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Abstract
In this paper, we present an energy density field approach for low- and medium-frequency vibroacoustic
analysis of complex structures using a statistical computational model. The theory presented is adapted to
a structure consisting of an automotive vehicle coupled with its internal cavity. The objective of this paper
is to take advantage of the statistical properties of the frequency response functions observed from previous
experimental and numerical experiences. In this approach, the matrix-valued frequency response function is
expressed in terms of a dimensionless matrix which is estimated using the vibroacoustic computational model
and the proposed energy method. Using these dimensionless matrix-valued frequency response function a
simplified vibroacoustic model is proposed.

1 Introduction

Numerical simulation and mathematical modeling have become more and more complex trying to match nu-
merical models with physical systems. However exact matching is nearly impossible to achieve because of
uncertainties existing not only in the parameters of the physical system, but also in the computational model
itself. This is why applying statistical methods became necessary to take into account those uncertainties.
One well know statistical approach is the parametric probabilistic approach. This approach takes into account
uncertainties in the physical system parameters but does not take into account model uncertainties. To take
into account model uncertainties the non-parametric probabilistic approach of model uncertainties presented
in [1] [2] [3] is used.
In the domain of vibroacoustics, statistical methods are used in the high frequency range where the number
of modes is very high and the statistical properties are quite evident. One of the statistical methods used
in this frequency range is the Statistical Energy Analysis known as SEA [4][5].This kind of approach and
other kinds devoted to the high frequency range have been extensively developed and applied, see for ins-
tance developments like [6][7][8][9][10] [11][12][13]. However these approaches are generally not directly
applicable to the low- and medium-frequency ranges. In these frequency ranges statistical properties of the
response are not evident due to the simultaneous presence of global modes and local modes. Thus, a sto-
chastic approach is necessary for the vibroacoustic analysis of the system to permit taking advantage of the
statistical properties of the response in the low- and medium-frequency ranges.
Frequency Response Functions (FRF) between all points of a complex system could be very difficult to ana-
lyze specially during a conception phase of an industrial process. Thus a more simplified robust model is
needed to simplify these FRF. To achieve such a simplification in the low- and medium-frequency ranges an
energy density field approach dealing with these frequency ranges and developed in a statistical context is
presented. Note that the proposed approach uses the input and output mobilities to normalize the FRF. this



notion is close to that of the energy mobility introduced in [14] but is a quite different approach.
The stochastic computational model of the vibroacoustic system is obtained from the mean reduced vibroa-
coustic computational model and using the non-parametric probabilistic approach to take into account both
the parameter uncertainties and the model uncertainties. The stochastic equations are then solved using the
Monte Carlo method. For shortness, in this paper only the energy analysis and the construction of the simpli-
fied model are explained in details. The mean vibroacoustic model is not explained and the reader is referred
to [15] for the general formulation and to [16] and [17]for the formulation devoted to automotive structures.
The equations of the mean reduced computational vibroacoustic model and those of the stochastic compu-
tational model are shown briefly in the first section of this paper. For more details, the reader is referred to
[1][2][3][15][16][17].

2 Reduced mean computational vibroacoustic model

The vibroacoustic problem to be solved consists in a three dimensional damped elastic structure without
rigid body displacements and is coupled with an internal damped acoustic cavity. For all angular frequency
ω belonging to the frequency band of analysis with B = [ωmin, ωmax] with ωmin > 0, the reduced mean
computational vibroacoustic model is written as

us(ω) = Ψqs(ω) , pf (ω) = Φqf (ω) , (1)

in which the Cn-vector qs(ω) of the generalized structural coordinates associated with the n first structural
elastic modes constituting the matrix Ψ and the Cm-vector qf (ω) of the generalized acoustical coordinates
associated with the m first acoustic modes constituting the matrix Φ which includes the constant pressure
mode at zero eigenfrequency, verify the matrix equation

[As(ω) C
ω2 CT Af (ω)

