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Abstract
One proposes a novel approach to model sound-insulation layers based on the use of the fuzzy structure

theory which presents the advantage to account for variability as well as no addition of DOF in computational

models. The keypoint of the method is the construction of a mean elastoacoustic sound-insulation layer

model whose parameters are simply the modal density, the coefficient of participating mass and the damping

coefficient. In this paper, the detailed construction of the mean model and an identification methodology

of the mean parameters are presented. The modal density is identified from a stand-alone detailed finite

element model of the sound-insulation layer. The coefficient of participating mass is then obtained by solving

an inverse problem which is formulated as an optimization problem. Finally, the theory is validated with

experiments for a vibroacoustic system made up of a steel plate connected to an elastic framework on its

edges, covered with a sound-insulation layer and coupled with a bounded acoustic cavity.

1 Introduction

This paper deals with the construction of a simplified model of sound-insulation layers required for com-

putational vibroacoustic simulation of complex systems in low- and medium-frequency ranges. The sound-

insulation layer is assumed to behave as a resonant continuous dynamical system in the frequency band of

analysis. In this paper, we will not consider the high-frequency range for which other phenomena appear. For

such a modelling in the low- and medium-frequency ranges, a usual approach consists in modelling a sound-

insulation layer as a poro-elastic medium using the Biot theory ; the finite element method is then classicaly

used to solve the associated boundary value problem. In this case, both vibroacoustic system and sound-

insulation layers are modelled by the finite element method (see for instance Refs. [1, 2, 3, 4, 5, 6, 7, 8]).

When the first thickness eigenfrequencies belong to the frequency band of analysis, as assumed here, such a

finite element model of sound-insulation layer requires a large number of physical degrees of freedom (DOF)

in the computational model and introduces numerous elastic modes in the band. The size of the associated

reduced computational model can then be very large. For instance, in a car booming noise analysis (fre-

quency range [20, 200] Hz later referred as low-frequency range), the finite element model may involve up

to two millions of DOF for the structure and the reduced model requires about one thousand elastic modes.

If the sound-insulation layers were modelled by the finite element method, an additional number of about

five millions of DOF would be necessary. Twenty thousand additional elastic modes then appear in the re-

duced computational model exceeding the limits of current computational ressources. Consequently, there is

a great interest to construct simplified sound-insulation layer models without adding neither physical DOF

nor generalized DOF. Representing the sound-insulation layer by an adapted wall impedance can be a way to

avoid the increase of DOF number (see for instance Refs. [9, 10, 11, 12, 13] for the notion of wall impedance

in vibroacoustics). A great number of publications has been devoted to this subject in the last three decades.



It should be noted that the largest part of these works deals with the medium- and high-frequency ranges,

where the sound-insulation layer behavior differs from the lower frequency range that is investigated here.

Since the objective of this paper is not to give a state of the art on this particular topic, we simply refer to a

few papers such as Refs. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

In this paper, an alternate construction to the finite element approach or to the usual wall impedances is pre-

sented. Firstly, this construction does not increase the number of physical and generalized DOF in the com-

putational vibroacoustic model. Secondly, it does not involve the poroelastic equations because the sound-

insulation layers considered here have a rather simple dynamic behavior which does not require advanced

material modelling. As explained above, in the frequency band of analysis, the simplified model can be origi-

nated from a single DOF dynamical system. Due to the actual variability of thicknesses, curvature and mate-

rials properties, the sound-insulation layer is considered as complex and therefore, a statistical description of

its internal dynamical DOF is proposed. We are naturally leaded to use the fuzzy structure theory [24] which

fits this framework and has already been validated. A representation of the sound-insulation layer based on

the fuzzy structure theory benefits from an understandable interpretation of complex dynamical systems be-

havior. It is simply characterized by a few physical parameters: the participating mass, the modal density and

the internal damping rate. The fuzzy structure theory was introduced twenty years ago in order to model the

effects on a master structure of complex subsystems imprecisely known (see Refs. [24, 25, 26, 27, 28]). This

theory is developed in the context of the probability theory which is well adapted to this kind of problem

that carries many uncertainties (geometry, material and boundary conditions). Many other works have been

developed in this field, completing the initial construction (see Refs. [29, 30, 31, 32, 33, 34, 35, 36, 37]).

Most of these developments are related to complex structural subsystems coupled to a master vibroacoustic

system. No attempt has been performed to develop a specific sound-insulation layer model using the fuzzy

structure theory. The known results have to be extended in order to build an elastoacoustic element. That is

the aim of this paper.

Section 2 is devoted to the construction of a simplified mean model of the sound-insulation layer using

the fuzzy structure theory. Since this model is a part of the complex vibroacoustic system, the complete

vibroacoustic model is presented. Section 3 deals with the finite element approximation which allows a

computational vibroacoustic mean model to be constructed. In Section 4, we present the first step of the

methodology performing the experimental identification of the mean parameters of the sound-insulation

layer simplified model. Finally, Section 5 deals with the prediction of the system’s vibroacoustic response

using the previously identified computational mean model.

