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SUMMARY

The first objective of this paper is to analyze the efficiency of the reduced models constructed using

the POD-basis and the LIN-basis in nonlinear dynamics for continuous elastic systems. The POD-

basis is the Hilbertian basis constructed with the POD method while the LIN-basis is the Hilbertian

basis derived from the generalized continuous eigenvalue problem associated with the underlying

conservative part of the continuous elastic system and usually called the eigenmodes of vibration. The

efficiency of the POD-basis or the LIN-basis is related to the rate of convergence in the frequency

domain of the solution constructed with the reduced model with respect to its dimension. A basis will

be more efficient than another if the reduced-order solution of the Galerkin projection converges to

the solution of the dynamical system more rapidly than the reduced-order solution of the other.
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2 SAMPAIO AND SOIZE

As a second objective of this paper, we present the usual results concerning the POD method

using a continuous formulation, with respect to both time and space variables, and then deriving the

numerical approximations. Such a presentation allows convergence discussions to be treated.

Six examples in nonlinear elastodynamics problems are presented in order to analyze the efficiency

of the POD-basis and the LIN-basis. It is concluded that the POD-basis is not more efficient than the

LIN-basis for the examples treated in nonlinear elastodynamics.

Copyright c© 2006 John Wiley & Sons, Ltd.
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1. Introduction

We mean by POD-basis the Hilbertian basis constructed with the POD method. LIN-

basis means the Hilbertian basis derived from the generalized continuous eigenvalue problem

associated with the underlying part of the continuous elastic system and usually called the

eigenmodes of vibration.

In the last two decades, the number of papers dealing with Proper Orthogonal Decomposition

(POD), also known as Karhunen-Loève basis (KL) [1, 2], to construct reduced models has

increased a lot in diverse fields. It seems that the tendency is of further augmentation.

The prime objective of this paper is to compare the efficiency of the reduced model

constructed with the POD-basis with the one constructed with the LIN-basis for nonlinear

dynamics of continuous elastic systems, i. e. in nonlinear elastodynamics.We mean by efficiency

of the POD-basis or the LIN-basis the rate of convergence in the frequency domain of the

approximation constructed with the reduced model with respect to its dimension. In this

paper we are not interested in constructing a reduced model adapted to a given excitation,

which is generally the case if one uses the POD-basis. We are interested in constructing a

reduced model as a predictive model for any excitation, which is the case if one uses the LIN-

basis. In linear and nonlinear elastodynamics it is usual to use the LIN-basis to construct the

reduced model to predict the response to any excitation. Since the POD method seems to be
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MODEL REDUCING 3

an efficient tool to construct reduced models, this paper compares the efficiency of the two

bases, LIN- and POD-basis, for nonlinear elastodynamics problems.

In general, the majority of the published papers presents the POD method in finite

dimension, for time variable or for space or for both, directly writing the numerical

approximations. Mathematical developments on the POD method in finite dimension for time

variable and infinite dimension for space variable can be found, for instance, in [3, 4].

As a second objective of this paper, we present the usual results concerning the POD method

using a continuous formulation, with respect to both time and space variables, and then

deriving the numerical approximations. Such a presentation allows convergence discussions

to be treated.

However, if one searches the literature for comparisons of the LIN-basis with the POD-basis,

only a few cases can be found [5, 6] and for those the comparison is only made for a very small

number of degrees of freedom and for discrete systems. For continuous systems the comparison

is not generally made and in continuous nonlinear elastodynamics never. It is clear that if we

want to know the dynamical response of a nonlinear continuous elastic system over a broad-

frequency band, due to narrow- or broad-band excitation, such a comparison is necessary and

it is not at all evident that the POD-basis is better than the LIN-basis for a given excitation.

In addition one should remark that the POD-basis strongly depends on the excitation of the

system while the LIN-basis does not depend and gives a reduced model valid for all excitations.

Nevertheless in this paper the comparison of the efficiency of the two bases will be limited to

the response to a given excitation.

We now try to separate the papers found in the vast literature in this field. The first class

of papers deals with the discrete case and POD is seen as being equivalent to the Singular

Value Decomposition or the Principal Component Analysis. This case is very different from

the case of continuous systems because the dimension is finite. The second class of papers deals

with the continuous case and the eigenvalue problem that one has to solve to compute the

basis is effectively solved using the snapshot method (see, for instance [3, 4, 5, 6, 7, 8, 9, 10],

for parabolic equations, for fluid dynamics problems, for nonlinear heat conduction problems,

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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4 SAMPAIO AND SOIZE

vibroimpact problems and for reconstruction of traveling waves). In general, in the two classes

of papers, there is neither comparison of different bases of reduction nor of their efficiency in

the reduction. In [6] a comparison is indeed made for a wind turbine, but the paper concerns

low-frequency dynamics and the LIN-basis chosen seems to be not optimal.

We now describe the contents of the paper. Firstly, the weak formulation of the boundary

value problem related to nonlinear elastodynamics is introduced in a functional analytic

framework. Then the reduced model is presented introducing a Hilbertian basis constructed

either with the POD-basis or the LIN-basis. Section 4 deals with the effective construction of

the POD-basis introducing an adapted linear operator whose properties are mathematically

studied. In Section 5 we present the finite element approximation of the problem. Sections 6

and 7 are devoted to the construction of the reduced model of the finite element approximation.

Time discretization, error functions, and numerical solvers are presented in Section 8. A

complete numerical study of the efficiency of the POD-basis with respect to the LIN-basis

is given in Section 9 in which three types of nonlinear continuous elastodynamical systems are

considered. Finally, we comment and summarize the main results obtained in Section 10.

2. Weak formulation of the nonlinear boundary value problem2.1. Geometry and boundary conditions

We consider a damped elastic continuous medium occupying in its reference configuration an

open bounded domain Ω of R
d with d ≤ 3. The continuous nonlinear elastodynamical system

is analyzed over the time interval T = R. The smooth boundary ∂Ω of Ω is written as Γ0 ∪Γ1.

The displacement field in a configuration at time t is defined on Ω with values in R
n and is

denoted by u(·, t). On Γ0 there is a Dirichlet condition u(·, t) = 0 for all t. On Γ1 there is

a given force field gs(·, t) depending on time t. In addition, there is a volumetric force field

gv(·, t) applied in Ω and depending on time t.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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MODEL REDUCING 5

2.2. Functional framework of the problem

Before introducing the weak formulation of the boundary value problem we need a functional

framework. We denote by 〈, 〉 the Euclidean inner product in R
n and by || · || its associated

norm.