] [
qs(ω)
qf (ω)

]
=

[fs(ω)
ff (ω)

]
. (2)

In Eq. (1), us(ω) and pf (ω) are the Cns-vector of the structural DOF and the Cnf -vector of the acoustical
DOF. In Eq. (2), As(ω) and Af (ω) are the generalized dynamical stiffness matrices for the structure and for
the acoustic cavity which are written as

As(ω) = −ω2Ms
n + iωDs

n + Ks
n , (3)

Af (ω) = −ω2Mf
m + iωDf

m + Kf
m . (4)

In Eq. (3), Ms
n,Ds

n and Ks
n are positive-definite symmetric real (n×n) matrices corresponding to the genera-

lized mass, damping and stiffness matrices. In Eq. (4) devoted to the acoustic cavity,Mf
m is a positive-definite

symmetric real (m×m) matrix corresponding to the generalized "mass" matrix and, Df
m and Kf

m are the po-
sitive symmetric real (m×m) matrices corresponding to the generalized "damping" and "stiffness" matrices.
Finally, in Eq. (2), C is the real (n×m) matrix corresponding to the generalized vibroacoustic coupling ma-
trix and where fs(ω) and ff (ω) are the generalized structural forces and the generalized acoustical sources
applied to the vibroacoustic system.

3 Construction of the stochastic reduced computational vibroacous-
tic model

In this work, the non-parametric probabilistic approach [1][2][3] is used to construct the statistical compu-
tational vibroacoustic model in order to take into account both parameter uncertainties and model uncertain-
ties. One refers the reader to [16] for the details of this implementation. In such an approach, the matrices



of the reduced mean computational vibroacoustic model are replaced by random matrices whose mean va-
lues are equal, by construction, to the matrices of the reduced mean computational vibroacoustic model.
Consequently, Eqs. (1) and (2) are replaced by the following random equations

Us(ω) = ΨQs(ω) , Pf (ω) = ΦQf (ω) , (5)

in which the Cn-valued random vector Qs(ω) and the Cm-valued random vector Qf (ω) verify the random
matrix equation [

As(ω) C
ω2CT Af (ω)

] [
Qs(ω)
Qf (ω)

]
=

[
ΨT fs(ω)
ΦT ff (ω)

]
, (6)

in which the random matrices As(ω) and Af (ω) are written as

As(ω) = −ω2Ms
n + iωDs

n + Ks
n , (7)

Af (ω) = −ω2Mf
m + iωDf

m + Kf
m . (8)

In Eq. (7), Ms
n,Ds

n and Ks
n are random matrices with values in the set of all the positive-definite symmetric

real (n × n) matrices. In Eq. (8), Ms
n is a random matrix with values in the set of all the positive-definite

symmetric real (m × m) matrices and, Df
m and Kf

m are random matrices with values in the set of all the
positive symmetric real (m×m) matrices. Finally, in Eq. (6), C is a random matrix with values in the set of
all the real (n ×m) matrices. The probability distributions of these seven random matrices are completely
defined in the non-parametric probabilistic approach and a generator of independent realizations of these
random matrices is explicitly known(see [1][2][3]). It should be noted that, in this random matrix theory, the
statistical fluctuation level of each random matrix is controlled by a dispersion parameter δ > 0. If δ = 0
(deterministic case) the random matrix is equal to its mean value. The larger the value of δ, the larger is the
uncertainty level.