2 CONSTRUCTION OF A SIMPLIFIED MEAN MODEL OF THE SOUND-

INSULATION LAYER USING THE FUZZY STRUCTURE THEORY IN

A VIBROACOUSTIC SYSTEM

2.1 Definition of the vibroacoustic system

The physical space  
3

is referred to a cartesian system for which the generic point is denoted by x =
(x1, x2, x3). The Fourier transform with respect to time t is denoted by u(ω) =

∫
 

e−iωtu(t) dt. The vi-

broacoustic system is analyzed in the frequency band ! = [ωmin, ωmax]. The structure occupies a three-

dimensioned bounded domain Ωs and is modelled by a nonhomogeneous anisotropic viscoelastic material.

The boundary of Ωs is written as ∂Ωs = Γs ∪ Γ0 ∪ Γ1 ∪ Γ2 (see Fig.1.a) and the outward unit normal

to ∂Ωs is ns(x). The structure is fixed on Γ0, a surface force field gsurf(x, ω) is given on Γ1 and a body

force field gvol(x, ω) is given in Ωs. The acoustic cavity Ωa is filled with a dissipative acoustic fluid, its

boundary is written as ∂Ωa = Γ ∪ Γ2 and the inward unit normal to ∂Ωa is n(x) (note that n(x) = ns(x)
on Γ2 and that without sound-insulation layer, the coupling surface ∂Ωa between the structure and the ca-

vity would be Γs ∪ Γ2). A sound-insulation layer which occupies a bounded domain Ωh with boundary

∂Ωh = Γ ∪ Γs is attached to the part Γs of the boundary of the structure (see Fig.1.a). Let x 7→ us(x, ω) =



Ω

Ω

Γ

Γ

Γ

n

n=n

n
n

Γ

Ω

h

a

Γ1

s

2

s

s

s

0

s

Ω

Ω

Ω

Γ

n(x)

p(x,   )
Γ

s

s
x

s sn (x)

ω

ω

ω

s

h

a

u (x,   )

u(x,   )

f (x,   )
ω

a) Structural-acoustical problem (Color online) b) Sound-insulation layer modelling (Color online)

FIG. 1 – Sketches

(us
1(x, ω), us

2(x, ω), us
3(x, ω)) be the structural displacement field defined on Ωs with values in  

3
and

which is equal to zero on Γ0. Let x 7→ p(x, ω) be the pressure field inside Ωa with value in  for which the

value on ∂Ωa = Γ ∪ Γ2 is still denoted by p(x, ω). Let x 7→ uh(x, ω) = (uh
1(x, ω), uh

2(x, ω), uh
3(x, ω))

be the sound-insulation layer displacement field defined on Ωh with values in  
3

whose value on interface

Γ is still denoted by x 7→ uh(x, ω). Finally, we need to introduce the admissible spaces for the three fields

of the problem. Let Cs
0 be the space of the admissible displacement fields of the structure such that us = 0

on Γ0, let Ca be the space of the admissible pressure fields in the acoustic cavity and Ch be the space of the

admissible displacement fields of the sound-insulation layer.

2.2 Coupling force fields

The coupling force field on boundary Γs that the structure exerts on the sound-insulation layer is denoted

by x 7→ f s(x, ω) = (fs
1 (x, ω), fs

2 (x, ω), fs
3 (x, ω)) and can be written for all x fixed in Γs as f s(x, ω) =

fs(x, ω)ns(x)+f s
tang(x, ω). It is assumed that the tangential force field f s

tang(x, ω) exerted by the structure

on the sound-insulation layer is equal to zero. This hypothesis is reasonable in vibroacoustics for the majority

of the cases met in the technologies such as the ones used in the automotive industry. Consequently, we have

f s(x, ω) = f s(x, ω)ns(x) . (1)

Note that dimension of fs
i (x, t) is [M][L]−1[T]−2. The coupling force field x 7→ fp(x, ω) =

(fp
1 (x, ω), fp

2 (x, ω), fp
3 (x, ω)) on boundary ∂Ωa = Γ ∪ Γ2 that the acoustic fluid exerts on the structure

(interface Γ2) and the sound-insulation layer (interface Γ) is written as,

fp(x, ω)ds(x) = −p(x, ω)n(x)ds(x) (2)

in which ds is the surface element on ∂Ωa. The equations of the boundary value problem for the vibroacoustic

system made up of the structure coupled with an internal acoustic cavity and with the sound-insulation layer

are given in Appendix A. Eqs. (41), (42) and (43) are the equations for the structure, the acoustic cavity and

the sound-insulation layer. There are coupling terms in these three equations. In particular, the coupling term

between the sound-insulation layer and the structure in the Eq. (41) of the structure is represented by the

term c
Γs

(δus;ω) ; the coupling term between the sound-insulation layer and the acoustic cavity in Eq. (42)

of the acoustic cavity is represented by the term c
Γ
(uh, δp). The principle of construction of the simplified

model for the sound-insulation layer consists in replacing Eq. (43) by a simplified model obtained in using

the fuzzy structure theory[24, 26, 27] for which a synthesis is given in Ref [13]. This means that the two

coupling terms c
Γs

(δus; ω) and c
Γ
(uh, δp) have to be expressed as a function of us and p using the fuzzy

structure theory. This theory consists (1) in introducing an underlying deterministic dynamical model (see



Section 2.3), (2) in introducing a probabilistic model of the eigenfrequencies of this dynamical model (see

Section 2.4) and (3) in performing a statistical averaging (see Section 2.5).

