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Abstract
The paper deals with the robustness of uncertain computational elastoacoustic models in low- and medium-

frequency ranges. The elastoacoustic system is made up of a heterogeneous viscoelastic structure coupled

with an internal acoustic cavity filled with a dissipative acoustic fluid. A reduced mean elastoacoustic model

is deduced from the mean finite element model by using the modal approach with the structural modes of

the structure and the acoustic modes of the acoustic cavity. Both data uncertainties and model uncertainties

are taken into account by using a nonparametric probabilistic approach for the structure, for the acoustic

cavity and for the vibroacoustic coupling interface. The main objectives of this paper are (1) to present

an experimental validation of the nonparametric probabilistic approach of model uncertainties for compu-

tational elastoacoustics of complex systems in the low- and medium-frequency ranges and (2) to propose a

method to perform the experimental identification of the probabilistic model parameters. The experimental

configuration which is analyzed with the stochastic computational elastoacoustic model is a car made up of

a complex heterogeneous structure coupled with a complex acoustic cavity.

1 Introduction

The paper is devoted to computational elastoacoustics in low- and medium-frequency ranges of uncertain

complex systems made up of a viscoelastic heterogeneous structure coupled with an internal acoustic cavity

filled with a dissipative acoustic fluid. Usually, data uncertainties are taken into account by using a paramet-

ric probabilistic approach allowing the uncertain parameters of the computational model to be modeled by

random variables and many papers have been published in this subject (see for instance [1] for uncertainty

in structural dynamics, [2] for a recent overview on computational methods in stochastic mechanics and

reliability analysis and [3] for the stochastic finite element method).

The mathematical-mechanical modeling process of the designed elastoacoustic system is used to construct

the computational model. This process introduces model uncertainties which cannot be taken into account

by the parametric probabilistic approach (see [4, 5]). Consequently, we propose to use the nonparametric

probabilistic approach to take into account both the data uncertainties and the model uncertainties which

has recently been introduced (see [6, 7, 8] for the fundamental concept of the nonparametric approach and

the developments of the theory based on the use of the random matrix theory, [9] for an extension of the

theory allowing a more flexible description of the dispersion levels, [10] for linear dynamical systems in the

medium-frequency range, [11, 12, 13, 14, 15, 16] for the experimental identification and the experimental

validation of the nonparametric probabilistic approach of model uncertainties in structural dynamics, [15,

17, 18, 19, 20, 21] for the experimental identification and the experimental validation in structural acoustics,

[22, 23, 24] for nonlinear dynamical systems).

The main objectives of this paper are (1) to present an experimental validation of the nonparametric prob-

abilistic approach of model uncertainties for computational elastoacoustics of complex systems in the low-
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and medium-frequency ranges and (2) to propose a method to perform the experimental identification of

the probabilistic model parameters. The experimental configuration which is analyzed with the stochastic

computational elastoacoustic model is a car made up of a complex heterogeneous structure coupled with a

complex acoustic cavity. Experimental measurements have been carried out for 22 manufactured cars of the

same type with optional extra [17, 18].

2 Uncertainties in the predictive model of a real elastoacoustic

system

The designed elastoacoustic system is the system conceived by the designers and analysts. A designed elas-

toacoustic system, made up of a structure coupled with an internal acoustic cavity, is defined by geometrical

parameters, by the choice of materials and by many other parameters. The designed elastoacoustic system

can be a very complex elastoacoustic system. The real elastoacoustic system is a manufactured version of

the system realized from the designed elastoacoustic system such as an automative vehicle (car). Conse-

quently, the real elastoacoustic system is a man-made-physical system which is never exactly known due

to the variability induced for instance by the process. The objective of a predictive model is to predict the

output (vexp, pexp) of the real elastoacoustic system to a given input fexp in which vexp is the response in

displacement of the structure and where pexp is the acoustic pressure inside the acoustic cavity. Such predic-
tive models are constructed by developing mathematical-mechanical model of the designed elastoacoustic

system for a given input (see Figure 1). Consequently, the mean model has an input f modeling fexp, an

output (v, p) modeling (vexp, pexp) and exhibits a vector-valued parameter s for which data has to be given.