4 Explanation of the energy density field approach

Let µ = ns + nf be the total number of DOF. One will only use the subset {j1, . . . , jα, . . . , jν} of the ν
observed and excited DOF of the vibroacoustic system. In general, one has ν ¿ µ. Note that the excited
DOF are the same as the observed DOF. The excited DOF correspond to external forces applied to the
structure and/or to external acoustic sources in the acoustic cavity. For α fixed in {1, . . . , ν}, let t 7→ fα(t)
be the function from R into Rν representing the excitation vector relative to the DOF jα which is written
as fα(t) = {0, . . . , fα

α (t), . . . , 0} and which is such that fα(−t) = fα(t). It is assumed that fα is square
integrable on R. Let fα(ω) =

∫
R e−iωtfα(t) dt be its Fourier transform which is real function such that

fα(−ω) = fα(ω). Consequently, we have fα(ω) = {0, . . . , fα
α (ω), . . . , 0}. finally it will be assumed that

the support of ω 7→ fα(ω) is the bounded interval B ∪ B in which B = [−ωmax,−ωmin]. Let Z(ω) be the
(µ× µ) complex random matrix such that

Z(ω) =
[
Ψ 0
0 Φ

] [
As(ω) C
ω2CT Af (ω)

]−1 [
ΨT 0
0 ΦT

]
, (9)

which exists for all ω in B. Let Z(ω) be the (ν × ν) complex random matrix such that, for all α and β in
{1, . . . , ν}, one has

Zαβ(ω) = Zjαjβ
. (10)

For all ω fixed in B, let T(ω) be the (ν × ν) complex random matrix defined by

T(ω) = iωZ(ω) . (11)



The function ω 7→ T(ω) is called the matrix-valued random FRF related to the excited and the observed
DOF. It should be noted that T(−ω) = T(ω). Let Vα(ω) be the ν complex random vector of the velocity
responses for the observed DOF {j1, . . . , jν}. One then has

Vα(ω) = T(ω)fα(ω) . (12)

We now introduce the (ν × ν) random mobility matrix Y(ω) of the vibroacoustic system for the excited
and the observed DOF. Below one uses the terminology introduced in references [18] [19] concerning the
driving point mobility functions and the coupling mobility functions. Since we are only interested in the
driving point mobility functions and not by the coupling mobility functions, the random mobility matrix is a
(ν × ν) real diagonal random matrix defined by

Yαβ(ω) =
{

Re(Tαα(ω)) if α = β
0 if α 6= β

. (13)

It should be noted that, for all ω ∈ B, Yαα(ω) is positive-valued random variable which is such that
Yαα(−ω) = Yαα(ω).
One now introduces the vector-valued spectral density function sf = (sf

1(ω), . . . , sf
ν (ω)) belonging to (R+)ν

relative to all the excited DOF such that

sf
α(ω) = (1/2π)fα

α (ω)2 . (14)

The random input power of the vibroacoustic system induced by the excitation fα is defined by

Πα
in =

∫

R
fα(t)T Vα(t) dt . (15)

which can be rewritten in the form
Πα

in =
∫

B
πα

in(ω) dω , (16)

where πα
in(ω) can be defined by

πin = (π1
in, . . . , πα

in, . . . , πν
in) (17)

and it can be demonstrated using the above equations that

πin(ω) = 2Y(ω)sf (ω) . (18)

From Eq. (18), it can be deduced that

sf (ω) =
1
2
Y(ω)−1πin(ω). (19)

Similarly, One then introduces the (R+)ν-valued random spectral density function sv of the velocity res-
ponses V1, . . . ,Vν such that

sv(ω) = (sv
1(ω), . . . , sv

ν(ω)) . (20)

where sv
α(ω) = 1

π ‖ Vα(ω) is The spectral density function of the response velocity Vα. Introducing the
(ν × ν) real random matrix Hβα(ω) = |Tβα(ω)|2 one can easily deduce that

sv(ω) = 2H(ω) sf (ω) . (21)

Defining the (R+)ν-valued random local input power density function πL
in such that

sv(ω) = Y(ω)πL
in(ω) , (22)

after simple mathematical calculation one can get

πL
in(ω) = Y(ω)−1H(ω)Y(ω)−1πin(ω) . (23)



Introducing the ν × ν real full random matrix E(ω) defined by

E(ω) = Y(ω)−1H(ω)Y(ω)−1 , (24)

it can easily be seen that Eq. (23) can be rewritten as

πL
in(ω) = E(ω) πin(ω) . (25)

The two fundamental Eqs. (22) and (25) allows sv(ω) to be calculated as a function of πin(ω) via πloc
in (ω).