2.3 Definition of the underlying deterministic model for the fuzzy structure

We introduce the following hypothesis for the sound-insulation layer (see Fig.1.b): the surfaces Γ and Γs are

assumed to be geometrically equivalent and consequently, for all x in Γs ≃ Γ, ns(x) ≃ n(x). The normal

component to Γs of the structural displacement field is

ns(x).us(x, ω) = ws(x, ω) , x ∈ Γs . (3)

The normal component to Γ of the displacement field of the sound-insulation layer is

n(x).uh(x, ω) = w(x, ω) (4)

in which n(x) ≃ ns(x), for x ∈ Γs ≃ Γ. Using the first step of the fuzzy structure theory and taking

into account the hypothesis introduced in Section 2.2, the underlying deterministic model is made up of

a density of damped linear oscillators acting in the normal direction to Γ. For a fixed frequency ω and

for a fixed x in Γs, the displacement of the base of an oscillator is ws(x, ω) and the displacement of its

mass µ(x, ω) > 0 is w(x, ω). The mass density µ(x, ω) ([M][L]−2) is distributed on Γ. The corresponding

stiffness density k(x, ω) associated with this oscillator is k(x, ω) = µ(x, ω)ω2
p(x, ω) where ωp(x, ω) > 0

is the eigenfrequency (rad.s−1) of the undamped linear oscillator with fixed base. The damping rate of

this oscillator is denoted by ξ(x, ω). Let f s(x, ω) be the force applied to the base of this oscillator and

corresponding to the force density induced by the structure on the sound-insulation layer (see Eq. (1)). Let

fp(x, ω) be the force applied to the mass of the oscillator and corresponding to the force density induced by

the acoustic pressure p(x, ω) on the sound-insulation layer (see Eq. (2)). Removing x and ω for brevity, the

equation of this oscillator is written as

µ

[ −ω2 + 2iωξωp + ω2
p −2iωξωp − ω2

p

−2iωξωp − ω2
p 2iωξωp + ω2

p

] [
w(x, ω)

ws(x, ω)

]
=

[ −p(x, ω)

fs(x, ω)

]
. (5)

For all ω in  , from Eq. (5), it can be deduced that

w(x, ω) = ac(x, ω)ws(x, ω) +
1

ω2
aa(x, ω)p(x, ω) , (6)

fs(x, ω) = as(x, ω)ws(x, ω) + ac(x, ω)p(x, ω) (7)

in which

as(x, ω) =
−ω2 µ(x, ω) (2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2)

−ω2 + 2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2
, (8)

aa(x, ω) =
−ω2/µ(x, ω)

−ω2 + 2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2
, (9)

ac(x, ω) =
2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2

−ω2 + 2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2
. (10)

As explained in Section 2.2, we have to express the two terms c
Γ
(uh, δp) and c

Γs
(δu; ω). Using Γ ≃ Γs,

substituting Eq. (4) into c
Γ
(uh, δp) defined by Eq. (39), substituting Eq. (6) again into Eq. (39) and using

Eq. (3) yield

ω2c
Γ
(uh, δp) = ω2

∫

Γs

ac(x, ω)ns(x).us(x, ω) δp(x) ds(x) +

∫

Γs

aa(x, ω) p(x, ω) δp(x) ds(x) .

(11)



Substituting Eq. (1) into c
Γs

(δu; ω; ω) defined by Eq. (40), substituting Eq. (7) again into Eq. (40) and using

Eq. (3) yield

c
Γs

(δus;ω) =

∫

Γs

as(x, ω) (ns(x).us(x, ω))(ns(x).δus(x))ds(x)

+

∫

Γs

ac(x, ω)p(x, ω) (ns(x).δus(x)) ds(x) . (12)

2.4 Probabilistic model of the eigenfrequency of the oscillators

The second step of the fuzzy structure consists in modelling ωp(x, ω) by a random variable Ωp(x, ω). In

this section, we then introduce the random bilinear form associated with c
Γ
(uh, δp) and the random linear

form associated with c
Γs

(δus; ω) defined by Eqs. (11) and (12). For all ω in  , we choose to represent

µ(x, ω) and ξ(x, ω) by their mean values µ(x, ω) = µ(ω) > 0 and ξ(x, ω) = ξ(ω) where ω 7→ µ(ω) and

