameters are such that E{‖Q(t1, θ)‖
2} is negligible at

the final time t1.

4.5 Numerical results

Figure 1 displays the graph of the impulse function t 7→ g(t), whose Fourier

Transform f 7→ ĝ(2πf) is shown in Fig. 2. Figure 3 displays the function

ns 7→ conv(ns, n) defined by Eq. (32) for n = 40. The convergence is reached

for ns ≥ 1500. Below, the results are computed with ns = 2000. Let η = ε/a be

the parameters that is used in the analysis of the random transferred energies

outside the excitation band B2. All the confidence regions shown in this work

correspond to a probability level Pc = 0.96.

The other results can be presented in several ways. To save space we show only

one of the possible ways as an example. In the next section other forms to anal-

yse the results are suggested. The example we have chosen is to present the re-

sults arranged by the values of the model and data uncertainties, (δm, δb). This

will give three blocks of results indexed by (0.1, 0.05), (0, 0.05), and (0.1, 0).

We present now the first block, the other two are similar. Figure 4 shows the

random functions given by Eq. 25 that describe the random function energies

in the frequency bands B1, B2, B3, B1 ∪ B3 (figures 4 (a) to (d)). The mean

system results are shown along with the mean of the stochastic system and

the associated confidence limits. Figure 5 shows, for a fixed value of η given by

log10(η) = −6.0, the cumulative distribution functions of the energies. Figure

6 shows the density function defined by Eqs. 22 and 23 for three fixed val-

ues of η such that log10(η) = −6.0,−7.5,−4.6, respectively (figures 6 (a) to

(c)). Similar results (without cumulative distribution functions), for the case

(0, 0.05) are shown in Figures 7 and 8, and for the case (0.1, 0) are shown in

Figures 9 and 10.
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5 Analysis of the results and conclusions

5.1 Some remarks about the deterministic narrow-band excitation

As explained in the introduction section, the excitation has been modelled by a

deterministic narrow-band signal (see Figs. 1 and 2). Recall that the objective

of the paper is to analyze the non-linear dynamical response of systems excited

at a given resonance by a harmonic excitation. Since the mechanical system is

uncertain, a narrow-band signal is chosen in order to give robustness to this

excitation. Fig. 6 shows that the considered resonance of the uncertain system

is effectively excited by the chosen narrow-band signal.

5.2 Maximum of non-linearity effects as a function of η

The measures of non-linearity is given by the fraction of energy that is trans-

ferred outside the band of excitation. Figures 4, 7 and 9 show that a maximum

of non-linearity effect is obtained for mid-value of η = ε
a

and not for the ex-

tremes, near zero or very large. Near zero means that the gap is very small

with respect to the displacement, that is there are a large number of impacts

with low energy (small gap). This case is frequent, for instance, in Robotics

(looseness). Very large means that the gap is sufficiently big with respect to the

displacement such that the number of impacts is small and with low energy.

In the medium range, the impacts are more frequent and also more energetic.

It is worthwhile to insist that as η is the ratio of the gap and the amplitude of

the excitation, even for very small gaps the effect of η can be large depending

on the force. For example for ε = 2 × 10−6 m a force of 1 N corresponds to a

numerical value of η = 2× 10−6, and Fig. 4(d) shows that for this value there

is a transfer of energy of 30 to 50 percent outside the band of excitation.
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5.3 Relation of the non-linearities with the spectral density

Figures 6(b), 8(b) and 10(b) (corresponding to η = 10−7.5 that is a near zero

case) shows that although there is a small amount of energy transferred outside

the band of excitation the effect of this transfer in the spectral density is very

large causing the response to become a broad-band signal. Figures 6(c), 8(c)

and (10c) (about η = 10−4.6 that is a very large case) shows that there is a

very small amount of energy transferred outside the band of excitation so the

system is nearly linear.

5.4 Uncertainties effects

Figure 4 shows that the point of maximum of non-linearities is also the point

of less robustness with respect to uncertainties. On the other hand the two

limit cases, near zero and very large η, are relatively robust with respect to

uncertainties. Now one discusses the effect of two types of uncertainties: barrier

uncertainties and model uncertainties for the continuous linear system. Figure

7 (corresponding to barrier uncertainties) and Fig. 9 (corresponding to model

uncertainties) clearly show that the non-linearity effects are less robust for

model uncertainties than for barrier uncertainties. This statement results from

the following considerations. There is a loss of robustness induced by barrier

uncertainties and by model uncertainties in the continuous linear subsystems

(see Figs. 7(d) and 9(d)) in which the confidence region are significantly large.

