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Abstract

This paper deals with the identification of stochastic loads ap-
plied to a non-linear dynamical system for which a few experimen-
tal responses are available using an uncertain computational model.
Uncertainties are induced by the use of a simplified computational
model to predict the responses of the real system. A non-parametric
probabilistic approach of both parameter uncertainties and model un-
certainties are implemented in the simplified computational model in
order to take into account uncertainites. The level of uncertainites
is identified using the maximum likelihood method. The identified
stochastic simplified computational model which is obtained is then
used to perform the identification of the stochastic loads applied to
the real non-linear dynamical system. A numerical validation of the
complete methodology is presented.

1 Introduction

This paper is devoted to the identification of a stochastic load applied to a
non-linear dynamical system for which a few measurements of its responses
are available and for which an uncertain simplified computational model is
used. In the dynamical system, the uncertainties are taken into account in
the context of the probability theory. Consequently the uncertain simplified
computational model is in fact a stochastic simplified computational model
for which the input is a stochastic process (stochastic load) and for which the
linear operators of the computational model are random. This identification

1



is then performed using the stochastic simplified computational model which
allows the responses of the real system to be predicted and then which allows
the stochastic loads to be identified in minimizing a certain distance between
the experimental responses and the random responses calculated with the
stochastic simplified computational model. In fact, the methodology pre-
sented is developed in the context of the non-linear dynamical analysis of
tube bundles in Pressurized Water Reactor. The stochastic loads applied
to the tubes which have to be identified are then induced by the turbulent
flow. Since such a non-linear dynamical system is very complex, the com-
putational model developed can not exactly represent the complexity of the
system. Consequently, the identification is not performed using a computa-
tional model wich has the capability to accurately predict the experimental
responses but is performed using a simplified computational model contain-
ing model errors. In order to perform a robust identification of the stochas-
tic loads with respect to model uncertainties in the non-linear dynamical
computational model, a probabilistic model of uncertainties allowing both
parameter uncertainties and model uncertaintes to be taken into account is
introduced. The responses of the computational model are then random and
the randomness is due to the stochastic loads and is due to the stochasticity
of the system. In a first step, the probability model of uncertainties in the
computational model is identified using the maximum likelihood method.
We then deduce a stochastic computational model which allows a robust
identification of stochastic loads to be carried out with respect to uncertain-
ties in the non-linear computational model. The second step is devoted to
the stochastic inverse problem consisting in identifying the stochastic loads.
From a theoretical and methodological point of view, we then present a
complete probabilistic construction and the associated methodology to solve
an inverse problem consisting of the identification of a Gaussian stationary
stochastic process which is the input of a continuous nonlinear dynamical
system with random operators and for which the stochastic output is mea-
sured. It should be noted that, if the parametric probabilistic approach is
usual to take into account system parameter uncertainties, in the present pa-
per, both the system parameter uncertainties and the model uncertainties are
taken into account using a nonparametric probabilistic approach consisting
in directly modeling the linear operators of the dynamical system by random
operators using the random matrix theory.

Section 2 deals with the construction of the mean computational model.
In Section 3, the probabilistic model of the stochastic loads is introduced.
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Section 4 is devoted to the identification of the stochastic load. The last
section presents a numerical validation of the methodology proposed.

2 Mean computational model

Let Ω be the domain of the dynamical system having a non-linear behaviour
due to the presence of elastic stops located to several points of the part of the
boundary of Ω. The domain Ω is decomposed in two bounded open subdo-
mains of R3, the subdomain ΩA and the subdomain ΩB. The subdomain ΩA

is constituted of a three dimensional linear viscoelastic medium with instan-
taneous memory and there are elastic stops located at κ points x1, ..,xκ in the
boundary ΓA of ∂ΩA. In addition, the subsystem occupying the subdomain
ΩA is fixed on the part ΓA

0 of its boundary ∂ΩA. The outward unit normal of
∂ΩA is denoted nA. The subdomain ΩB is constituted of a three dimensional
linear viscoelastic medium with instantaneous memory, fixed on the part ΓB

0

of its boundary ∂ΩB . The outward unit normal of ∂ΩB is denoted nB. Con-
sequently, each uncoupled subsystem ΩA and ΩB does not have rigid body
displacement. These two subsytems are coupled on the common coupling
interface ΓC . One then has ∂ΩA = ΓA

0 ∪ ΓA ∪ ΓC and ∂ΩB = ΓB
0 ∪ ΓB ∪ ΓC .