ω 7→ ξ(ω) are two deterministic functions independent of x with 0 < ξ(ω) < 1. The mean participating

mass can be written [24, 26, 27] as µ(ω) = ν(ω)mtot/|Γs| where 0 ≤ ν(ω) ≤ 1 is the mean coefficient of

participating mass, mtot is the total mass of the density of oscillators and |Γs| is the measure of surface Γs. It

should be noted that if there are several sound-insulation layers with different values of parameters µ and ξ,

domain Ωh is subdivised into several subdomains and thus, their parameters have to be constant with respect

to x in every subdomain. For all x fixed in Γs and ω fixed in  , the eigenfrequency ωp(x, ω) is modelled

by a positive random variable Ωp(x, ω) whose probability distribution PΩp(x;ω)(dωp, ω) is assumed to be

independent of x and is defined by the probability density function pΩp(x;ω)(ωp, ω) with respect to dωp, such

that [24, 26]

pΩp(x;ω)(ωp, ω) = ℓ(ω)![a(ω),b(ω)](ωp) , (13)

with !B(x) = 1 if x ∈ B and = 0 if x /∈ B and where

a(ω) = sup

{
0, ω − 1

2n(ω)

}
, b(ω) = ω +

1

2n(ω)
, ℓ(ω) =

1

b(ω) − a(ω)
(14)

in which n(ω) is the mean modal density of the sound-insulation layer. In order to better explain the

meaning of parameters n(ω) and µ(ω), we define them in the simplest case for which the fuzzy struc-

ture Ωh would be made up of Nosc oscillators uniformly distributed in the frequency band  and uni-

formly distributed on surface Γs. In this case, the mass of each oscillator would be mosc. Consequently,

the total mass of the fuzzy structure would be mtot = Noscmosc and for all x in Γs, we would have

µ(x, ω) = µ(ω) =
√

Noscmosc/|Γs|,
∫
 

n(ω)dω =
√

Nosc and
∫
 

µ(ω)n(ω)dω = mtot/|Γs|. Coming

back to the general case, for all x fixed in Γs and ω fixed in  , the coefficients as(x, ω), aa(x, ω) and

ac(x, ω) defined by Eqs. (8), (9) and (10) become random variables denoted by As(x, ω), Aa(x, ω) and

Ac(x, ω). For all us and δus in Cs
0 and for all p and δp in Ca, the forms c

Γ
(uh, δp) and c

Γs
(δus; ω) de-

fined by Eqs. (11) and (12) become random variables which are rewritten in terms of us, p, δus and δp as

C
Γ
(us, p, δp; ω) and C

Γs
(us, p, δus; ω) and which are such that

ω2C
Γ
(us, p, δp;ω) = ω2

∫

Γs

Ac(x, ω) ns(x).us(x, ω) δp(x) ds(x) +

∫

Γs

Aa(x, ω) p(x, ω) δp(x) ds(x)

(15)

and

C
Γs

(us, p, δus;ω) =

∫

Γs

As(x, ω) (ns(x).us(x, ω)) (ns(x).δus(x)) ds(x)

+

∫

Γs

Ac(x, ω)p(x, ω) (ns(x).δus(x)) ds(x) . (16)



2.5 Statistical averaging and simplified mean model of the sound-insulation layer

The last step of the fuzzy structure theory consists in defining the simplified mean model taking the statistical

averaging of random variables C
Γ
(us, p, δp;ω) and C

Γs
(us, p, δus;ω) defined by Eqs. (15) and (16). As we

have explained in section 2.2, the simplified mean model thus consists in replacing the two coupling terms

c
Γ
(uh, δp) and c

Γs
(δus; ω) by c

Γ
(us, p, δp;ω) and c

Γs
(us, p, δus; ω) such that,

c
Γ
(us, p, δp; ω) = E{C

Γ
(us, p, δp; ω)} , (17)

c
Γs

(us, p, δus; ω) = E
{
C

Γs
(us, p, δus;ω)

}
(18)

in which E is the mathematical expectation. Analyzing Eqs. (15) and (16) leads us to introduce the following

deterministic bilinear forms bs(us, δus) on Cs
0 × Cs

0, cs(p, δus) on Ca × Cs
0 and ba(p, δp) on Ca × Ca,

bs(us, δus) =

∫

Γs

(ns(x).us(x)) (ns(x).δus(x)) ds(x) , (19)

cs(p, δus) =

∫

Γs

p(x) (ns(x).δus(x)) ds(x) , (20)

ba(p, δp) =

∫

Γs

p(x) δp(x) ds(x) . (21)

From Eqs. (15) and (16) and using Eqs. (17) and (18) with Eqs. (13) to (14) yield

ω2c
Γ
(us, p, δp; ω) = ω2ac(ω) cs(δp, us) + aa(ω) ba(p, δp) , (22)

c
Γs

(us, p, δus;ω) = as(ω) bs(us, δus) + ac(ω) cs(p, δus) (23)

in which

as(ω) = −ω2as
R(ω) + iωas

I(ω) , (24)

aa(ω) = aa
R(ω) + iωaa

I (ω), (25)

ac(ω) = ac
R(ω) + iac

I(ω) , (26)

with

as
R(ω) = µ(ω)n(ω)

[
1

n(ω)
− ω λ(ω) Θ

R
(ω)