The errors are related to the construction of an approximation (vn, pn) of the output (v, p) of the mean model
for given input f and parameter s and have to be reduced and controled using adapted methods developed

in applied mathematics and in numerical analysis. The mathematical-mechanical modeling process of the

designed elastoacoustic system introduces two fundamental types of uncertainties: data uncertainties and

model uncertainties. Data uncertainties are the input f and the parameter s of the mean model. The best

system
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Figure 1: Designed elastoacoustic system, real elastoacoustic system and mean model as the predictive model

of the real elastoacoustic system.

approach to take into account data uncertainties is the parametric probabilistic approach which consists in

modeling the data of the mean model by random quantities. The mathematical-mechanical modeling process

induces model uncertainties with respect to the designed elastoacoustic system. This type of uncertainties

is mainly due to the introduction of simplifications in order to decrease the complexity of the mean model

which is constructed. For instance, a slender cylindrical elastic structural element will be modeled by using

the beam theory, a thick rectangular plate elastic structural element will be modeled by a thick plate theory,

a sound proofing scheme between the structure and the acoustic cavity will be modeled by a wall coustic
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impedance, the geometry of the acoustic cavity will be simplified, etc. It is clear that the introduction of such

simplifications yields a mean model for which all the possible variations of its parameter s do not allow the

model uncertainties to be reduced. The model uncertainties have then to be taken into account to improve the

predictability of the mean model. As explained above, the parametric probabilistic approach cannot be used.

This is the reason why a nonparametric probabilistic approach is proposed. The error between the prediction

(vn, pn) which is calculated with the mean model and the response (vexp, pexp) of the real elastoacoustic

system can be measured by (‖vexp − vn‖2 + ‖pexp − pn‖2)1/2 in which ‖ . ‖ denotes appropriate norms.

Clearly, the mean model can be considered as a predictive model if this error is sufficiently small. In general,

due to data uncertainties and model uncertainties, this error is not sufficiently small and has to be reduced by

taking into account data uncertainties and model uncertainties.

3 Nonparametric probabilistic approach of model uncertainties

The concept of the nonparametric probabilistic approach of model uncertainties introduced in [6, 7] is the

following (see [8]). Let s #→ A(s) be a linear mapping from a space S into a space A of linear operators.

The space S represents the set of all possible values of the vector-valued parameter s of the boundary value

problem (for instance, geometric parameters, elastic properties, boundary conditions, etc). For s fixed in S ,
operator A(s) represents one operator of the boundary value problem (for instance, the stiffness operator

of the structure which is assumed to be symmetric and positive, and in this case, any operator in A will

be symmetric and positive). Let Rpar ⊂ A be the range of the mapping s #→ A(s), i.e. the subset of A
spanned by A(s) when s runs through S . The corresponding operator of the real elastoacoustic system is

Aexp belonging toA. If s = s is the nominal value, then  = A(s) ∈ Rpar is the operator of the mean model.

par

A
exper

s

A (s)=A

A

R R

nonpar

nonparpar

Figure 2: Parametric and nonparametric probabilistic approaches of random uncertainties.

Parametric probabilistic model of the operator. The parametric probabilistic approach for the operator con-

sists in modeling the parameter s by a vector-valued random variable Swhose probability distribution PS(ds)
has a support which is S . Then the operator  of the mean model is replaced in the BVP by the random

operator Apar such that Apar = A(S). The probability distribution PApar of the random operator Apar is

PApar = A(PS) and its support is the set Rpar ⊂ A (see Figure 2). Clearly, the probability PApar on Rpar

allows data uncertainties to be taken into account, but Aexp may not be in Rpar due to model uncertainties.

Nonparametric probabilistic model of the operator. The nonparametric probabilistic approach for the oper-

ator consists in replacing the operator  of the mean model by a random operator Anonpar whose probability

distribution PAnonpar has a support which is Rnonpar = A. Since Aexp belongs to A and since the support

of PAnonpar is also A, model uncertainties can be taken into account by the nonparametric approach (see

Figure 2). Of course, PAnonpar cannot be arbitrary chosen with support Rnonpar, but has to be constructed

using the available information. Such a methodology has been developed in [6, 7, 8] using the information

theory.
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Methodology. The methodology of the nonparametric probabilistic approach of uncertainties is as follows.