Consequently, the random matrix E(ω) can be viewed as a random dimensionless operator allowing the
random local input power density function to be calculated as a function of the random input power density
function. On the other hand, it can be deduced the following fundamental equation

sv(ω) = 2Y(ω)E(ω)Y(ω) sf (ω) . (26)

5 Introduction of the local coordinate system

It should be noted that the random equations defined by Eqs. (5) and (6) are relative to the global coordinate
system. In this section, one represents the local FRF in a local coordinate system defined by the principal
directions of the local mobility. Such a representation allows the type of dominant deformations to be analy-
zed with respect to the geometry. For instance, at a local point located in a thin shell of the structure, if the
most important principal direction is perpendicular to the tangent plane of the shell, then the largest part of
the energy of the response will mainly be associated with flexural deformations while if the most important
principal direction belongs to the tangent plane, then the largest part of the energy will mainly be associated
with membrane deformations.

5.1 Representation of the stochastic system in the new coordinates system

Let Tp(ω) be the random matrix with values in the set of all the symmetric complex (3 × 3) matrices and
corresponding to the translational DOF of the random FRF at a given point p of the structure (note that
the rotational DOF are not considered here). One then introduces the mean value E{Tp(ω)} of the random
matrix Tp(ω) in which E denotes the mathematical expectation. Let Tp(ω) be the symmetric real (3 × 3)
matrix such that Tp(ω) = <e{E{Tp(ω)}}. The representation of the random matrix Tp(ω) in the local
coordinates attached to the given point and defined by the principal direction of the mean local mobility, is
the random matrix denoted by Tloc

p (ω) and is written as

Tloc
p (ω) = Xp(ω)TTp(ω)Xp(ω) . (27)

One can now consider the Eq. (24) in the local coordinates for all the local DOF of the structure at points p
and all the the global DOF of the acoustic cavity all together which can then be rewritten

Eloc(ω) = Yloc(ω)−1 Hloc(ω)Yloc(ω)−1 . (28)

All other equations of section 4 still hold true in the local coordinates. Thus, these equations are going to be
used in what follows with a subscript or a superscript loc to refer to values in these coordinates.

6 Construction of the simplified model

The mean matrix-valued FRF is calculated using the mean value of the Monte Carlo realizations of the FRF
after projection on principal directions of the mean local mobility. One can then write

Tloc(ω) = E{Tloc(ω)} , (29)



and
Eloc(ω) = E{Eloc(ω)} . (30)

in this case the local mobility is written as

Yloc
αβ(ω) =

{
Re(Tloc

αα(ω)) if α = β
0 if α 6= β

. (31)

Taking the mathematical expectation of Eq. (26) in the local coordinates leads us to

E{sv
loc(ω)} = 2 E{Yloc(ω)Eloc(ω)Yloc(ω)sf

loc(ω)} . (32)

if the the following approximations are introduced then

E{sv(ω)} = E{Y(ω)}E{πL
in(ω)} (33)

E{πL
in(ω)} = E{E(ω)}E{πin(ω)} , (34)

then the approximation sv
loc(ω) of the E{sv

loc(ω)} is written as

sv
loc(ω) = 2Yloc(ω)Eloc(ω)Yloc(ω)sf

loc(ω) . (35)

These approximations are shown to be numerically verified in Section 7, taking into account the following
construction.
Now, let J and O be the set of excitation and observation DOF respectively such that J = {kq, q = 1, ..., µ}
and O = {jp, p = 1, ..., ν}, where µ and ν are the number of excitation and number of observation DOF
respectively as illustrated in Fig.(1).

FIG. 1 – Schematic presentation of the sets of excitation and observation points.