]
, as

I(ω) = µ(ω)n(ω) ω2λ(ω) Θ
I
(ω) , (27)

aa
R(ω) = ω n(ω)

λ(ω)

µ(ω)
Θ

R
(ω) , aa

I (ω) = n(ω)
λ(ω)

µ(ω)
Θ

I
(ω) , (28)

ac
R(ω) = 1 − ω n(ω)λ(ω) Θ

R
(ω) , ac

I(ω) = −ω n(ω)λ(ω) Θ
I
(ω) . (29)

In these equations, the functions λ, Θ
R

and Θ
I

are defined in Appendix B. We then deduce the simplified

mean model of the sound-insulation layer : Find us in Cs
0 and p in Ca such that, for all δus in Cs

0 and δp in

Ca, we have

∣∣∣∣∣∣

−ω2ms(us, δus) + iω ds(us, δus;ω)
+ks(us, δus;ω) + c

Γ2
(δus, p)

+as(ω)bs(us, δus) + ac(ω)cs(p, δus) = ls(δus;ω)

∣∣∣∣∣∣
︸ ︷︷ ︸

STRUCTURE

∣∣∣∣∣∣

−ω2ma(p, δp) + iω da(p, δp; ω) + ka(p, δp)
+ω2c

Γ2
(us, δp) + ω2ac(ω)cs(δp, us)

+aa(ω)ba(p, δp) = la(δp; ω)

∣∣∣∣∣∣
︸ ︷︷ ︸

ACOUSTIC CAVITY
(30)

in which the bilinear forms bs, cs and ba are defined by Eqs. (19), (20) and (21) and where ms, ds, ks, ma,

da, ka and c
Γ2

are defined by Eqs. (44) to (47).



3 COMPUTATIONAL VIBROACOUSTIC MEAN MODEL

The finite element discretization [38, 13] of the system of equations (30) yields the following matrix equation

on  
ms ×  ma defined by Eqs. (15) and (16),

[
[As(ω)]+as(ω)[Bs] [C] + ac(ω)[Cs]

ω2
{
[C]T +ac(ω)[Cs]T

}
[Aa(ω)] + aa(ω)[Ba]

][
us(ω)

p(ω)

]
=

[
!

s(ω)

!

a(ω)

]
, (31)

where [As(ω)] is a complex (ms × ms) matrix such that

[As(ω)] = −ω2 [Ms] + iω [Ds(ω)] + [Ks(ω)] (32)

in which [Ms], [Ds(ω)] and [Ks(ω)] are the mass, damping and stiffness matrices of the structure in vacuo.

In Eq. (31), [Aa(ω)] is a complex (ma × ma) matrix,

[Aa(ω)] = −ω2 [Ma] + iω [Da(ω)] + [Ka] (33)

in which [Ma], [Da(ω)] and [Ka] are the “mass”, “damping” and “stiffness” matrices of the acoustic ca-

vity with rigid walls. The real (ms × ma) matrix [C] is the usual vibroacoustic coupling matrix relative to

boundary Γ2 (which is without sound-insulation layer). The matrices [Bs], [Cs] and [Ba] correspond to the

finite element approximation of the bilinear forms defined by Eqs. (19), (20) and (21) respectively. Using ns

structural elastic modes in vacuo and na acoustic modes of the cavity with rigid walls including the constant

pressure mode, the mean reduced matrix model of the vibroacoustic system is written as

us(ω) = [Φs]qs(ω) , p(ω) = [Φa]qa(ω) , (34)

[
[As(ω)] + as(ω)[Bs] [C] + ac(ω)[Cs]

ω2
{
[C]T + ac(ω)[Cs]T

}
[Aa(ω)] + aa(ω)[Ba]

][
qs(ω)

qa(ω)

]
=

[
f s(ω)

fa(ω)

]
(35)

in which [Φs] is the (ms × ns) real matrix of the structural modes, [Φa] is the (ma × na) real matrix

of the acoustic modes, [C] is the (ns × na) generalized vibroacoustic coupling matrix, as(ω)[Bs] is the

(ns ×ns) generalized matrix, ac(ω)[Cs] is the (ns ×na) generalized matrix and aa(ω)[Ba] is the (na ×na)
generalized matrix corresponding to the vibroacoustic coupling induced by the sound-insulation layer. The

(ns × ns) matrix [As(ω)] and the (na × na) matrix [Aa(ω)] are written as

[As(ω)] = −ω2 [M s] + iω [Ds(ω)] + [Ks(ω)] , (36)

[Aa(ω)] = −ω2 [Ma] + iω [Da(ω)] + [Ka] (37)

in which [M s], [Ds(ω)] and [Ks(ω)] are the generalized mass, damping and stiffness matrices of the structure

and [Ma], [Da(ω)] and [Ka] are the generalized “mass”, “damping” and “stiffness” matrices of the acoustic

cavity.

4 EXPERIMENTAL IDENTIFICATION OF THE MEAN PARAMETERS

OF THE FUZZY STRUCTURE MODEL FOR THE SOUND-INSULATION

LAYER - DESIGN METHODOLOGY PART 1

We propose to validate the simplified mean model of the sound-insulation layer by using experiments. The

methodology used is the following:

(1) We consider a structure for which the experimental frequency response functions (FRF) are measured

on frequency band ".