We are interested in constructing the stationary random responses of the
non-linear stochastic dynamical system excited by stationary stochastic pro-
cesses. Consequently, we will not introduce the initial conditions and we will
assume that the time parameter t belongs to R.

2.1 Mean boundary value problems

2.1.1 Mean boundary value problems for the linear subsystem ΩB

Let x = (x1, x2, x3) be the cartesian coordinates and uB(x, t) be the dis-
placement field for the linear subsystem ΩB at time t. The external pre-
scribed volumetric and surface forces fields applied to ΩB and to its bound-
ary ΓB are denoted by fBvol(x, t) and fBsurf(x, t). The stress tensor σB(x)

is written as σB
ij (x) = aB

ijkh(x)εB
kh(u

B) + bB
ijkh(x)εB

kh(u̇
B) where εB

kh(u
B) =

(∂uB
k /∂xh + ∂uB

k /∂xh)/2 is the linearized strain tensor. The fourth-order
tensors aB(x) and bB(x) verify the usual properties of symmetry and posi-
tiveness ([4]). Then, the displacement field uB(t) verifies, for all t ∈ R and
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for i = 1, 2, 3, the mean boundary value problem

ρBüB
i − ∂σB

ij /∂xj = fB
vol,i in ΩB ,

σB
ij n

B
j = fB

surf,i on ΓB ,

σB
ij n

B
j = fB

coupl,i on ΓC ,

uB
i = 0 on ΓB

0 ,

(1)

in which a dot means the partial time derivative and a double dot means
the double partial time derivative, where fBcoupl = (fB

coupl,1, ..., f
B
coupl,3) is the

forces induced by the subsystem ΩA on ΩB via the coupling interface ΓC .
One has used the classical convention for summations over repeated Latin
indices. The parameter ρB(x) is the mass density for the subsystem ΩB.

2.1.2 Mean boundary value problems for the non-linear subsys-

tem ΩA

Let uA(x, t) be the displacement field for the non-linear subsystem ΩA at
time t. The external prescribed volumetric and surface forces fields applied
to ΩA and to its boundary ΓA are denoted by fAvol(x, t) and fAsurf(x, t). Since
ΩA is occupied by a linear viscoelastic material with instataneous memory,
the stress tensor σA(x) is written as σA

ij (x) = aA
ijkh(x)εA

kh(u
A)+bA

ijkh(x)εA
kh(u̇

A)
where εA

kh(u
A) = (∂uA

k /∂xh +∂uA
k /∂xh)/2 is the linearized strain tensor. The

fourth-order tensors aA(x) and bA(x) verify as above, the usual properties of
symmetry and positiveness. Then, the displacement field uA(t) verifies, for
all t ∈ R and for i = 1, 2, 3, the mean boundary value problem

ρAüA
i − ∂σA

ij /∂xj = fA
vol,i in ΩA ,

σA
ij n

A
j = fA

surf,i −
∑κ

k=1 fNL,k
i (u(xk, t)) δ0(x − xk) on ΓA ,

σA
ij n

A
j = fA

coupl,i on ΓC ,

uA
i = 0 on ΓA

0 ,

(2)

in which fAcoupl = (fA
coupl,1, ..., f

A
coupl,3) is the forces induced by the subsystem

ΩB on ΩA via the coupling interface ΓC . The forces −fNL,k(u(xk, t)) represent
the actions exerted by the elastic stop located at point xk on the subsystem
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ΩA and δ0(x− xk) is the surface Dirac measure such that, for all continuous
function g defined on ΓA, one has

∫

ΓA δ0(x − xk)g(x)ds(x) = g(xk). The
parameter ρA(x) is the mass density for the subsystem ΩA.