Let H = L2(Ω, Rn) be the Hilbert space of all square integrable functions x 7→ v(x) from Ω

into R
n equipped with the inner product 〈v, δv〉H and the associated norm ||v||H such that

〈v, δv〉H =

∫

Ω

〈v(x), δv(x)〉dx , ||v||2
H

=

∫

Ω

||v(x)||2 dx . (1)

The Hilbert space V of the admissible displacement fields is assumed to be a subspace of

the Sobolev space Hν(Ω, Rn) (with ν ≥ 1) constituted of functions x 7→ v(x) from Ω into R
n

such that v = 0 on Γ0. The Hilbert space V is equipped with the inner product 〈v, δv〉V and

the associated norm ||v||V. Let V
′ be the continuous dual space of V. We have V ⊂ H ⊂ V

′

with continuous injections, V being dense in H and the injection from V ⊂ H being compact.

Let H = L2(T, H) be the Hilbert space of square integrable functions t 7→ v(·, t) from T into

H equipped with inner product ≪ v, δv ≫H and the associated norm ||v||H such that

≪ v, δv ≫H=

∫

T

〈v(·, t), δv(·, t)〉H dt , ||v||2H =

∫

T

||v(·, t)||2
H

dt . (2)

Finally, let V = L2(T, V) be the Hilbert subspace of H constituted of all the square integrable

functions t 7→ v(·, t) from T into V equipped with inner product ≪ v, δv ≫V and the associated

norm ||v||V such that

≪ v, δv ≫V=

∫

T

〈v(·, t), δv(·, t)〉V dt , ||v||2V =

∫

T

||v(·, t)||2
V

dt . (3)

2.3. Weak formulation of the problem

For all t fixed in T , let v 7→ ℓ(v, t) be the linear form representing the applied forces and

defined by

ℓ(v, t) =

∫

Ω

〈gv(x, t) ,v(x)〉 dx +

∫

Γ1

〈gs(x, t) ,v(x)〉 ds(x) . (4)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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6 SAMPAIO AND SOIZE

It is assumed that the functions gv and gs are such that the linear form v 7→ ℓ(v, t) is

continuous on V. The weak formulation [11, 12] of the problem is written as:

For a given ℓ, find u in V such that, for all t in T and for all v in V, we have

m(∂2
t u(t),v) + d(∂tu(t),v) + k(u(t),v) + kNL(u(t), ∂tu(t),v) = ℓ(v, t) . (5)

In Eq. (5) the mappings (w,v) 7→ m(w,v), (w,v) 7→ d(w,v) and (w,v) 7→ k(w,v) are

assumed to be continuous, symmetric, and positive-definite bilinear forms on V×V with values

in R corresponding to the mass, damping and the linear stiffness parts. For all v in V, the

mapping (u,w) 7→ kNL(u,w,v) is a nonlinear mapping on V×H with values in R corresponding

to the nonlinear stiffness part. It is assumed that kNL is such that Eq. (5) has a unique solution

(u, ∂tu) in V ×H.

3. Hilbertian basis for model reducing of the continuous elastodynamical system

3.1. Principle of construction of the reduced model

The principle of the construction of a reduced model consists (1) in constructing a Hilbertian

basis {wα, α ≥ 1} of the Hilbert space V, (2) in introducing the finite dimension subspace VN

of V such that VN = span{w1, . . . ,wN} and (3) in projecting Eq. (5) on VN . The solution uN

of the reduced model converges to the solution u in V of the problem when N goes to infinity.

Such a method is called the Galerkin method to get a reduced order model.

3.2. The LIN-basis as the Hilbertian basis derived from the generalized eigenvalue problem
associated with the underlying linear part of the system

As explained in Section 1, we are interested in comparing the POD-basis with the LIN-basis,

which has then to be constructed. From Eq. (5), an eigenvalue µ and the corresponding

eigenmode w of the underlying linear part of the system are the solution of the following

weak generalized eigenvalue problem,

k(w,v) = µ m(w,v) , ∀v ∈ V . (6)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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MODEL REDUCING 7

Since the bilinear forms k and m are continuous, symmetric and positive definite on V×V,

and since the injection from V into H is compact, then the set of the eigenvalues is a sequence

of positive numbers 0〈µ1 ≤ µ2 ≤ . . . and the set of the associated eigenfunctions {wα, α ≥ 1}

is a Hilbertian basis of V satisfying the orthogonality properties

k(wα,wβ) = µαδαβ , m(wα,wβ) = δαβ , (7)

in which δαβ = 0 if α 6= β and δαβ = 1 if α = β.

3.3. The POD-basis as the Hilbertian basis constructed with the POD method

The Hilbertian basis resulting from the POD method will be defined as the POD-basis.

We recall the Proper Orthogonal Decomposition (POD) in the deterministic case; the

stochastic case is similar and corresponds to the Karhunen-Loève decomposition [13], although

the two terminologies are used in the literature without discrimination if concerns the

deterministic or stochastic case.

For a given function u in V = L2(T, V), the POD method consists in finding the optimal

Hilbertian basis {wα, α ≥ 1} of the Hilbert space V such that, for all fixed integer N , we have

‖u − uN‖V ≤ ‖u − ũN‖V , (8)

in which ũN (x, t) =
∑N

α=1 q̃α(t)w̃α(x), where {w̃α, α ≥ 1} is any Hilbertian basis of V and, in

which uN (x, t) =
∑N

α=1 qα(t)wα(x), where {wα, α ≥ 1} is the optimal basis of V, solution of

the optimal problem defined by Eq.(8). Since u is known, the functions qα and q̃α are explicitly

given by

qα(t) = 〈u(·, t),wα〉V , q̃α(t) = 〈u(·, t), w̃α〉V . (9)

It is important to emphasize that the POD-basis is well adapted to represent a given function

(in this case the function u), but this does not mean that it is optimal for model reducing

in the following sense. With the POD method, u and thus uN depend on the excitation

represented by the linear form ℓ. Consequently, and this is well known, the optimal Hilbertian

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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8 SAMPAIO AND SOIZE

basis {wα, α ≥ 1} of V constructed by the POD method depends on ℓ and hence one should

better write {wα(ℓ), α ≥ 1}. This means that if {wα(ℓ), α ≥ 1} has been computed for a given

ℓ it is not necessarily an optimal basis for a different ℓ. That is, for each ℓ the basis has to

be computed. In other words, such basis, computed for a given ℓ does not allow an efficient

reduced model to be constructed for any excitation represented by a different linear form ℓ.

The constructed reduced model is then optimal for the excitation represented by ℓ for which

the Hilbertian basis has been calculated. Consequently one can say that the reduced model

constructed with the POD method is optimal for a given ℓ but not for another ℓ, as it is well

known.