Comparing Fig. 4(d) with Fig. 9(d) shows that the two confidence regions

are almost equal. This means that the effect of barrier uncertainties are less

than the effects of model uncertainties. In addition, it can be seen that the

confidence region in Fig. 7(d) is included (set inclusion) in the confidence

region of Fig. 4(d) . This result confirms the above statement. Also Figs. 6(a),

8(a) and 10(a) show that the maximum of non-linearity effects of the frequency

response in the sub-harmonic and super-harmonic ranges is less robust for

model uncertainties than for barrier uncertainties. On the other hand the

frequency response in the frequency band of excitation is robust with respect

to uncertainties. Finally, Fig. 5 allows the probability of the random energies
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to be estimated. For instance, Fig. 5(d) shows that the probability for that

the percentage of energy transferred outside the band of excitation be larger

than 20 percent is 0.75 and larger than 40 percent is 0.20.

5.5 Scope of the proposed method and its limitations

It should be noted that the external excitation force is a narrow-band signal

that is completely known. In this context, the proposed method is general

to measure the non-linearity effects for the complete system. However, this

method does not allow the non-linearity effects of its subsystems to be mea-

sured.

The probabilistic approach presented can be used to any system composed of a

continuous linear subsystem (for instance, a Timoshenko beam) coupled with

any discrete non-linear subsystem (for instance, an elastic barrier). Neverthe-

less, this kind of approach cannot be applied to non-linear continuous system

such as an elastic system with large deformations. For such a case additional

developments are required.
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Captions Accompanying Each Figure

Fig. 1. Impulse function t 7→ g(t) exciting the system.

Fig. 2. Fourier Transform f 7→ ĝ(2πf) of the impulse function.

Fig. 3. Mean-square convergence: Function ns 7→ conv(ns, n) for n = 40.

Fig. 4. δm = 0.1 and δb = 0.05: Random fraction functions η 7→ En
1 (η), En

2 (η), En
3 (η)

and En
13(η) related to the random mechanical energy transferred to band B1

(fig. (a)), B2 (fig. (b)), B3 (fig. (c)) and B1 ∪B3 (fig. (d)). Mean system (thin

solid line). Mean value for the stochastic system (thick solid line). Confidence

region (grey region).

Fig. 5. δm = 0.1 and δb = 0.05: For log10 η = −6.0, cumulative distribution

function ζ1 7→ Proba{En
1 (η) ≤ ζ1} (fig. (a)), ζ2 7→ Proba{En

2 (η) ≤ ζ2} (fig.

(b)), ζ3 7→ Proba{En
3 (η) ≤ ζ3} (fig. (c)) and ζ13 7→ Proba{En

13(η) ≤ ζ13} (fig.

(d)) related to the random mechanical energy transferred to band B1, B2, B3

and B1 ∪ B3.

Fig. 6. δm = 0.1 and δb = 0.05: For log10 η = −6.0 (fig. (a)), log10 η = −7.5

(fig. (b)) and log10 η = −4.6 (fig. (c)), graphs of the random normalized energy

density f 7→ Hn
dB(2πf). Mean system (thin solid line). Mean value for the

stochastic system (thick solid line). Confidence region (grey region).

Fig. 7. δm = 0 and δb = 0.05: Random fraction functions η 7→ En
1 (η), En

2 (η), En
3 (η)

and En
13(η) related to the random mechanical energy transferred to band B1

(fig. (a)), B2 (fig. (b)), B3 (fig. (c)) and B1 ∪B3 (fig. (d)). Mean system (thin

solid line). Mean value for the stochastic system (thick solid line). Confidence

region (grey region).

Fig. 8. δm = 0 and δb = 0.05: For log10 η = −6.0 (fig. (a)), log10 η = −7.5 (fig.

(b)) and log10 η = −4.6 (fig. (c)), graphs of the random normalized energy

density f 7→ Hn
dB(2πf). Mean system (thin solid line). Mean value for the

stochastic system (thick solid line). Confidence region (grey region).

Fig. 9. δm = 0.1 and δb = 0: Random fraction functions η 7→ En
1 (η), En

2 (η), En
3 (η)

and En
13(η) related to the random mechanical energy transferred to band B1
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(fig. (a)), B2 (fig. (b)), B3 (fig. (c)) and B1 ∪B3 (fig. (d)). Mean system (thin

solid line). Mean value for the stochastic system (thick solid line). Confidence

region (grey region).

Fig. 10. δm = 0.1 and δb = 0: For log10 η = −6.0 (fig. (a)), log10 η = −7.5 (fig.

(b)) and log10 η = −4.6 (fig. (c)), graphs of the random normalized energy

density f 7→ Hn
dB(2πf). Mean system (thin solid line). Mean value for the

stochastic system (thick solid line). Confidence region (grey region).
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