2.1.3 Interface conditions for the coupling of ΩA with ΩB

The coupling conditions on ΓC are written as

uA = uB on ΓC , (3)

fAcoupl + fBcoupl = 0 on ΓC .

2.2 Mean finite element model

The mean finite element method ([16]) is applied to the variational formula-
tion of the boundary value problems defined in subsection 2.1.

2.2.1 Mean finite element model for subsystem ΩB

The RnB

vector UB(t) of the nB DOF of the subsystem ΩB is written as
UB(t) = (UB

p (t), UB
c (t)), where UB

p (t) is the R
nB

p vector of the nB
p internal

DOF and where UB
c (t) is the RnB

c vector function of the nB
c coupling DOF

on the interface. From Eq. 1, it can be deduced that the mean finite element
model of subsystem ΩB is written as

[MB]ÜB(t) + [DB]U̇B(t) + [KB]UB(t) = F
B(t) + F

B
coupl(t) , (4)

in which [MB], [DB] and [KB] are respectively the positive-definite symmetric
real positive (nB×nB) mass, damping and stiffness matrices. The RnB

vectors
FB(t) and FB

coupl(t) of the external forces and of the coupling forces are written
as FB(t) = (FB

p (t), 0) and FB
coupl(t) = (0, FB

c (t)).

2.2.2 Mean finite element model for subsystem ΩA

Similarly to Subsection 2.2.1, the R
nA

vector U
A(t) of the nA DOF of the

subsystem ΩA is written as UA(t) = (UA
p (t), UA

c (t)), where UA
p (t) is the R

nA
p

vector of the nA
p internal DOF and where UA

c (t) is the RnA
c -valued function

of the nA
c coupling DOF. From Eq. 2, it can be deduced that the mean finite

element model of subsystem ΩA is written as

[MA]ÜA(t) + [DA]U̇A(t) + [KA]UA(t) + F
NL(UA(t)) = F

A(t) + F
A
coupl(t) , (5)
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in which [MA], [DA] and [KA] are respectively the positive-definite symmetric
real positive (nA×nA) mass, damping and stiffness matrices. The RnA

vectors
FA(t), FA

coupl(t) and FNL(UA(t)) of the external forces, of the coupling forces
and of the non-linear forces are written as FA(t) = (FA

p (t), 0), FA
coupl(t) =

(0, FA
c (t)) and FNL(UA(t)) = (FNL

p (UA(t)), 0).

2.2.3 Interface conditions for the coupling of ΩA with ΩB

The finite element discretization of the interface conditions defined by Eq. 3
yields

U
A
c (t) = U

B
c (t) on ΓC , (6)

F
A
coupl(t) + F

B
coupl(t) = 0 on ΓC .

2.3 Reduced mean matrix model

The continuous linear subsytem ΩB (linear dynamical subsystem) contains
elastic modes in the frequency band of analysis. In addition, the computa-
tional model of the continuous linear subsytem ΩB is uncertain (presence of
both the system parameter uncertainties and the model uncertainties). As
we have explained in Section 1, these uncertainties are taken into account
using the nonparametric approach of uncertainties which requires a reduced
matrix order model (see refs. [11], [12], [14], [13]). Since, we have to repre-
sent the effects of this substructure on the nonlinear substructure ΩA through
the coupling interface, it is natural to use the Craig Bampton method [1] in
order to reduce the finite element model of subsytem ΩB. Finally to reduce
the computational cost of the coupled system, subsystem ΩA is also reduced
with the same technique.

2.3.1 Reduced mean matrix model for subsystem ΩB

The following change of coordinates is introduced

[

U
B
p (t)

UB
c (t)

]

=
[

HB
]

[

yB(t)
U

B
c (t)

]

,
[

HB
]

=

[

[ΦB] [SB]
[0] [ I ]

]

, (7)

in which [ΦB] is the (nB
p × NB) real matrix whose columns are the NB first

elastic modes for the subsystem ΩB with a fixed coupling interface. Those
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modes (φ1, ..., φNB) are associated with the NB first eigenvalues 0 < ω2
1 ≤

... ≤ ω2
NB such that

[KB
pp] φ

B = ω2 [MB
pp] φ

B , (8)

where [KB
pp] and [MB

pp] are the internal DOF blocks of the matrices [KB]

and [MB], where [SB] = [KB
pp]

−1[KB
pc] is a (nB

p × nB
c ) matrix, where [ I ] is the

(nB
c ×nB

c ) unity matrix and where yB(t) is a RNB

-vector. Let nB
q = NB +nB

c .