For the linear case (kNL = 0), we then have three symmetric operators (mass, damping,

stiffness operators). In this case, an optimal basis independent of ℓ can be constructed and

consequentely allows an optimal reduced model to be constructed for any excitation represented

by any linear form ℓ (see [14]). As proved in this paper, this optimal basis coincides with the

linear basis (which does not depend on the excitation) when the damping of the system goes

to zero.

4. Construction of the POD-basis for a continuous system

4.1. Definition of a linear operator A for the POD method

Let (u, ∂tu) be the unique solution in V ×H of Eq. (5). Let (x,x′) 7→ [a(x,x′)] be the function

from Ω × Ω into R
n ⊗ R

n ≃ Mn(R) defined by

[a(x,x′)] =

∫

T

u(x, t) ⊗ u(x′, t) dt , (10)

where Mn(R) is the set of all real n×n square matrices. Let A be the linear integral operator

from H in H defined by the kernel [a(x,x′)] such that

〈Aw, δw〉H =

∫

Ω

∫

Ω

〈[a(x,x′)]w(x′), δw(x)〉dx dx′ . (11)

The operator A is then,

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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MODEL REDUCING 9

(Aw)(x) =

∫

Ω

[a(x,x′)]w(x′)dx′ . (12)

4.2. Properties of A

We begin with a usual result, that describe the properties of a correlation operator,

(Proposition 1), but we continue with Proposition 2 which proves that the eigenfunctions

constitute a Hilbertian basis of V (less usual result). It should be noted that the Proposition

1 yields that the eigenfunctions of the eigenvalue problem defined by Eq. (13) is a Hilbertian

basis in H but does not mean that a Hilbertian basis in V has been constructed. An additional

element of proof is required to get such a result and is given in Proposition 2. This result is not

currently found in the literature devoted to the POD method in infinite dimension for both

time and space variables.

Proposition 1. For u in V, the linear operator A defined by Eq. (11) is real, symmetric,

positive and is a Hilbert-Schmidt operator in H.

Proof: First it can easily be verified that the operator A is symmetric. Next to

prove that the operator A is a Hilbert-Schmidt operator [11], it is sufficient to show

that
∫
Ω

∫
Ω
||a(x,x′)||2F dxdx′〈∞, in which ||a(x,x′)||2F = tr{[a(x,x′)]T [a(x,x′)]} is the

square of the Frobenius norm of the matrix [a(x,x′)], where tr denotes the trace of a

matrix and the exponent T means the transpose of a matrix. We have ||a(x,x′)||2F =
∫

T

∫
T
〈u(x′, t),u(x′, t′)〉〈u(x, t),u(x, t′)〉dt dt′. Therefore

∫

Ω

∫

Ω

||a(x,x′)||2F dx dx′ =

∫

T

∫

T

〈u(·, t),u(·, t′)〉2
H
dt dt′,

which proves that A is a positive operator. We then have
∫
Ω

∫
Ω
||a(x,x′)||2F dx dx′ ≤

∫
T

∫
T
||u(·, t)||2

H
||u(·, t′)||2

H
dtdt′. Consequently,

∫

Ω

∫

Ω

||a(x,x′)||2F dx dx′ ≤

(∫

T

||u(·, t)||2
H

dt

)2

= ||u||4H〈∞ ,

which proves that A is a Hilbert-Schmidt operator in H.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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10 SAMPAIO AND SOIZE

Proposition 2. Consider the eigenvalue problem

Aw = λw (13)

related to the linear operator A. Then the set {λα, α ≥ 1} of the eigenvalues is a decreasing

sequence of positive numbers such that
∑+∞

α=1 λ2
α〈+∞ and the set {wα, α ≥ 1} of the associated

eigenfunctions constitutes a Hilbertian basis of V. The weak formulation of Eq. (13) is the

following

〈Aw, δw〉H = λ〈w, δw〉H , ∀δw ∈ H . (14)

Proof: Since A is a symmetric positive Hilbert-Schmidt operator in H (see Proposition 1)

we have the properties for the eigenvalues given in the proposition and {wα, α ≥ 1} is a

Hilbertian basis of H. We have now to show that {wα, α ≥ 1} is a Hilbertian basis of V.

Since u belongs to V then for all t in T , u(·, t) belongs to V, and then u(x, t) = 0 for all

x in Γ0. Consequently, Eqs. (10) and (11) show that for all x belonging to Γ0, we have

Awα(x) =
∫
Ω
[a(x,x′)]wα(x′) dx′ = 0. Since Awα = λwα, we deduce that, for all α ≥ 1,

wα = 0 on Γ0. Therefore wα belongs to V if wα belongs to Hν(Ω, Rn). From reference [15],

we have this property if
∫
Ω

∫
Ω
||∂2νa(x,x′)/∂xν

ℓ ∂x′ν
j ||

2
F dx dx′〈+∞. We have

∫

Ω

∫

Ω

||
∂2νa(x,x′)

∂xν
ℓ ∂x′ν

j

||2F dx dx′ =

∫

T

∫

T

〈∂ν
ℓ u(·, t), ∂ν

ℓ u(·, t′)〉H〈∂
ν
j u(·, t), ∂ν

j u(·, t′)〉Hdt dt′ , (15)

in which ∂j = ∂/∂xj . Therefore

∫

Ω

∫

Ω

||
∂2νa(x,x′)

∂xν
ℓ ∂x′ν

j

||2F dx dx′

≤

∫

T

‖∂ν
ℓ u(·, t)‖H‖∂

ν
j u(·, t)‖H dt

∫

T

‖∂ν
ℓ u(·, t′)‖H‖∂

ν
j u(·, t′)‖H dt′

≤ ‖∂ν
ℓ u‖2

H ‖∂ν
j u‖2

H〈+∞ ,

because u belongs to V ⊂ L2(T,Hν(Ω, Rn)), that completes the proof.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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MODEL REDUCING 11

5. Finite element approximation

In this section we present the finite element approximation of the weak formulation presented in

Section 2 and the finite element approximation of the LIN-basis and the POD-basis presented

in Sections 3 and 4.