(1) Developement of a finite element model of the designed elastoacoustic system. Such a model will be

called the mean model (or the nominal model). (2) Construction of a reduced mean model from the mean

model. (3) Construction of a stochastic reduced model from the reduced mean model using the nonparametric

probabilistic approach which allows the probability distribution of each random generalized matrix to be

constructed. (4) Construction and convergence analysis of the stochastic solution.

Experimental identification. The level of uncertainties is controlled by the dispersion parameter of each

random matrix introduced in the nonparametric probabilistic approach. In this paper, we present a method

to perform the experimental identification of the dispersion parameters.

4 Stochastic model of uncertain elastoacoustic systems

4.1 Reduced mean model of the elastoacoustic system

The elastoacoustic system is made up of a viscoelastic structure coupled with an internal acoustic cavity filled

with a dissipative acoustic fluid. The usual formulation in ”structural displacement” - ”acoustic pressure”

is used to construct the mean finite element model of the elastoacoustic system (see for instance [25]). Let

u(ω) be the  ns-vector of the ns degrees of freedom (DOF) of the structure and let p(ω) be the  nf -vector

corresponding to the the nf DOF of the acoustic cavity. Let { 
1
, . . . , 

Ns
} be the Ns first structural modes

of the structure in vacuo and calculated at zero frequency (not including rigid body modes if there are). Let

{!
1
, . . . ,!

Nf

} be the Nf first acoustic modes of the acoustic cavity with a rigid fluid-structure coupling

interface (including the constant pressure mode if the acoustic cavity is closed). The reduced mean model

is obtained by the projection of the mean finite element model on the subspace VNs × VNf
of !ns × !nf in

which VNs is spanned by { 
1
, . . . , 

Ns
} and VNf

is spanned by {!
1
, . . . ,!

Nf
}. The reduced mean model

can then be written as

u(ω) =
Ns
∑

α=1

qs
α
(ω) 

α
, p(ω) =

Nf
∑

β=1

qf
β
(ω)!

β
. (1)

The  Ns-vector qs(ω) = (qs
1
(ω), . . . , qs

Ns
(ω)) and the  Nf -vector qf (ω) = (qf

1
(ω), . . . , qf

Nf
(ω)) are the

solution of the following matrix equation

[

−ω2[M s] + iω[Ds(ω)] + [Ks(ω)] [C]
ω2[C]T −ω2[Mf ] + iω[Df ] + [Kf ]

] [

qs(ω)

qf (ω)

]

=

[

fs(ω)
ff (ω)

]

, (2)

in which the (Ns × Ns) real matrices [M s], [Ds(ω)] and [Ks(ω)] are the generalized mass, damping and

stiffness matrices of the structure, where the (Nf ×Nf ) real matrices [M f , [Df ] and [Kf ] are the generalized
mass, damping and stiffness matrices of the acoustic and where the rectangular (Ns × Nf ) real matrix [C]

is the generalized vibroacoustic coupling matrix. In Eq. (2) the  Ns-vector fs(ω) and the  Nf -vector ff (ω)
are the generalized force vector of the structure and the generalized acoustic source vector of the acoustic

cavity respectively.

4.2 Stochastic reduced model using the nonparametric probabilistic approach

The principle of construction of the nonparametric probabilistic approach (see [6, 7, 8]) of uncertainties in

the structure, in the acoustic cavity and for the vibroacoustic coupling consists (1) in modeling the general-

ized mass [M s], damping [Ds(ω)] and stiffness [Ks(ω)] matrices of the structure by the random matrices