Then, the R
nB

q vector qB(t) = (yB(t), UB
c (t)) is solution of the reduced mean

computational model

[MB]q̈B(t) + [DB]q̇B(t) + [KB]qB(t) = [HB]T F
B(t) + [HB]T F

B
coupl(t) , (9)

in which the matrices [MB] = [HB]T [MB][HB], [DB] = [HB]T [DB][HB] and
[KB] = [HB]T [KB][HB] are positive-definite symmetric real (nB

q × nB
q ) ma-

trices.

2.3.2 Reduced mean matrix model for subsystem ΩA

Using the same reduction method and introducing the elastic modes of the
linear subsystem ΩA with fixed interface and without elastic stops, the R

nA
q -

vector qA(t) = (yA(t), UA
c (t)) verifies the following matrix equation

[MA]q̈A(t) + [DA]q̇A(t) + [KA]qA(t) + [HA]T FNL([HA]qA(t))
= [HA]T FA(t) + [HA]T FA

coupl(t) ,
(10)

in which the matrices [MA] = [HA]T [MA][HA], [DA] = [HA]T [DA][HA] and
[KA] = [HA]T [KA][HA] are positive-definite symmetric real (nA

q ×nA
q ) matri-

ces.

2.3.3 Transient dynamical response of the reduced non-linear com-

putational model

Let nU = nA
p + nB

p + nc be the total number of DOF for the non-linear
computational model. The Rn

U -vector U(t) = (UA
p (t), UB

p (t), Uc(t)) of the
mean non-linear computational model is written as

[

U(t)
]

=
[

H
] [

q(t)
]

, (11)
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in which the matrix [H ] is constructed by the assemblage of [HA] and [HB].
Let nq = NA + NB + nc. Then, using the coupling conditions defined by
Eq. (6), the Rnq-vector q(t) = (yA(t),yB(t), Uc(t)) is solution of the reduced
non-linear dynamical system

[M ]q̈(t) + [D]q̇(t) + [K]q(t) + F
NL(q(t)) = F(t) , (12)

with

[M ] =





MA
yy 0 MA

yc

0 MB
yy MB

yc

MA
cy MB

cy MA
cc + MB

cc



, [D] =





DA
yy 0 DA

yc

0 DB
yy DB

yc

DA
cy DB

cy DA
cc + DB

cc



, (13)

[K] =





KA
yy 0 KA

yc

0 KB
yy KB

yc

KA
cy KB

cy KA
cc + KB

cc



 , (14)

F
NL(q(t)) =





[ΦA]T FNL
p ([HA]qA(t))

0

[SA]
T
FNL

p ([HA]qA(t))



 , (15)

F(t) =





[ΦA]T FA
p (t)

[ΦB]T FB
p (t)

[SA]
T
FA

p (t) + [SB]
T
FB

p (t)



.

3 Stochastic non-linear computational model

including system uncertainties and identi-

fication

In this part, firstly the non-parametric probabilistic approach will be used
to take into account both data uncertainties and model uncertainties in the
reduced mean computational model of the linear subsystem ΩB of the com-
putational model. This approach which has recently been introduced consists
in replacing the mass, damping and stiffness matrices of reduced mean com-
putational model by random matrices for which the probability distributions
are explicitly given by the theory and for which a generator of independant
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realizations is known. Such an approach has been validated for many cases.
For the details concerning the non-parametric probabilistic approach, one
refers the reader, for instance, to references ([11], [12], [14], [13]). In such
an approach, the levels of uncertainties for the mass, damping and stiffness
random matrices are defined by the dispersion parameters which are defined
below. Secondly, these dispersion parameters will be identified using the
maximum likelihood method. Finally, the stochastic non-linear computa-
tional model will be introduced and deduced from Section 2.2.3. It should be
noted that (1) only the linear subsystem ΩB is assumed to be uncertain and
(2) the mean non-linear subsystem ΩA is representative and consequently,
that both data uncertainties and model uncertainties can be neglected. If
such an assumption was not verified, then the non-parametric probabilistic
approach of uncertainties could always be implemented without any difficul-
ties in this non-linear subsystem (see for instance [2],[7]).