5.1. Finite element approximation of the weak formulation of the problem

The finite element approximation of Eq. (5) with p degrees of freedom introduces the

approximation of u(·, t) ∈ V by u(x, t) ≃ [B(x)]y(t) in which y(t) is a R
p-vector of the

degrees of freedom and the matrix [B(x)] is constructed with the interpolation functions of

the finite elements [11, 16]. We then obtain the following matrix equation in R
p,

[M] ÿ(t) + [D] ẏ(t) + [K]y(t) + fNL(y(t), ẏ(t)) = f(t) , (16)

where [M], [D], [K] and fNL(y(t), ẏ(t)) are the mass, damping, stiffness matrices and the

nonlinear vector forces corresponding to the finite element discretization of the bilinear

forms m, d, k and the nonlinear mapping kNL(u(t), ∂tu(t),v). The applied vector load f(t)

corresponds to the finite element discretization of the linear form ℓ(v, t). This vector load f(t)

is assumed to be written as

f(t) = a g(t) f0 , (17)

in which a is the amplitude and f0 is a normalized vector describing the spatial distribution

of the applied forces. The impulse t 7→ g(t) is a square integrable real-valued function on R

whose Fourier Transform ω 7→ ĝ(ω) =
∫

R
e−iωtg(t) dt has a bounded support Be ∪ Be with

Be = [Ωc − ∆Ω/2,Ωc + ∆Ω/2] , Be = [−Ωc − ∆Ω/2,−Ωc + ∆Ω/2] . (18)

In addition it is assumed that maxω∈B |ĝ(ω)| = 1.

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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12 SAMPAIO AND SOIZE

5.2. Construction of the LIN-basis: finite element approximation for the eigenmodes of the
underlying linear part of the system

The finite element approximation of Eq. (6) can directely be deduced from Eq. (16). The

eigenvalues (the square of the eigenfrequencies)

0〈µ̂1 ≤ µ̂2 ≤ . . . ≤ µ̂p (19)

and the associated eigenmodes z1, z2, . . . , zp are the solution of the following generalized

eigenvalue problem

[K] z = µ̂ [M] z , (20)

with the orthogonality properties

〈[K] zα, zβ〉 = µ̂αδαβ , 〈[M] zα, zβ〉 = δαβ . (21)

5.3. Construction of the POD-basis: finite element approximation of the POD method

The finite element mesh and the finite elements used for the discretization of the POD

method are the same as the finite element discretization of the weak formulation of the

problem. Consequently, we have u(x, t) ≃ [B(x)]y(t) and w(x) ≃ [B(x)] z. The finite element

discretization of Eq. (13) is written as

[A ] z = λ̂ [H ] z , (22)

in which [A ] is a positive symmetric p × p real matrix given by

[A ] =

∫

T

[H ]y(t)([H ]y(t))T dt , (23)

and [H ] is a positive-definite symmetric p × p real matrix given by

[H ] =

∫

Ω

[B(x)]T [B(x)] dx . (24)

The eigenvalues are positive numbers such that

λ̂1 ≥ λ̂2 ≥ . . . λ̂p ≥ 0 . (25)

The associated eigenvectors z1, z2, . . . , zp satisfy the orthogonality properties

〈[A ] zα, zβ〉 = λ̂αδαβ , 〈[H ] zα, zβ〉 = δαβ . (26)

Copyright c© 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 01:1–1
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6. Reduced model of the finite element approximation

Let {z1, . . . , zp} be an algebraic basis of R
p. Such a basis can be either the LIN-basis

constructed in Section 5.2 or the POD-basis constructed in Section 5.3. The reduced model

in the finite element approximation is obtained by projection of Eq. (16) on the subspace

VN of R
p spanned by {z1, . . . , zN} with N ≪ p. Let [ZN ] be the (p × N) real matrix

whose columns are the vectors {z1, . . . , zN}. The generalized applied force FN (t) is a R
N -

vector such that FN (t) = [ZN ]T f(t). The generalized mass, damping and stiffness matrices

[MN ] = [ZN ]T [ M ][ZN ], [DN ] = [ZN ]T [ D ][ZN ] and [KN ] = [ZN ]T [ K ][ZN ] are

positive-definite symmetric (N × N) real matrices. Consequently, the reduced model of the

finite element approximation is written as

yN (t) = [ZN ]qN (t) , (27)

in which the vector qN (t) ∈ R
N of the generalized coordinates verifies the nonlinear differential

equation,

[MN ] q̈N (t) + [DN ] q̇N (t) + [KN ]qN (t) + FN
NL

(qn(t), q̇N (t)) = FN (t) , (28)

where, for all q and p in R
N ,

FN
NL

(q,p) = [ZN ]T fNL([ZN ]q, [ZN ]p) . (29)

7. Observation of the discretized nonlinear elastodynamical system

The objective of this section is to define an observation of the mechanical system. From Section

2.3, it can be deduced that Eq. (16) has a unique solution t 7→ y(t) such that y and ẏ are

square integrable vector-valued functions on R. An approximation of this solution is computed

using the reduced model of the finite element approximation defined by Eqs. (27) to (29). We

introduce the energy ẽ defined by

ẽ =

∫

R

(
1

2
〈[M] ẏ(t) , ẏ(t)〉 +

1

2
〈[K]y(t) ,y(t)〉) dt . (30)
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14 SAMPAIO AND SOIZE

Let ŷ(ω) =
∫

R
e−iωty(t) dt be the Fourier Transform of y. Using the Parseval formula, Eq.

(30) yields

ẽ =

∫

R

h(ω) dω = 2

∫

R+

h(ω) dω , (31)

in which h(ω) is the density of the energy associated with ẽ, related to the frequency band

and which is written as

h(ω) =
1

2π
{
1

2
〈ω2[M] ŷ(ω) , ŷ(ω)〉 +

1

2
〈[K] ŷ(ω) , ŷ(ω)〉 } , (32)

where the overline denotes the complex conjugate.

Using the reduced model defined by Eqs. (27) to (29), the approximation hN (ω) of h(ω)

defined by Eq. (32) can be written as

hN (ω) =
1

2π
{
1

2
〈ω2[MN ] q̂N (ω) , q̂N (ω)〉 +

1

2
〈[KN ] q̂N (ω) , q̂N (ω)〉 } , (33)

in which q̂N (ω) =
∫

R
e−iωtqN (t) dt is the Fourier Transform of qN .

8. Time discretization and numerical solvers

8.1. Time-frequency numerical integration parameters and error functions

In this section (1) we define the time-frequency numerical integration parameters for the

numerical solvers related to the finite element model and to the reduced model, and (2) we

introduce the error functions allowing the efficiency of the two reduced models constructed

with the LIN-basis and with the POD-basis to be evaluated.