Introducing Sf
loc(ω) as the matrix-valued spectral density function of the excitation forces defined by

(Sf
loc(ω))jpkq =

{
(sf

loc(ω))jp if jp = kq

0 if jp 6= kq
, (36)

and assuming that the excitation and observation DOF J and O are sufficiently distant from each, let eOJ be
the real number such that for each ω in the frequency band B, it is assumed that

(Eloc(ω))jpkq ' eOJ(ω) . (37)

In order that this last ussumption be verified, the quantity eOJ(ω) is computed by the equation

eOJ =

∑ν
p=1(E{sv

loc(ω)})jp

E{πloc
in }

∑ν
p=1(Y

loc(ω))jpjp

, (38)



where (Esv
loc(ω))jp is the summation over the excitation DOF of the mean random spectral density function

of the velocity responses calculated using Eq. (32) and πloc
in is the the summation over the excitation DOF of

the mean value of the local input power density function. The value of the approximated mean vector-valued
spectral density function of the output velocity can then be recalculated using the matrix EOJ defined by
(EOJ)jpkq(ω) = eOJ(ω) to obtain the approximated value

(sv
loc(ω))app

jp
= eOJ(ω) [Yloc(ω)]jpjp E{πloc

in } . (39)

The associated error due to this hypothesis can then be evaluated by defining the matrix ε2E of the errors for
fixed J and O

[εE]2jpkq
= |[Eloc(ω)]jpkq − [EOJ(ω)]jpkq|2 . (40)

7 Application

The application of the proposed method was performed on an automotive vehicle model. the mean model
consists of a non-trimmed vehicle structure and it’s internal cavity. The coupling between the acoustic fluid
and the structure is done using a sub-mesh of the structure which is compatible with the mesh of the internal
cavity having 8397 DOF as shown in Fig. (2-b). The structure mesh have 1 042 851 DOF and the internal
cavity have 9157 DOF as shown in Fig. (2-a). As mentioned earlier, only translational displacements of the
structure are taken into account. Unit excitations forces were placed at each observation DOF on the struc-
ture, while unit acoustic sources were placed at each observation DOF in the acoustic cavity. So the number
of observation and excitation DOF are equal. Twelve excitation and observation points were chosen in dif-
ferent zones of the internal acoustic cavity, and 28 on the structure with a total of 96 DOF. The points on the
structure were mainly chosen to model loads induced by the engine and the front suspension. Other points
were placed on the floor board, wind shield, roof, trunk board. The analysis is done in the low-frequency
band B = [50, 350]Hz.

a) Sub-mesh of the finite element model of the structure b) Finite element model of the internal cavity

FIG. 2 – Finite element mesh of the mean model

The modal analysis of the system is performed using Nastran with the system damping rate of 0.04 for the
structure and 0.1 for the fluid. The structure has 1955 elastic modes and 3 rigid body translational modes,
while the fluid has 160 modes including the zero pressure mode. After obtaining the matrices of the determi-
nistic model from Nastran, the random matrices of the vibroacoustic system are constructed as explained in
[1][2][3]. Uncertainties on the mass, damping, stiffness and coupling matrices were considered. The value
of the dispersion parameters were selected from previous work on a similar model [17]. The random vibroa-
coustic equation of the system is then solved using the Monte Carlo solver with nr Independent realizations.
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FIG. 3 – Left : convergence function convs(nr) of the structure as a function of the number nr of realizations.
Right : convergence function convf (nr) of the fluid as a function of the number nr of realizations.