3.1 Stochastic linear subsystem ΩB modeling uncer-

tainties

Therefore, the matrices [MB], [DB] and [KB] of the reduced mean compu-
tational model are replaced by the random matrices [MB], [DB] and [KB]
defined on a probability space (Θ, T ,P) and such that

∀θ ∈ Θ, [MB(θ)], [DB(θ)], [KB(θ)] ∈ M
+
nB

q
(R) , (16)

E{[MB]} = [MB] , E{[DB]} = [DB] , E{[KB]} = [KB] , (17)

E{‖[MB]−1‖
2

F} < +∞ , E{‖[DB]−1‖
2

F} < +∞ , E{‖[KB]−1‖
2

F} < +∞ ,(18)

in which M+
n (R) is the set of all the positive-definite symmetric (n × n)

matrices, where E{.} is the mathematical expectation and where ‖.‖F is the
Frobenius norm such that ‖A‖2

F = tr{[A]∗[A]}, with [A]∗ = [A]T , [A] is the
conjugate of [A] and tr is the trace for matrices. Let [PB] be the random
matrix denoting [MB], [DB] or [KB]. The probability distribution of the
random matrix [PB] depends on the dispersion parameter δB

P related to the
coefficient of variation δ̃B

P of the random matrix [PB] by the equation

(δ̃
B

P )
2

=
E{‖[PB] − [P B]‖2

F}

‖[PB]‖2
F

=
(δB

P )2

n + 1

(

1 +
(tr[PB])2

tr([PB]2)

)

. (19)
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The dispersion parameter δB
P allows the level of uncertainites of the random

matrix [PB] to be controlled. It can be found in (see [11], [14]) an algebraic
representation of random matrix [PB] which allows independent realizations
to be explicitly constructed in order to solve the random equations by the
Monte Carlo method. For each random matrix, this random generator de-
pends only on the mean value, on the dimension of the matrix and on the
dispersion parameter. Such an approach is used in this paper.

3.2 Identification of the dispersion parameters

As explained in Section 3.1, the probability distributions of the random ma-
trices (and then of the random generators) depend on the vector δ = (δB

M , δB
D,

δB
K) of the dispersion parameters which is identified using the measurements.

The observation of the stochastic computational model is defined introducing
the nB

q × nB
q random complex dynamic stiffness matrix [AB(ω)] of the linear

subsystem ΩB written as

[AB(ω)] = −ω2[MB] + iω[DB] + [KB] . (20)

Then the random condensed dynamical stiffness matrix [ZB(ω)] of the linear
subsystem ΩB on the coupling interface is such that [ZB(ω)] = [AB

cc(ω)] −
[AB

cy(ω)][AB
yy(ω)]−1[AB

yc(ω)]. Taking into account the properties of the prob-
abilistic model , it can be shown that, for all ω fixed in B, the random matrix
[ZB(ω)] is invertible almost surely and the random variable J(δ) defined by

J(δ) =

∫

B

‖[ZB(ω)]−1‖
2

F dω , (21)

exists and has a finite mean value. This random variable gives a measure
over B of the dynamical effects of subsystem ΩB on the subsystem ΩA at the
coupling interface. It should be noted that the random variable J(δ) depends
on δ because the probability distributions of the random matrices [MB], [DB]
and [KB] depend on δ. Let x 7→ pJ(x, δ) be the probabilty density function
of the random variable J(δ) with respect to dx. For any x fixed in [0, +∞[
and for any value of the vector δ belonging to the admissible set Cad of the
dispersion parameters, the value pJ(x, δ) of the probability density function
is estimated by using the above probabilistic model and the Monte Carlo
simulation. The corresponding deterministic experimental value Jexp of J(δ)
is calculated using experimental data. The method used to identify vector
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δ is the maximum likelihood method (see for instance [8]) for the random
variable J(δ) for which Jexp is one realization. We then have to solve the
following optimization problem

δ
opt = arg max

δ∈Cad

(pJ(Jexp; δ)) , (22)

in which δ
opt is the identified value of δ.