Let B be the frequency band of analysis defined by

B = [−ωmax, ωmax] , (34)

in which ωmax = 2πfmax is the frequency such that

|

∫

R

||ŷ(ω)||2 dω −

∫ ωmax

−ωmax

||ŷ(ω)||2 dω| ≤ ǫ , (35)

in which ǫ is an a priori given precision. Clearly, the band B is such that Be ∪ Be ⊂ B.
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MODEL REDUCING 15

In order to define the error functions we introduce the frequency ω̃max such that ω̃max ≤ ωmax

and where [0, ω̃max] is the frequency band of interest. We denote by hN
LIN

(ω) the quantity hN (ω)

defined by Eq. (33) when the Hilbertian basis corresponds to the LIN-basis and by hN
POD

(ω)

when the POD-basis is used. We then defined the following error functions, depending on the

dimension N of the reduced model,

eREF−LIN(N) =
1

ω̃max

∫ eωmax

0

(log10 h(ω) − log10 hN
LIN

(ω)) dω , (36)

eREF−POD(N) =
1

ω̃max

∫ eωmax

0

(log10 h(ω) − log10 hN
POD

(ω)) dω , (37)

eLIN−POD(N) =
1

ω̃max

∫ eωmax

0

(log10 hN
LIN

(ω) − log10 hN
POD

(ω)) dω , (38)

measuring, respectively, the error between the reference solution and the LIN-basis solution,

the reference solution and the POD-basis solution and finally the LIN-basis solution and the

POD-basis solution.

The integration time step is taken as ∆t = 1/(2fmax) and the time integration is

T̂ = ntime ∆t with ntime a positive integer chosen as a power of 2. The integration in

T = R is approximated by an integration over the finite interval [t0, t1] in which t0 = −T̂ /2

and t1 = T̂ /2 − ∆t. The sampling time points are tk = t0 + k∆t, k = 0, . . . , ntime − 1.

To compute the Fourier Transform by FFT algorithm, the integration frequency step is

taken as ∆ω = 2ωmax/nfreq with nfreq = ntime. The sampling frequency points are ωk =

−ωmax +k∆ω, k = 0, . . . , nfreq−1. Equations (16) and (28) are integrated over [t0, t1] using an

implicit step by step time-integration method (Newmark scheme) with zero initial conditions

at t0. At each time point tk the nonlinear algebraic equation deduced from Eqs. (16) and (28)

are solved using an iteration method (fixed point).

8.2. Time integration parameters for the POD method

Using Section 8.1 the numerical time integration of Eq. (16) yields y(tk) for k = 0, . . . , ntime−1.

The time discretization of Eq. (23) is then written as
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16 SAMPAIO AND SOIZE

[A ] ≃ ∆t

ntime−1∑

k=0

[H ]y(tk)([H ]y(tk))T . (39)

8.3. Numerical solver for the generalized eigenvalue problem related to the POD-basis

The eigenvectors z1, . . . , zN associated with the N largest eigenvalues λ̂1 ≥ . . . ≥ λ̂N of the

generalized eigenvalue problem defined by Eq. (22) can nowadays be computed for very large

generalized eigenvalue problems using an iterative algorithm based on the subspace iteration

method or the Lanzcos method (see references [17, 18]). Using such iteration methods, it can

be seen that the amount of computational work is only due to the calculation of quantities

such as [H] [S] and [A] [S] in which [S] is rectangular p× Ñ matrix changing at each iteration

of the algorithm. The number of iterations for convergence is generally small, for instance 10

or 20. The integer Ñ is chosen in practice as Ñ = min{2N,N + 8}, and consequently is small.

The computation of [H] [S] has very low numerical cost because [H] is a sparse matrix (stored

as a sparse matrix and the computations being performed with this sparse structure). The

computation of [A] [S] is also done with low cost using the following equation deduced from

Eq. (39):

[A ] [ S ] ≃ ∆t

ntime−1∑

k=0

[H ]y(tk)([H ]y(tk))T [S ] . (40)

Note that the vectors sk = [H ]y(tk) are computed with a reasonable numerical cost and can

generally be stored in core memory even for very large problems. The vectors ([H ]y(tk))T [S ]

can be rewritten as skT
[S ] and is a 1× Ñ matrix whose computation has a low numerical cost

and which can be stored in core memory for very large problems. With such an algorithm the

full square p × p matrix [A ] is never assembled.

8.4. Numerical solver for the generalized eigenvalue problem related to the LIN-basis

Note that the eigenvectors z1, . . . , zN associated with the N smallest eigenvalues µ̂1 ≤ . . . ≤ µ̂N

of the generalized eigenvalue problem defined by Eq. (20) are computed using the usual

subroutines based on the iterative algorithms for sparse matrices.
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MODEL REDUCING 17

8.5. Numerical solver for the generalized eigenvalue problem using the snapshot method

In 1987, Sirovich published a paper [19] proposing the Snapshot method which is a numerical

solver related to the generalized eigenvalue problem defined by Eq. (22). This method

represented a great progress and it has been used extensively. The Snapshot method is

efficient to reduce the computational work. Using the snapshot method any eigenvector z

of the generalized eigenvalue problem defined by Eq. (22) is written as

z =

ν∑

α=1

bα y(θα) , (41)

in which bα are the new unknowns and where {θ1, . . . , θν} is a subset of the set

{t0, t1, . . . , tntime−1}, the vectors {y(θ1), . . . ,y(θν)} being a set of dependent or independent

vectors in R
p. Using the Eq. (41), the projection of Eq. (22) yields the following reduced

generalized eigenvalue problem

[A ]b = λ̃ [H ]b , (42)

in which b = (b1, . . . , bν) ∈ R
ν . If some of the vectors of the set {y(θ1), . . . ,y(θν)} are

dependent, then the symmetric ν × ν matrices [A ] and [H ] are positive but not positive

definite. Nevertheless, in this case, the reduced generalized eigenvalue problem can be solved

with an adapted algorithm without difficulty. In addition, it can be shown that the components

of these matrices are written as

[A ]βα = 〈[A]y(θα),y(θβ)〉 , [H ]βα = 〈[H]y(θα),y(θβ)〉 . (43)

Also,

[A ]βα = ∆t

ntime−1∑

k=0

〈[H ]y(tk),y(θβ)〉〈([H ]y(tk)),y(θα)〉 . (44)

Consequently the matrices [A ] and [H ] can be computed with low numerical cost for large

systems, because the matrix [ H ] is sparse as explained in Section 8.3.
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18 SAMPAIO AND SOIZE

9. Numerical studies of the efficiency of the POD-basis with respect to the LIN-basis for
reducing the model

This section deals with the application of the theory presented in the previous sections in order

to compare the efficiency of the reduced model obtained with the LIN-basis and the POD-basis

introduced in Sections 3.2 and 4 and for three types of nonlinearities. The continuous elastic

system is constituted of two coupled subsystems. The first subsystem is a linear continuous

elastic system constituted of a Timoshenko beam with added dissipation. For the second

nonlinear subsystem three cases are considered. The first case is constituted of a nonsymmetric

distributed nonlinearities, the second one of a symmetric distributed nonlinearities and the

third one of four symmetrical linear elastic barriers (inducing shocks).