(2) A sound-insulation layer is laid on this structure and the experimental FRF are measured again for the

structure coupled with the sound-insulation layer.

(3) A mean computational model of the structure is developed and the model is updated using the experi-

mental FRF measured in point (1) above.

(4) A mean computational model of the structure coupled with the sound-insulation layer is developed

using the updated mean computational model of the structure and the simplified mean model of the sound-

insulation layer. This simplified model provided by the fuzzy structure theory depends on unknown para-

meters ξ(ω), n(ω) and ν(ω) that we propose to identify using the experimental FRF measured in point (2)

above. The following methodology is carried out:

(4.i) Over all the frequency band  , the mean damping rate ξ of the fuzzy part is assumed to be inde-

pendent of ω and is fixed to its estimated value corresponding to the damping rate at the first experimental

eigenfrequency.

(4.ii) The mean modal density n(ω) is obtained by performing a modal analysis with a very fine mesh

finite element model of the sound-insulation layer embedded on its base. We then calculate the mean number

N(ω) of eigenfrequencies in the frequency band [0, ω] and then, by a numerical derivative, we deduce the

mean modal density n(ω) which is such that N(ω) =
∫ ω

0 n(α)dα. The first eigenfrequency for which the

mean modal density is different from zero is defined as the cut-off frequency ΩC . This cut-off frequency can

be viewed as the frequency for which the sound-insulation layer begins to act as a power flow transmitter due

to its own thickness resonances (the internal dynamical resonances taken into account by the fuzzy structure

theory).

(4.iii) We introduce the quantity Π(ω) = n(ω)ν(ω). Over all the frequency band of analysis , the parame-

ter Π(ω) is experimentally identified by solving an inverse problem which is formulated as an optimization

problem.

(4.iv) For ω ≥ ΩC , the coefficient of participating mass ν(ω) is deduced from the equation ν(ω) =
Π(ω)/n(ω) in which n(ω) is calculated from point(4.ii) above.

(4.v) For ω ≤ ΩC , we consider that the sound-insulation layer is equivalent to an added mass for which the

coefficient of participating mass is then taken equal to 1 and with a dissipation due to the Joule effect. Theo-

retically, the modal density n(ω) is zero for ω ≤ ΩC . Nevertheless, in order to obtain continuous functions

in ω on  for as, aa and ac (defined by Eqs (24), (25), (26)) and since the coefficient of participating mass

ν(ω) = 1, we deduce the value of the mean modal density from the equation n(ω) = Π(ω)/ν(ω) = Π(ω).

4.1 Experimental configuration and measurements

The experimental configuration is made up of a homogeneous, isotropic and slightly damped thin plate (steel

plate with a constant thickness) connected to an elastic framework on its edges. This structure is set horizon-

tally and is hung up by four soft springs in order to avoid rigid body modes. The highest eigenfrequency of

suspension is 9 Hz while the lowest elastic mode of the structure is 43 Hz. The excitation is a point force

applied to the framework and excites the dynamical system mainly in bending mode in the frequency band

of analysis  =]0, 300] Hz. The number of sampling frequencies is nfreq = 300. The frequency resolu-

tion is ∆f = 1 Hz. Only one experiment is performed for this structure. The frequency response functions

ω 7→ γexp
i (ω) are identified on frequency band  for nobs = 60 normal accelerations in the plate mea-

sured with a laser velocimeter. We then construct the following experimental frequency response function,

ω 7→ rexp(ω) = 10 log10

(∑nobs

i=1 |γexp
i (ω)|2

)
.

4.2 Experimental updating of the mean model of the structure without sound-
insulation layer

The mean computational model of the structure is made up of a finite element model having ms = 57, 768
structural DOF. The reduced mean computational model is constructed with ns = 240 structural modes. The
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a) System without the sound-insulation layer b) System with sound-insulation layer

FIG. 2 – Graphs of ω 7→ r(ω) (thin solid line) and ω 7→ rexp(ω) (thick solid line)

mean computational model has been updated with respect to the Young modulus, the mass density and the

damping rate of the plate and of the elastic framework using the experimental eigenvalues corresponding to

the two first elastic modes and the ninth elastic mode (first elastic torsion mode) of the structure. The updated

mean computational model will simply be called below the mean computational model. We introduce the

function ω 7→ r(ω) = 10 log10

(∑nobs

i=1 |γi(ω)|2
)
. Figure 2.a shows the comparison between the experimental

measurements and the updated FRF of the mean computational model for the structure without the sound-

insulation layer.