3.3 Random transient dynamical response of the stochas-

tic non-linear computational model

Using the probabilistic model defined in Section 3.1, the deterministic Eqs. (11)
to (15) give the following stochastic non-linear computational model

[

U(t)
]

=
[

H
] [

Q(t)
]

, (23)

in which, for all fixed t, the vector-valued random variable Q(t) verifies

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + F
NL(Q(t)) = F(t) , (24)

and where the random matrices [M], [D] and[K] are written as

[M] =





MA
yy 0 MA

yc

0 MB
yy MB

yc

MA
cy MB

cy MA
cc + MB

cc



, [D] =





DA
yy 0 DA

yc

0 DB
yy DB

yc

DA
cy DB

cy DA
cc + DB

cc



, (25)

[K] =





KA
yy 0 KA

yc

0 KB
yy KB

yc

KA
cy KB

cy KA
cc + KB

cc



 . (26)

4 Identification of stochastic loads

The transient load F(t) defined by F(t) = (FA
p (t), FB

p (t), 0) corresponding
to the displacement vector U(t) = (UA

p (t), UB
p (t), UB

c (t)) is modelled by a
stochastic process {F(t), t ∈ R}. Since all the degrees of freedom of the
computational model are not excited by this stochastic load, we then in-
troduce the usual projection operator Proj in order to extract the vector
F̃(t) = Proj(F(t)) of the non zero random components of the random vector
F(t). This equation can easily be inversed and yields F(t) = Lift(F̃(t)).
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4.1 Construction of the stochastic load F̃(t)

The stochastic load is modelled by a Rm-valued Gaussian stationary centred
second order stochastic process {F̃(t), t ∈ R} defined on a probability space
(Θ′, T ′,P ′) different from the probability space (Θ, T ,P). In addition, it is
assumed that the stochastic process is mean square continous on R, physically
realizable (causal) and for which its matrix-valued autocorrelation function
τ 7→ [R

F̃
(τ)] = E{F̃(t+ τ) F̃(t)T} is integrable on R. This stochastic process

is then completely defined by its matrix-valued spectral density function
[S

F̃
(ω)] = (2π)−1

∫

R
e−iωτ [R

F̃
(τ)] dτ which is a continuous and integrable

function on R and which is in values in the set of all the positive (m × m)
hermitian matrices. In addition, we will assume that for all ω in R, the
matrix [S

F̃
(ω)] is with values in the set M+

m(C) of all the positive definite
(m × m) hermitian matrices. Since the stochastic process is assumed to be
physically realizable, the matrix valued spectral density function must satisfy
the following usual inequality ([6], [10])

∫

R

log(det[S
F̃
(ω)])

1 + ω2
> −∞ . (27)

The numerical simulation of independent realizations {F̃(t, θ′), t ∈ R} for
θ′ ∈ Θ′ ( trajectories) can easily be generated by using adapted algorithms
(see for instance [9], [5]).

4.2 Stochastic equation for simulation of responses

We have to identify the stochastic process F̃ in presence of uncertainties
in the linear subsystem ΩB. This identification consists in identifying the
matrix-valued spectral density function [S

F̃
(ω)] which completely describes

the stochastic process. This stochastic inverse problem is formulated as a
stochastic optimization problem. Such an identification is performed using
the stochastic equation deduced from Eqs. (23) to (26) with (15) in which the
deterministic load F(t) is replaced by the stochastic load F(t). We then have
to construct the Rn

U -valued stationary solution Us(t) = (UA
s (t),UB

s (t),Uc
s(t))

(corresponding to U(t)) which is written as

[

Us(t)
]

=
[

H
] [

Qs(t)
]