9.1. Description of the first linear subsystem

The geometrical properties of the beam are: length 1m, width 0.1 m, height 0.1 m. The

boundary conditions are of a cantilever beam. The beam is homogeneous, isotropic, whose

material properties are: density 7500 kg/m3, Young’ s modulus 2.1 × 1010 N/m2, Poisson’s

coefficient 0.3, shearing correction factor 5/6. The damping model is introduced by the model

damping rate which is 0.02 for the first three modes of the uncoupled subsystem, 0.01 for the

fourth mode and 0.005 for the others. The mean finite element model of the cantilever beam is

constituted of 100 2-nodes Timoshenko beam elements. The first six computed eigenfrequencies

of the uncoupled subsystem are 26.9, 162.7, 432.9, 794.1, 1219.2 and 1685.3 Hz.

9.2. Description of the nonlinearities for the second subsystem: nonlinearity 1

The second subsystem is constituted of a distributed density of non-symmetric nonlinear

stiffness producing forces transversally to the beam. At each finite element node of the mesh

of the beam the function fNL defined in Eq. (16) is then independent of the velocity and is

constructed using

fNL(y) =

{
0 , y ≤ 0

k0 y3 , y〉0
, (45)
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with k0 = 2.9301 × 1018 N/m.

9.3. Description of the nonlinearities for the second subsystem: nonlinearity 2

The second subsystem is constituted of a distributed density of symmetric nonlinear stiffness

producing forces transversally to the beam. At each finite element node of the mesh of the

beam the function fNL defined in Eq. (16) is then independent of the velocity and is constructed

using

fNL(y) = k1 y3 , ∀y ∈ R (46)

with k1 = 2.9301 × 1018 N/m.

9.4. Description of the nonlinearities for the second subsystem: nonlinearity 3

The second subsystem can be viewed as boundary conditions applied to the cantilever beam

at four points in which the motion is limited by four elastic barriers distant of ε, in both sides

of the beam. The gap ε is written as ε = a η in which η = 10−6 and where the amplitude a of

the vector load f(t) defined by Eq. (17) is equal to 1. The four elastic barriers are placed at

the following distance from the fixed end: 0.14, 0.37, 0.60 and 0.82. The elasticity constant of

the barrier is kb = 107 N/m. The function fNL defined in Eq. (16) is then independent of the

velocity and, for each elastic barrier, is constructed using

fNL(y) =

{
0, |y| ≤ ε

kb (y − ε sign(y)) , |y|〉ε
, (47)

in which y is the transversal displacement at a given elastic barrier.

9.5. Description of the excitation force

The vector load is defined by Eq. (17). The amplitude a is equal to 1. The force is a point

force applied at the free end of the beam. The impulse function g is such that

g(t) =
1

π t
{sin(t(Ωc + ∆Ω/2)) − sin(t(Ωc − ∆Ω/2))} , (48)
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20 SAMPAIO AND SOIZE

whose Fourier Transform is ĝ(ω) = 1B
e
∪Be

in which the frequency band Be is defined by Eq.

(18). We introduce the bandwidth ∆f in Hertz and the central frequency fc in Hertz such that

∆Ω = 2π∆f and Ωc = 2π fc Two cases are considered for the excitation:

Narrow band excitation ∆f = 200 Hz and fc = 1180 Hz. Consequently, the frequency

band of excitation is close to the fifth eigenfrequency of the first linear subsystem.

Broad band excitation ∆f = 1400 Hz and fc = 701 Hz. Consequently, the frequency band

of excitation contains the first five eigenfrequencies of the first linear subsystem.

9.6. Numerical integration parameters

This section deals with the numerical integration parameters defined in Section 8.1. For all the

numerical results presented below, the value of fmax has been calculated in order to obtain a

good accuracy for the time integration scheme in the three types of nonlinearities considered.

The value necessary to reach this accuracy is 12000 Hz.

On the other hand a convergence analysis has been performed with respect to the time

duration T̂ in order that the coupled system be at rest for t = T̂ /2 with a good accuracy. In

this case, Eq. (35) is verified with a good accuracy. This duration is defined by the value of

ntime whose necessary value is 32768.

9.7. Efficiency of the LIN-basis and POD-basis compared with the reference solution

The reference solution is defined as the solution of Eq. (16). The solution corresponding to the

reduced model defined by Eqs. (27), (28), (29) and (33) and constructed using the LIN-basis

(see Section 5.2) will be called LIN-solution. The solution corresponding to the reduced model

defined by Eqs. (27), (28), (29) and (33) and constructed using the POD-basis (see Section

5.3) will be called POD-solution.

In this section we compare the convergence of the LIN-solution and the POD-solution in

function of the dimension N of the reduction with respect to the reference solution using the

error functions defined by Eqs. (36) and (37). The comparison between the LIN-solution and

the POD-solution in function of N is given by the error function defined by Eq. (38).
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Below we present six cases (three different types of nonlinearities and two cases of

excitations) that are analyzed to show the comparison of the two bases.

9.7.1. Nonlinearity 1 with broad band excitation [0, 1400] Hz. Figure 1 displays the graph of

the function f 7→ log10h(2πf) defined by Eq. (32) over [0, 8000] Hz for the reference solution.

Figure 2 displays the graph of the function j 7→ log10(λ̂j/λ̂1) in which λ̂j are the eigenvalues

defined in Section 5.3. This figure shows the decreasing speed of the eigenvalues which is related

to the rate of convergence of the POD-solution with respect to N .

For illustrating the convergence in the frequency domain we show the results for a given N .

Figure 3 corresponds to N = 5 and shows three curves related to the reference solution (thick

solid line), LIN-solution (red thin solid line) and POD-solution (blue thin solid line) . It should

be noted that the thin solid lines may be superposed and hence some of them are not visible.

The error functions are computed for ω̃max = 2π × 8000 rad/s. Figure 4 displays the three

error functions, dimensionless, allowing the efficiency of the LIN-solution and the POD-solution

in function of dimension N of the reduced model to be carried out. The analysis of this figure

shows that the LIN-basis and the POD-basis have the same efficiency with respect to the

dimension N of the reduction in the frequency band [0, 8000] Hz, the convergence being reached

for N = 20. We mean by the same efficiency the fact that the two bases need the same value

of N to get convergence.

9.7.2. Nonlinearity 1 with narrow band excitation [1080, 1280] Hz. Figure 5 displays the

graph of the function f 7→ log10h(2πf) over [0, 5000] Hz for the reference solution. Figure

6 displays the graph of j 7→ log10(λ̂j/λ̂1). Figure 7 corresponds to N = 5. Henceforth, the

convention for the lines is always the same.