4.3 Experimental Identification of the parameters of the simplified model of the
sound-insulation layer using a design methodology

A similar experimentation to the experiments described in section 4.2 has been carried out when the struc-

ture is coupled with the sound-insulation layer which is made up of a heterogeneous, anisotropic, poroelastic

foam and of a heavily damped septum (EPDM). The sound-insulation layer is laid on the plate and is not

connected to the elastic framework. The reduced mean computational model is written (see Eq. (35)) as

[As(ω) + as(ω)[Bs]] qs(ω) = f s(ω). We use this reduced mean computational model to identify the three

parameters ξ, n(ω) and ν(ω) of the simplified model of the sound-insulation layer for ω in . The methodoly

used is the following:

(4.3.1) As previously explained, the mean modal density is calculated using a refined finite element mo-

del of the sound-insulation layer (33, 210 DOF for the foam and 13, 284 DOF for the septum ; there are

N = 1900 elastic modes in the frequency band [0, 450] Hz). The cut-off frequency ΩC and the mean modal

density n(ω) are then deduced in the frequency band  . We obtain ΩC = 67 × 2π rad.s−1 and the graph

of the smoothed function ω 7→ n(ω) is given in Fig.3.a for frequency band  . It should be noted that the

modal density increases in the frequency band [250 , 300] Hz (it can also be seen in Fig.3.b this increase in

the frequency band [300, 450] Hz).

(4.3.2) In the frequency band ]0, ΩC ], we remind that the sound-insulation layer is equivalent to an added

mass and to a dashpot. The expression for the fuzzy coefficient as(ω) is then as(ω) = −µω2 + 2iωµ ξΩC ,

for ω ≤ ΩC . As explained in point (4.i) above, ξ is experimentally identified as the damping rate of the

first elastic eigenmode of the structure with the sound-insulation layer. The identified value is ξ = 0.01 and

µ = 5.9 kg.m−2 .

(4.3.3) We have chosen to directly identify the function ω 7→ Π(ω) as explained in point (4.iii) above.

The optimization problem consists in minimizing the distance between the model and the experiments for

the FRF ω 7→ r(ω; Π(ω)) = 10 log10

(∑nobs

i=1 |γi(ω; Π(ω))|2
)
. Figure 3.b displays the graph of the identified

function ω 7→ Π(ω) on the frequency band [0,450] Hz. It should be noted that we have not used an explicit
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expression for ω 7→ Π(ω) such as the prototype mass-natural-frequency-distribution proposed in Ref [29].

In fact, Fig.3.b shows that the graph of ω 7→ Π(ω) which has experimentally been identified cannot be fitted

by a Rayleigh distribution.

(4.3.4) In the frequency band [ωmin; ΩC ], we have ν(ω) = 1 and the modal density n(ω) which is theoreti-

cally equal to zero is in fact estimated as explained in point (4.v) above and yields a modal density which is

very small but not exactly zero. In the frequency band [ΩC , ωmax], we use the calculated mean modal density

n(ω) and the mean damping rate ξ in order to identify the mean coefficient of the participating mass ν(ω)
as explained in point (4.iv) above. Figure 4 displays the updated mean coefficient ν(ω) of the participating

mass and Fig.2.b shows the comparison between the experimental FRF and the FRF of the mean computa-

tional model for the structure with the sound-insulation layer calculated with the parameters experimentally

identified.

(4.3.5) The use of the structural part of the vibroacoustic model allows the identification of the mean pa-

rameters ν(ω), ξ and n(ω). It should be noted that this identification allows not only the coefficient as(ω)
to be identified but also the coefficients ac(ω) and aa(ω). Therefore, we only need the structural part of the

vibroacoustic model to identify all of the mean computational simplified model of the sound-insulation layer

(i.e. the structural, the coupling and the acoustic parts).

5 Prediction of the vibroacoustic responses with the identified com-

putational stochastic model

In this section, we use the identified computational stochastic model to predict a vibroacoustic response. The

response of the identified model is compared to a reference solution calculated with a commercial software.

The structure and the sound-insulation layer models are defined in Section 4. The sound-insulation layer is

coupled with a parallelepipedic acoustic cavity (ma = 23, 354 DOF and na = 67 modes) which is assumed

to be without uncertainties and which is filled with air. We observe the pressure at mobs = 120 points in the

acoustic cavity while the excitation force is applied to the elastic framework of the structure as in Section 4.
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FIG. 5 – Graphs of ω 7→ ra(ω) for the reference solution without sound-insulation layer (thin solid line) and

with sound-insulation layer (thick solid line)

We then compute the FRF ω 7→ ra(ω) relative to the acoustic cavity and Fig.5 displays its graph for the mean

acoustic system with and without the sound-insulation layer. It can be seen that the two graphs match pretty

well in the frequency band [0, 200] Hz. This is a mean model obtained with the use of simplifications which

introduce model uncertainties. In order to improve the prediction, it should be implemented a probabilistic

model of uncertainties.