, (28)
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in which subindex s is relative to the stationary solution and where the
stationary stochastic process {Qs(t), t ∈ R} satisfies the stochastic equation

[M]Q̈s(t) +[D]Q̇s(t) + [K]Qs(t) + F
NL(Qs(t)) = [H ]T F(t) , (29)

in which Q̇s(t) and Q̈s(t) are the mean-square first and second derivative
of Qs(t). For the identification of [S

F̃
], for all t fixed, we introduce the

Rµ-valued random variable Zs(t) = (Zs,1(t), ..., Zs,µ(t)) which represents the
observations of the stochastic computational model made up of components
of the vector-valued random response Us(t). Thus there exists a projection
Proj′ from R

n
U into R

µ such that Zs(t) = Proj′(Us(t)). For all θ in Θ,
the stationary stochastic process {Zs(t, θ), t ∈ R} is such that Zs(t, θ) =
Proj′([H ]Qs(t, θ)), where the stationary stochastic process {Qs(t, θ), t ∈ R}
is such that

[M(θ)]Q̈s(t, θ) +[D(θ)]Q̇s(t, θ) + [K(θ)]Qs(t, θ)

+F
NL(Qs(t, θ)) = [H ]T Lift(F̃(t; [S

F̃
])) ,

(30)

where {F̃(t; [S
F̃
]), t ∈ R} is a stochastic process defined in Section 4.1. The

next section is devoted to the identification of [S
F̃
]. In order to perform this

identification, we need to introduce an observation relative to the stochastic
equation and which is useful to construct the cost function. For all θ ∈ Θ,
the matrix-valued spectral density function {[SZs

(ω, θ)], ω ∈ R} can be esti-
mated. Generating νθ independent realizations of the random matrices [M],
[D] and [K], the matrix-valued spectral density function [SZs

] is estimated
by the Monte Carlo simulation method. For all ω ∈ R, one has

[SZs
(ω)] =

1

νθ

νθ
∑

i=1

[SZs
(ω, θi)] . (31)

4.3 Identification of the stochastic loads

The identification [S
F̃
] is performed in introducing a parametric representa-

tion of this function which is rewritten as

[S
F̃
(ω)] = [S(ω, r)] , ω ∈ R , r ∈ Cr , (32)

in which Cr ⊂ Rνr is the admissible set of the parameter r with values in Rνr

where νr is the number of unknown scalar parameters which have to be identi-
fied and where (ω, r) 7→ [S(ω, r)] is a given function from R×Rνr into M+

m(C).

13



Therefore, the identification of the stochastic load {F̃(t), t ∈ R)} consists in
identifying the Rνr-valued vector r. Let {Zexp

s (t) = (Zexp
s,1 (t), ..., Zexp

s,µ (t)), t ∈
R} be the Rµ-valued stationary stochastic process which is measured for
the manufactured real system and corresponding to the observation stochas-
tic process {Zs(t), t ∈ R}. The matrix-valued spectral density function
{[SZ

exp
s

(ω)], ω ∈ R} of this stochastic process is estimated using the peri-
odogram method. Then, the parameter r is estimated in minimizing the
distance D(r) =

∫

B
‖[SZs

(ω, r)] − [SZ
exp
s

(ω)]‖2
Fdω between the matrix-valued

spectral density function calculated with the stochastic computational model
and the experimental matrix-valued spectral density function. We then have
to solve the following optimization problem

ropt = arg min
r∈Cr

D(r) , (33)

in which ropt is the identified value of the vector r.

5 Application

In this section a numerical simulation of a simple example is presented in
order to validate the methodology developed in this paper.