The error functions are computed for ω̃max = 2π × 5000 rad/s. Figure 8 displays the three

error functions allowing the efficiency of the LIN-solution and the POD-solution in function

of dimension N of the reduced model to be carried out. The analysis of this figure shows that

the LIN-basis and the POD-basis have the same efficiency with respect to N in the frequency

band [0, 5000] Hz. Nevertheless the POD-basis is more efficient than the LIN-basis for N ≤ 10,
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but for this values of N solution has not yet converged, that is achieved for N = 15.

9.7.3. Nonlinearity 2 with broad band excitation [0, 1400] Hz. Figure 9 corresponds to N = 5.

The convention for the lines is always the same.

The error functions are computed for ω̃max = 2π × 8000 rad/s. Figure 10 displays the three

error functions allowing the efficiency of the LIN-solution and the POD-solution in function

of dimension N of the reduced model to be carried out. The analysis of this figure shows that

the LIN-basis and the POD- basis have the same efficiency with respect to N in the frequency

band [0, 8000] Hz. The convergence is reached for N = 20.

9.7.4. Nonlinearity 2 with narrow band excitation [1080, 1280] Hz. Figures 11 correspond to

N = 5. The convention for the lines is always the same.

The error functions are computed for ω̃max = 2π × 5000 rad/s. Figure 12 displays the three

error functions allowing the efficiency of the LIN-solution and the POD-solution in function

of dimension N of the reduced model to be carried out. The analysis of this figure shows that

the LIN-basis and the POD- basis have the same efficiency with respect to N in the frequency

band [0, 5000] Hz. The convergence is reached for N = 20.

9.7.5. Nonlinearity 3 with broad band excitation [0, 1400] Hz. Figures 13 correspond to

N = 5. The convention for the lines is always the same.

The error functions are computed for ω̃max = 2π × 8000 rad/s. Figure 14 displays the three

error functions allowing the efficiency of the LIN-solution and the POD-solution in function

of dimension N of the reduced model to be carried out. The analysis of this figure shows that

the LIN-basis and the POD- basis have the same efficiency with respect to N in the frequency

band [0, 8000] Hz. Nevertheless it can be seen that the LIN-basis is more efficient than the

POD-basis for N ≤ 14 corresponding to values of N for which solutions has not yet converged.

Convergence is reached for N = 30.
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9.7.6. Nonlinearity 3 with narrow band excitation [1080, 1280] Hz. Figure 15 corresponds to

N = 5. The convention for the lines is always the same.

The error functions are computed for ω̃max = 2π × 5000 rad/s. Figure 16 displays the three

error functions allowing the efficiency of the LIN-solution and the POD-solution in function

of dimension N of the reduced model to be carried out. The analysis of this figure shows that

the LIN-basis and the POD- basis have the same efficiency with respect to N in the frequency

band [0, 5000] Hz. Nevertheless it can be seen that the POD-basis is more efficient than the

LIN-basis for N ≤ 15 corresponding to values of N for which solutions has not yet converged.

Convergence is reached for N = 20.

10. Conclusions

This paper has been devoted to the analysis of the efficiency of the reduced models constructed

using the POD-basis and the LIN-basis in nonlinear dynamics for continuous elastic systems.

The efficiency of the POD-basis or the LIN-basis is related to the rate of convergence in

the frequency domain of the solution constructed with the reduced model with respect to

its dimension. A basis will be more efficient than another if the reduced-order solution of

the Galerkin projection converges to the solution of the dynamical system more rapidly than

the reduced-order solution of the other. It can be concluded that the POD-basis is not more

efficient than the LIN-basis for the six examples treated.
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❋✐❣✉$❡ ✷✿ ◆♦♥❧✐♥❡❛$✐-② ✶ ✲ ❇$♦❛❞ ❜❛♥❞ [0, 1400] ❍③✿ ●$❛♣❤ ♦❢ j 7→ log
10

(λ̂j/λ̂1)✳

❍♦$✐③♦♥-❛❧ ❛①✐0 $❛♥❦ j ♦❢ -❤❡ ❡✐❣❡♥✈❛❧✉❡✳ ❱❡$-✐❝❛❧ ❛①✐0 log
10

(λ̂j/λ̂1)✳
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❋✐❣✉$❡ ✸✿ ◆♦♥❧✐♥❡❛$✐-② ✶ ✲ ❇$♦❛❞ ❜❛♥❞ [0, 1400] ❍③ ✲ N = 5✿ ●$❛♣❤ ♦❢ f 7→
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f 7→ log
10

h(2πf)✳
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❋✐❣✉$❡ ✺✿ ◆♦♥❧✐♥❡❛$✐-② ✶ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③✿ ●$❛♣❤ ♦❢ f 7→ log
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❋✐❣✉$❡ ✻✿ ◆♦♥❧✐♥❡❛$✐-② ✶ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③✿ ●$❛♣❤ ♦❢ j 7→

log
10

(λ̂j/λ̂1)✳ ❍♦$✐③♦♥-❛❧ ❛①✐< $❛♥❦ j ♦❢ -❤❡ ❡✐❣❡♥✈❛❧✉❡✳ ❱❡$-✐❝❛❧ ❛①✐< log
10

(λ̂j/λ̂1)✳
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❋✐❣✉$❡ ✼✿ ◆♦♥❧✐♥❡❛$✐-② ✶ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③ ✲ N = 5✿ ●$❛♣❤ ♦❢ f 7→
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h(2πf) ❢♦$ -❤❡ $❡❢❡$❡♥❝❡ ;♦❧✉-✐♦♥ ✭❜❧❛❝❦ ❧✐♥❡✮✱ ❘▼▲✲;♦❧✉-✐♦♥ ✭$❡❞ ❧✐♥❡✮ ❛♥❞

❘▼◆▲✲;♦❧✉-✐♦♥ ✭❜❧✉❡ ❧✐♥❡✮✳ ❍♦$✐③♦♥-❛❧ ❛①✐; ❢$❡E✉❡♥❝② ✐♥ ❍❡$-③✳ ❱❡$-✐❝❛❧ ❛①✐;

f 7→ log
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h(2πf)✳
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❋✐❣✉$❡ ✽✿ ◆♦♥❧✐♥❡❛$✐-② ✶ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③ ✲ ❊✣❝✐❡♥❝② ♦❢ -❤❡ ▲■◆✲
=♦❧✉-✐♦♥ ❛♥❞ >❖❉✲=♦❧✉-✐♦♥ ✐♥ ❢✉♥❝-✐♦♥ ♦❢ ❞✐♠❡♥=✐♦♥ N ♦❢ -❤❡ $❡❞✉❝❡❞ ♠♦❞❡❧✳