6 Conclusion

In this paper, a new extension of the fuzzy structure theory to elastoacoustic element is presented in order to

construct a simplified model of sound-insulation layers. Such a simplified model, based on an extension of the

fuzzy structure theory, (1) allows the dynamics of the sound-insulation layer to be taken into account without

increasing the number of DOF in the computational vibroacoustic model and (2) allows a representation of

the sound-insulation in terms of physical parameters such as its participating mass, its modal density and

its internal damping rate to be obtained. This approach allows several kinds of sound-insulation layers to

be simultaneously taken into account in the computational vibroacoustic model of a complex system such

as a car with a very small increase of the computational cost. The complete related developments are given

and an experimental validation is presented. Finally, an efficient design methodology is proposed to identify

the parameters of the simplified model of the sound-insulation layer. The mean parameters are identified

by solving an inverse problem formulated as an optimization problem using an experimental database. This

methodology can be generalized to any kind of sound-insulation layer presenting internal resonances. In

order to make the predictions more robust, it can be implemented a non-parametric probabilistic model of

uncertainties. Such a modelling can address not only data uncertainties but also model uncertainties. That

work has been made in [40] only for a structure coupled with a sound-insulation layer without acoustic

cavity.
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A Formulation of the vibroacoustic problem with a sound-insulation

layer

In this section, we give additional explanations relative to Section 2 useful for the construction of the sim-

plified model of the sound-insulation layer. Let Cs
0 be the space of the admissible displacement fields of the

structure, Ca be the space of the admissible pressure fields in the acoustic cavity and Ch be the space of

the admissible displacement fields of the sound-insulation layer. For all ω in  , we introduce the following

bilinear form defined on Cs
0 × Ca,

c
Γ2

(us, p) =

∫

Γ2

us(x).ns(x) p(x) ds(x) , (38)

the bilinear form defined on Ch × Ca,

c
Γ
(uh, p) =

∫

Γ
uh(x).n(x) p(x) ds(x) , (39)

and the linear form defined on Cs
0 or Ch,

c
Γs

(u; ω) =

∫

Γs

f s(x, ω)u(x) ds(x) . (40)

The weak formulation of the vibroacoustic boundary value problem is formulated as follows (see Ref. [13]).

For all ω in  , find (us, p,uh) in Cs
0 ×Ca ×Ch such that for all (δus, p, δuh) in Cs

0 ×Ca ×Ch, we have, for

the structure,

− ω2ms(us, δus) + iω ds(us, δus; ω) + ks(us, δus; ω) + c
Γ2

(δus, p) = −c
Γs

(δus;ω) + ls(δus; ω) ,
(41)

for the acoustic cavity,

− ω2ma(p, δp) + iω da(p, δp; ω) + ka(p, δp) + ω2
{

c
Γ2

(us, δp) + c
Γ
(uh, δp)

}
= la(δp; ω) , (42)

and for the sound-insulation layer,

− ω2mh(uh, δuh) + iω dh(uh, δuh; ω) + kh(uh, δuh; ω) + c
Γ
(δuh, p) = c

Γs
(δuh; ω) . (43)

The bilinear forms ms, ds, ks, (respectively ma, da, ka and respectively mh, dh, kh) relative to the mass,

damping and stiffness of the structure (respectively of the acoustic cavity and respectively of the sound-

insulation layer) and the linear forms ls and la related to the structural and acoustical excitations are defined

in Ref. [13]. For instance, we have

ms(us, δus) =

∫

Ωs

ρs(x)us(x).δus(x)dx , ma(p, δp) =
1

ρ0c2
0

∫

Ωa

p(x)δp(x) dx,(44)

ds(us, δus; ω) =

∫

Ωs

bijkh(x, ω)εkh(us)εij(δus)dx , da(p, δp; ω) = τ(ω) ka(p, δp) , (45)

ks(us, δus;ω) =

∫

Ωs

aijkh(x, ω)εkh(us)εij(δus) dx , ka(p, δp) =
1

ρ0

∫

Ωa

∇p.∇δp dx, (46)

c
Γ2

(us, δp) =

∫

Γ2

us(x).ns(x) δp(x) ds(x) . (47)



B Functions of the fuzzy coefficients introduced in section 2.5

For all ω ∈  ,

Θ
R
(ω) =

1

4
√

1−ξ(ω)2
ln

{
N

+

(̃b(ω), ξ(ω))N
−

(ã(ω), ξ(ω))

N−(̃b(ω), ξ(ω))N+(ã(ω), ξ(ω))

}
, (48)

Θ
I
(ω) =

1

2
√

1 − ξ(ω)2

[
Λ(̃b(ω), ξ(ω)) − Λ(ã(ω), ξ(ω))

]
, (49)

N±(u, ξ) = u2 ± 2u
√

1 − ξ2 + 1 , Λ(u, ξ) = arctan

{
u2 + 2ξ2 − 1

2ξ
√

1 − ξ2

}
, (50)

λ(ω) =
ℓ̃(ω)

ωn(ω)
, ℓ̃(ω) =

1

b̃(ω) − ã(ω)
, ã(ω) =

1

ω
a(ω) , b̃(ω) =

1

ω
b(ω) . (51)

C Graphs of the fuzzy coefficients

Figs.6.a-.f display the graphs of the fuzzy coefficients defined by Eqs. (27) to (29) with Eqs. (48) to (51) for

ξ = 0.01, n(ω) given by Fig.3.a and ν(ω) given by Fig.4.
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