The convergence of the random solution is tested as a function of the number of realizations using the conver-
sion index [2][3] defined by the equation

convH(nr) =
1
nr

nr∑

`=1

∫

B
‖QH(w; θ`)‖2dω , (41)

in which H stands for either the structure s or the fluid f , and QH(w; θ1), ...,QH(w; θnr) are the inde-
pendent realization of the vector-valued random variable QH(w). For precision reasons no modal truncation
was used and all modes were taken into consideration. The number of modes needed for convergence ob-
tained in previous work on a similar model in [17] shows that the number of modes considered here are
sufficient for convergence. Fig. (3) shows the graphs of the convergence functions convs(nr) and convf (nr)
of the structure and of the fluid respectively as a function of the number nr of realizations. Fig. (3) shows
that convergence for the structure occurs at about 550 realizations while for the fluid it occurs at about 400
realizations. Thus 600 realizations are chosen to insure convergence of both the structure and the fluid part.
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FIG. 4 – Tloc(ω) (Left) and Eloc(ω) (Right) for a structure excitation and a structure observation points .
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FIG. 5 – Tloc(ω) (Left) and Eloc(ω) (Right) for a fluid excitation and a fluid observation points.
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FIG. 6 – Tloc(ω) (Left) and Eloc(ω) (Right) for a structure excitation and a fluid observation points.

After obtaining Tloc(ω, θ) for each realization θ, the local directions of maximum mobility are then calcula-
ted using T(ω). Each realization Tloc(ω, θ) is then projected on these directions as explained in Section 5.
The input and output mobilities of the vibroacoustic system are calculated for each realization using Eq. (13)
and then the value of Eloc(ω, θ) is obtained using Eq. (28). The confidence regions of Tloc(ω) and Eloc(ω) are
constructed using the quantiles [20] with a probability of 0.95. Figs. (4), (5), and (6) show the mean values
for Tloc(ω) and Eloc(ω) for different types of excitation and of observation points. From the figures, one can
notice that the variation in magnitude, as a function of frequency, of Tloc(ω) is less than that of Eloc(ω) espe-
cially for the case of structure excitation and structure observation. Moreover, it can be seen that when fixing
an observation point and changing the direction of excitation among the three local principal directions or
vice versa, Eloc(ω) seem to undergo less changes than Tloc(ω). This is illustrated in Figs. (7) to (9) showing
the confidence regions corresponding to a structure observation DOF and three different structure excitation
DOF corresponding to the three local principal directions.
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FIG. 7 – Confidence regions of Tloc(ω) (Left) and Eloc(ω) (Right) observation DOF : Structure-X excitation
DOF : Structure-X
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FIG. 8 – Confidence regions of Tloc(ω) (Left) and Eloc(ω) (Right) observation DOF : Structure-X, excitation
DOF : Structure-Y
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The mean input power as well as the matrix-valued spectral density function of the excitation forces are
calculated using Tloc(ω) from which the mean vector-valued spectral density function of the output velocity
is obtained. The real number eOJ is evaluated using Eq. (38). The matrix ε2E of the errors between EOJ(ω)
and Eloc(ω) is evaluated using Eq. (40) and the results are plotted for each frequency. Fig. (10) shows the
color plots of the (nµ × nν) matrix ε2E at 70Hz, 170Hz, 270Hz, and 350Hz.
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FIG. 10 – color plots of ε2E at (a) 70Hz (b) 170Hz (c) 270Hz (d) 350Hz.

From Fig. (10) it can be observed that at low frequency the error between EOJ(ω) and Eloc(ω) is high at
nearly all elements. At higher frequencies the error decreases away from the block diagonal elements, that
means when the hypothesis that the excitation and observation points are far enough from each others is
fulfilled. This hypothesis holds true starting at about 170Hz. In what comes This frequency will be called the
lower bound frequency. each block on the diagonal of the matrix corresponds to DOF situated on the same
part of the structure.

8 Conclusion

An energy based method for vibroacoustic analysis in low- and medium frequency ranges was established.
This method is based on the implementation of the non-parametric probabilistic approach in the vibroacoustic
modeling process. Using an energy method along with the stochastic model, a simplified vibroacoustic model
was elaborated. This model is more robust regarding modeling and parameter uncertainties and also from the



conception point of view. The energy method as well as the simplified model, and the associated hypothesis
were verified numerically on an automotive structure and its internal cavity.