[Ms], [Ds(ω)] and [Ks(ω)] whose dispersion parameters are δMs , δDs and δKs respectively; (2) in modeling

the generalized mass [M f ], damping [Df ] and stiffness [Kf ] matrices of the acoustic cavity by the random
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matrices [Mf ], [Df ] and [Kf ] whose dispersion parameters are δMf
, δDf

and δKf
respectively; (3) in model-

ing the generalized vibroacoustic coupling matrix [C] by the random matrix [C] whose dispersion parameter
is δC . The explicit construction of the probability distribution of these random matrices were performed by

using the maximum entropy principle and is given in [6, 7] for random matrices [Ms], [Ds(ω)], [Ks(ω)],
[Mf ], [Df ] and [Kf ], and is given in [8] for random matrix [C]. Let [A] be anyone of these random matri-

ces. In this theory, the probability distribution of such a random matrix [A] depends only on its mean value
[A] = E{[A]} (in which E is the mathematical expectation) and on its dispersion parameter δA which is

independent of the matrix dimension. In addition, an algebraic representation of the random matrix [A] has
been developed and allows independent realizations to be constructed for a stochastic solver based on the

use of the Monte Carlo numerical simulation. It should be noted that if [A(ω)] is a symmetric positive real-
valued matrix depending on ω, then the random matrix [A(ω)] is written as [A(ω)] = [LA(ω)]T [G] [LA(ω)]
in which [A(ω)] = [LA(ω)]T [LA(ω)] and where the random matrix germ [G] is independent of ω. The

dispersion parameter δA must be taken independent of ω. Using such an approach, the stochastic reduced
model of the uncertain elastoacoustic system for which the reduced mean model is defined by Eq. (2) is

written, for all ω fixed in the frequency band of analysis B = [ω0, ω1] with 0 < ω0 < ω1, as

U(ω) =
Ns
∑

α=1

Qs
α(ω) α , P(ω) =

Nf
∑

β=1

Qf
β(ω)!β , (3)

in which, for ω fixed in B, the  Ns-valued random variable Qs(ω) = (Qs
1
(ω), . . . , Qs

Ns
(ω)) and the  Nf -

valued random variable Qf(ω) = (Qf
1
(ω), . . . , Qf

Nf
(ω)) are the solution of the following random matrix

equation

[

−ω2[Ms] + iω[Ds(ω)] + [Ks(ω)] [C]
ω2[C]T −ω2[Mf ] + iω[Df ] + [Kf ]

] [

Qs(ω)
Qf (ω)

]

=

[

fs(ω)
ff (ω)

]

. (4)

4.3 Construction and convergence of the stochastic solution

For all ω fixed in B, it can be proven that the probability model constructed for the random matrices is such

that Eq. (4) has a unique second-order solution (see the methodology presented in [7]), i.e., E{‖Qs(ω)‖2}≤
c1 < +∞ and E{‖Qf (ω)‖2} ≤ c2 < +∞. Concerning the stochastic solver, for all ω fixed in B, the

stochastic solution of Eq. (4) is constructed by using the Monte Carlo numerical simulation with m in-

dependent realizations. Using the usual statistical estimator of the mathematical expectation E, the con-

vergence of the stochastic solution with respect to Ns, Nf and m is studied in constructing the functions

(Ns,m) #→ convs(Ns,m) and (Nf ,m) #→ convf (Nf ,m) such that

convs(Ns,m) = {
1

m

m
∑

k=1

∫

B
‖U(ω, θk)‖

2 dω}1/2 , (5)

convf (Nf ,m) = {
1

m

m
∑

k=1

∫

B
‖P(ω, θk)‖

2 dω}1/2 , (6)

in which U(ω, θ1), . . . , U(ω, θm) and P(ω, θ1), . . . , P(ω, θm) are m independent realizations of U(ω) and
P(ω) respectively.