●$❛♣❤= ♦❢ -❤❡ ❡$$♦$ ❢✉♥❝-✐♦♥= ✈❡$=✉= N ✿ e
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❋✐❣✉$❡ ✾✿ ◆♦♥❧✐♥❡❛$✐-② ✷ ✲ ❇$♦❛❞ ❜❛♥❞ [0, 1400] ❍③ ✲ N = 5✿ ●$❛♣❤ ♦❢ f 7→

log
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h(2πf) ❢♦$ -❤❡ $❡❢❡$❡♥❝❡ ;♦❧✉-✐♦♥ ✭❜❧❛❝❦ ❧✐♥❡✮✱ ❘▼▲✲;♦❧✉-✐♦♥ ✭$❡❞ ❧✐♥❡✮ ❛♥❞

❘▼◆▲✲;♦❧✉-✐♦♥ ✭❜❧✉❡ ❧✐♥❡✮✳ ❍♦$✐③♦♥-❛❧ ❛①✐; ❢$❡E✉❡♥❝② ✐♥ ❍❡$-③✳ ❱❡$-✐❝❛❧ ❛①✐;

f 7→ log
10

h(2πf)✳
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❋✐❣✉$❡ ✶✵✿ ◆♦♥❧✐♥❡❛$✐.② ✷ ✲ ❇$♦❛❞ ❜❛♥❞ [0, 1400] ❍③ ✲ ❊✣❝✐❡♥❝② ♦❢ .❤❡ ▲■◆✲>♦❧✉.✐♦♥
❛♥❞ ?❖❉✲>♦❧✉.✐♦♥ ✐♥ ❢✉♥❝.✐♦♥ ♦❢ ❞✐♠❡♥>✐♦♥ N ♦❢ .❤❡ $❡❞✉❝❡❞ ♠♦❞❡❧✳ ●$❛♣❤> ♦❢

.❤❡ ❡$$♦$ ❢✉♥❝.✐♦♥> ✈❡$>✉> N ✿ e
❘❊❋✲▲■◆
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❋✐❣✉$❡ ✶✶✿ ◆♦♥❧✐♥❡❛$✐-② ✷ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③ ✲ N = 5✿ ●$❛♣❤ ♦❢

f 7→ log
10

h(2πf) ❢♦$ -❤❡ $❡❢❡$❡♥❝❡ ;♦❧✉-✐♦♥ ✭❜❧❛❝❦ ❧✐♥❡✮✱ ❘▼▲✲;♦❧✉-✐♦♥ ✭$❡❞ ❧✐♥❡✮
❛♥❞ ❘▼◆▲✲;♦❧✉-✐♦♥ ✭❜❧✉❡ ❧✐♥❡✮✳ ❍♦$✐③♦♥-❛❧ ❛①✐; ❢$❡E✉❡♥❝② ✐♥ ❍❡$-③✳ ❱❡$-✐❝❛❧ ❛①✐;

f 7→ log
10

h(2πf)✳
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❋✐❣✉$❡ ✶✷✿ ◆♦♥❧✐♥❡❛$✐.② ✷ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③ ✲ ❊✣❝✐❡♥❝② ♦❢ .❤❡ ▲■◆✲
=♦❧✉.✐♦♥ ❛♥❞ >❖❉✲=♦❧✉.✐♦♥ ✐♥ ❢✉♥❝.✐♦♥ ♦❢ ❞✐♠❡♥=✐♦♥ N ♦❢ .❤❡ $❡❞✉❝❡❞ ♠♦❞❡❧✳

●$❛♣❤= ♦❢ .❤❡ ❡$$♦$ ❢✉♥❝.✐♦♥= ✈❡$=✉= N ✿ e
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❋✐❣✉$❡ ✶✸✿ ◆♦♥❧✐♥❡❛$✐.② ✸ ✲ ❇$♦❛❞ ❜❛♥❞ [0, 1400] ❍③ ✲ N = 5✿ ●$❛♣❤ ♦❢ f 7→

log
10

h(2πf) ❢♦$ .❤❡ $❡❢❡$❡♥❝❡ ;♦❧✉.✐♦♥ ✭❜❧❛❝❦ ❧✐♥❡✮✱ ❘▼▲✲;♦❧✉.✐♦♥ ✭$❡❞ ❧✐♥❡✮ ❛♥❞

❘▼◆▲✲;♦❧✉.✐♦♥ ✭❜❧✉❡ ❧✐♥❡✮✳ ❍♦$✐③♦♥.❛❧ ❛①✐; ❢$❡E✉❡♥❝② ✐♥ ❍❡$.③✳ ❱❡$.✐❝❛❧ ❛①✐;

f 7→ log
10

h(2πf)✳
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❋✐❣✉$❡ ✶✹✿ ◆♦♥❧✐♥❡❛$✐.② ✸ ✲ ❇$♦❛❞ ❜❛♥❞ [0, 1400] ❍③ ✲ ❊✣❝✐❡♥❝② ♦❢ .❤❡ ▲■◆✲>♦❧✉.✐♦♥
❛♥❞ ?❖❉✲>♦❧✉.✐♦♥ ✐♥ ❢✉♥❝.✐♦♥ ♦❢ ❞✐♠❡♥>✐♦♥ N ♦❢ .❤❡ $❡❞✉❝❡❞ ♠♦❞❡❧✳ ●$❛♣❤> ♦❢

.❤❡ ❡$$♦$ ❢✉♥❝.✐♦♥> ✈❡$>✉> N ✿ e
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❋✐❣✉$❡ ✶✺✿ ◆♦♥❧✐♥❡❛$✐.② ✸ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③ ✲ N = 5✿ ●$❛♣❤ ♦❢

f 7→ log
10

h(2πf) ❢♦$ .❤❡ $❡❢❡$❡♥❝❡ <♦❧✉.✐♦♥ ✭❜❧❛❝❦ ❧✐♥❡✮✱ ❘▼▲✲<♦❧✉.✐♦♥ ✭$❡❞ ❧✐♥❡✮
❛♥❞ ❘▼◆▲✲<♦❧✉.✐♦♥ ✭❜❧✉❡ ❧✐♥❡✮✳ ❍♦$✐③♦♥.❛❧ ❛①✐< ❢$❡F✉❡♥❝② ✐♥ ❍❡$.③✳ ❱❡$.✐❝❛❧ ❛①✐<

f 7→ log
10
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❋✐❣✉$❡ ✶✻✿ ◆♦♥❧✐♥❡❛$✐.② ✸ ✲ ◆❛$$♦✇ ❜❛♥❞ [1080, 1280] ❍③ ✲ ❊✣❝✐❡♥❝② ♦❢ .❤❡ ▲■◆✲
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