Références

[1] C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics,
Journal of Acoustical Society of America, Vol. 109, No. 5, (2001), pp. 1979-1996.

[2] C. Soize, A comprehensive overview of a non-parametric probabilistic approach of model uncertainties
for predictive models in structural dynamics, Journal of Sound and Vibration, Vol. 288, No. 1, (2005),
pp. 623-652.

[3] C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Journal of
Sound and Vibration, Vol. 194, No. 1, 1333-1366, (2004), pp. 1333-1366.

[4] R.H. Lyon, Statistical Energy Analysis of Dynamical Systems, MIT Press (1975), San Diego.

[5] R.H. Lyon, Statistical Theory and application of statistical energy analysis, 2nd edition, Butterworth-
Heinemann (1995), Boston, MA.

[6] F.J. Fahy, A.D. Mohammed, A study of uncertainty in applications of SEA to coupled beam and plate
systems, partI : Computational experiments, Journal of Sound and Vibration, Vol. 158, No. 1, (1992),
pp. 45-67.

[7] R.S. Langley, P.Bremner, A hybrid method for the vibration analysis of complex structural-acoustic
systems, Acoustical Society of Smerica , Vol. 105, No. 3, (1999), pp. 1657-1671.

[8] L. Maxit, J.-L. Guyader, Extention of SEA model to subsystems with non-uniform modal energy distri-
bution, Journal of Sound and Vibration, Vol. 265, No. 1,(2003), pp. 337-358.

[9] R.S. Langley, A.W.M. Brown, The ensemble statistics of the band-avaraged energy of random system,
Journal of Sound and Vibration, Vol. 275, No. 1, (2004), pp. 847-857.

[10] R.S. Langley, V. Cotoni, Response variance prediction in the statistical energy analysis of built up
systems, Acoustical Society Of America, Vol. 115, No. 2, (2004), pp. 706-718.

[11] P.J. Shorter, R.S. Langley, Vibroacoustic analysis of complex systems, Journal of Sound and Vibration,
Vol. 288, No. 1, (2005), pp. 669-699.

[12] V. Cotoni, R.S. Langley, M.R.F. Kinder, Numerical and experimental validation of variance prediction
in the statistical energy analysis of built-up systems, MJournal of Sound and Vibration, Vol. 288, No. 1,
(2005), pp. 701-728.

[13] N. Totaro, J.L. Guyader, SEA substructuring using cluster analysis : The MIR index, Journal of Sound
and Vibration, Vol. 290, No. 1, (2006), pp. 264-289.

[14] G. Orefice, C. Caccilati, J.L. Guyader, The energy mobility, Journal of Sound and Vibration, Vol. 290,
No. 1, (2006), pp. 264-289.

[15] R. Ohayon, C. Soize, Structural Acoustics and Vibrations, Academic Press(1998), San Diego.

[16] J.F. Durand, C. Soize, L. Gagliardini, Structural-acoustic modeling of automotive vehicles in presence
of uncertainties and experimental identification and validation, Journal of Acoustical Society of Ame-
rica, 2008.

[17] J.F. Durand, Modélisation de véhicules automobiles en vibroacoustique numérique avec incertitudes de
modélisation et validation expérimentale, Phd Theses, Université de Marne-la-Vallée, France(2007).

[18] L. Gagliardini, L. Houillon, G. Borello, L. Petrinelli, Virtual SEA- FEA based modeling of mid-
frequency structure-borne noise, Journal of Sound and Vibration, Vol. 39, No. 1, Academic Press (2005),
pp. 22-28.



[19] Y.K. Koh, R.G. White, Analysis and control of the vibrational power transmission to machinery sup-
porting structures subjected to a multi-excitation system, partI : Driving point mobility matrix of beams
and rectangular plates, Journal of Sound and Vibration, Vol. 196, No. 4, Academic Press (2007), pp.
469-493.

[20] R.J. Serfling, Approximation Theorems of Mathematical Statistics, John Wiley & Sons (1980), New
york.