5 Identification of the probabilistic model parameters from

experiments

The problem to be solved is related to the experimental identification of the vector-valued dispersion param-

eter " = (δMs , δDs , δKs , δMf
, δDf

, δKf
, δC) introduced in the nonparametric probabilistic approach of data
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and model uncertainties. Let Y(ω, ) = (Y1(ω, ), . . . , Yµ(ω, )) be the  µ-valued random variable corre-

sponding to µ observations of the stochastic reduced model which will be measured for all ω belonging to the

frequency band B. This vector-valued random variable depends on the vector-valued dispersion parameter which has to be identified using measurements. The mean value Y(ω, ) of the random vector Y(ω, ) is
then such that

Y(ω, ) = E{Y(ω, )} . (7)

The manufactured systems have a variability induced by the manufacturing process. It is assumed that the

measurements are performed for ν manufactured real systems. Let yexp,k(ω) = (yexp,k
1

(ω), . . . , yexp,kµ (ω))
be the  µ-vector of the µ measured obervations for manufactured system number k. We intoduce the exper-

imental sampling mean value yexp(ω) such that

yexp(ω) =
1

ν

ν
∑

k=1

yexp,k(ω) . (8)

The corresponding observations of the real systems are then modeled by a  µ-valued random variable

Yexp(ω) = (Y
exp
1

(ω), . . . , Y
exp
µ (ω)) for which, by construction, the mean value E{Yexp(ω)} of the random

vector Yexp(ω) is chosen such that
E{Yexp(ω)} = yexp(ω) . (9)

Several methods have been recently proposed in [15] which allow the nonparametric probabilistic model of

uncertainties to be experimentally identified for different situations. Below, we present only two methods

which are adapted to the application analyzed in Section 6 and which will be used to identify the vector-

valued dispersion parameter  from experiments. The first one is the mean-square identification method

which can be used for a vector-valued random variable without any difficulties. This method consists in min-

imizing, in the mean-square sense, the distance between the computed random response and the experimental

response. The second one is the maximum likelihood method which can also be used for a vector-valued

random variable. Nevertheless, the computational time required by such a method is prohibitive if the vector-

valued random variable has a high dimension. Consequently, we will limit the presentation of this method

to a real-valued random variable. Nevertheless an extension of this method is proposed in [15] which allows

high dimension cases to be treated.

5.1 Mean-square identification method

Let ω #→ X(ω) = (X1(ω), . . . ,Xµ(ω)) be a  µ-valued second-order stochastic process indexed by the

frequency band B. We introduce the norm |||X||| of X such that

|||X|||2 = E{||X||2B} , ||X||2B =

∫

B
||X(ω)||2 dω , (10)

in which ||X(ω)||2 = X1(ω)2 + . . . + Xµ(ω)2. The mean square identification of parameter  consists in

minimizing the cost function J0( ) = |||Y(., ) − Yexp|||2 with respect to  . In order to compute this cost
function, we can write |||Y(., )−Yexp|||2 = |||Y(., )−Y(., )− (Yexp−yexp)+Y(., )−yexp|||2. Since
Y(., ) − yexp is a deterministic vector and since Y(., ) − Y(., ) and Yexp − yexp are independent and

centered vector-valued random variables, it can be deduced that

J0( ) = |||Y(., ) − Y(., )|||2 + |||Yexp − yexp|||2 + ||Y(., ) − yexp||2B . (11)

In the right-hand side of Eq. (11), the first, the second and the third terms represent the variance of the

random response of the stochastic model, the variance of the real system induced by its variability and

the bias between the model and the real system, respectively. It should be noted that the second term is

independent of  . Consequently, the cost function J0( ) can be replaced by a cost function J1( ) obtained

468 PROCEEDINGS OF LSAME.08



by removing the second term. Consequently, the mean-square identification of parameter  consists in

solving the following optimization problem opt = arg min J1( ) , (12)

in which the cost function J1( ) is written as

J1( ) = |||Y(., ) − Y(., )|||2 + ||Y(., ) − yexp||2B . (13)

5.2 Maximum likelihood method

For the maximum likelihood method, we introduce the real-valued random variable Z( ) for which the ν
independent realizations zexp,1, . . . , zexp,ν correspond to the ν manufactured real systems. Let pZ(z, ) dz
be the probability distribution on  of Z( ) represented by a probability density function pZ(z, ) which
depends on the dispersion parameter  . This random variable is defined by

Z( ) =

∫

B
dB(ω, ) dω , dB(ω, ) = 10 log10



w2

ref

1

µ

µ
∑

j=1

|Yj(ω, )|2



 , (14)

in which wref is a constant of normalization. It should be noted that, for all z fixed in  , the probability
density function pZ(z, ) can easily be estimated with Eqs. (3) and (4) using the Monte Carlo method and

the mathematical statistics. For k = 1, . . . , ν, the corresponding realization zexp,k is written as

zexp,k =

∫

B
dBexp,k(ω) dω , dBexp,k(ω) = 10 log10



w2

ref

1

µ

µ
∑

j=1

|y
exp,k
j (ω)|2



 . (15)

The use of the maximum likelihood method (see [26]) leads us to the following optimization problem opt = arg max L( ) , (16)

in which L( ) is written as

L( ) =
ν

∑

k=1

log10(pZ(zexp,k, )) . (17)

6 Analyzing experimental configurations

We present the experimental validation of the stochastic computational elastoacoustic model for the pre-

diction of internal noise in a car due to engine excitation applied to the engine supports (booming noise)

(see [17, 18, 19, 20]). The mean finite element model is shown in Figure 3. The structure is modeled

with ns = 978, 733 DOF in displacement and the acoustic cavity with nf = 8, 139 DOF in pressure.

The frequency band of analysis is B = [33, 200] Hz and corresponds to [1000, 6000] rpm (engine rotation

per minute). The convergence of the stochastic reduced model over the frequency band B is obtained for

Ns = 1722 structural modes, for Nf = 57 acoustic modes and for m = 600 realizations. The exper-

imental identification of the dispersion parameters are performed in three steps as follows (see [17, 18]).

For the first step, the acoustic pressures have been measured inside the acoustic cavity for a given acoustic

source inside the cavity. Then the maximum likelihood method described in Section 5.2 has been used taking

δMf
= δDf

= δKf
, where Yj(ω, ) = Pℓj

(ω) in which Pℓ1(ω), . . . , Pℓµ
(ω) are the observed acoustic pres-

sures which are measured inside the cavity and where wref = 1/Pref in which Pref is a reference pressure.

For the second step, the structural accelerations have been measured in the structure for driven forces applied

to the engine supports. Then the mean-square identification method described in Section 5.1 has been used
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Figure 3: Finite element mesh of the structure: 978,733 DOF in displacement (left figure). Finite element

mesh of the acoustic cavity: 8,139 DOF in pressure (right figure)
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Figure 4: Experimental validation of the confidence region prediction for the random cross FRF between the

input force applied to engine supports and the acoustic pressure at an observation point in the acoustic cavity

for the vibroacoustic system. Horizontal axis: tr/min. Vertical axis: modulus of the acoustic pressure in

dBA. 22 experimental measurements for 22 cars of the same type (22 thin solid lines). Numerical prediction

of the mean reduced matrix model (thick solid line). Confidence region of the internal noise predicted with

the non parametric probabilistic model and for probability level 0.95. (grey region).

with Yj(ω, ) = log10(wj |Uℓj
(ω)|) in which Uℓ1(ω), . . . , Uℓµ

(ω) are the observed displacements which are
measured and where w1, . . . , wµ are normalization constants such that 0 < wj ≤ 1. In a third step, the

dispersion parameter δC of the vibroacoustic coupling operator has been fixed at a given value. Figure 4

displays the experimental validation of the numerical prediction of internal noise due to engine excitation

with structure, vibroacoustic coupling and acoustic cavity uncertainties. Taking into account the complexity

of the vibroacoustic system, there is a good experimental validation of the stochastic computational elastoa-

coustic model with both model uncertainties and data uncertainties. The variability of the manufactured real

systems is due to the process and to the extra options. The propagation of uncertainties is significant in the

frequency band of analysis.
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7 Conclusions

Data uncertainties and model uncertainties are be taken into account in a computational elastoacoustic model

by using the nonparametric probabilistic approach. A methodology is proposed to perform the experimen-

tal identification of the dispersion parameters which controls the level of uncertainties. The approach is

experimentally validated for a complex elastoacoustic system which presents variabilities.
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