5.1 Data for the experimental model

The measurement are generated by an experimental model which is made up
of one linear subsystem and one non-linear subsystem. The linear subsystem
is made up of four parallel beams fixed at their ends. The non-linear subsytem
is made up of a beam also fixed at its ends, parallel to the other beams
and with one transversal symmetric elastic stop (two identical stops, see
Fig. 1). The five beams are linked by three transversal grids, each grid being
modelled by four transverval springs (see Fig. 1). Therefore, the coupling
interface between the two subsytems is composed of three points located
in the neutral fiber of the beam of the non-linear subsystem. Each beam
is modelled by eight Euler beam finite elements of equal lengthsfor which
the DOF of the two nodes at the ends of the beam are locked. The twelve
springs defining the the three tranversal grids are modelled by twelve spring
elements. The two elastic stops are modeled by two springs. We are only
interested in the y-direction displacements of the beam of the non-linear

14



subsystem (see Fig. 1). Consequently, each beam has 14 DOF (y-translation
and z-rotation). The total number of the free DOF for the linear subsystem is
then 59 and the total number of the free DOF for the non-linear subsystem is
then 14. The beam of the non-linear subsystem is exited by seven transversal

(c)

obs

Pobs

(b)

(a)

y

z

y

x

x

y

z

P

Figure 1: (a) Experimental model: 3D view.(b) Transversal view.(c) Tran-
versale view in the plane of one grid: the 6 diagonal lines represent the 12
springs.

forces applied following the y-direction. The vector of these seven non zero
components are denoted by f exp. The stochastic process {f exp(t), t ∈ R} is
a second-order centred stationary Gaussian stochastic process for which its
matrix-valued spectral density function [Sf

exp(ω)] is such that (1) for all i in
{1, . . . , 7}, [Sf

exp(ω)]ii is a constant on the frequency band of analysis B =
2π × [−100, 100] rad/s and (2) for all i and j in {1, . . . , 7}, |[Sf

exp(ω)]ij|
2 =

γij(ω)[Sf
exp(ω)]ii[Sf

exp(ω)]jj where γij(ω) = exp(−|xi−xj |/λ) in which |xi−xj |
is the distance between the two excited points and the value of λ is equal to
the quarter of the beam length. In the frequency band of analysis B, there are
21 eigenfrequencies for the linearized coupled system made up of the linear
subsystem coupled with the linear beam of the non-linear subsystem (non-
linear subsystem without the stops), for which the first three eigenfrequencies
are 5.78 Hz , 15.9 Hz and 31.1 Hz.

5.2 Data for the mean computational model

This part is devoted to the construction of a simplified mean computational
model for the non-linear dynamical system described in Section 5.1. This
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simplified mean computational model will be used to identify the stochastic
loads. It consists in modelling (1) the four beams and the three transversal
grids of the linear subsystem of the experimental model by a unique equiv-
alent linear Euler beam and by three equivalent springs (see Fig. 2) and (2)
the linear beam with elastic stops of the non-linear subsystem of the exper-
imental model by a linear beam with two springs for the elastic stops. The

y

obs xP

Figure 2: Mean model.

section of the equivalent beam for the linear subsystem is arbitrarily cho-
sen and its Young’s modulus and its mass density are identified so that the
three first eigenfrequencies of this mean computational model are the same
that the three first eigenfrequencies of the experimental model. Note that
only the three first eigenfrequencies are correctly fitted and consequently,
there are model uncertainties in this simplified mean computational model
which are taken into account as explained in Section 3. It should be noted
that the objective of this paper is not to construct an accurate mean com-
putational model in order to exactly represent the experimental model, but
to test the validity of the use of a simplified mean computational model in
order to represent a much more complex system. After identification, the
first three eigenfrequencies of the simplified mean computational model are
5.74 Hz , 15.3 Hz and 30.8 Hz which have to be compared to the first three
eigenfrequencies 5.78 Hz , 15.9 Hz and 31.1 Hz of the experimental model.
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5.3 Comparison between the dynamical responses of

the experimental model and of the mean compu-

tational model for the same given stochastic load.

In this section, it is assumed that the stochastic load is given and is the same
for the experimental model and for the simplified mean computational model.
Then, for the two models, the stationary stochastic responses are calculated
in the time interval [0, 220] s using an explicit Euler integration scheme. Let
Pobs be the point of the non-linear subsystem located at the impact point
of the elastic stops. The power spectral density functions of the stochastic
y-displacement and of the stochastic z-rotation in point Pobs (see Fig. 3) is
estimated using the periodogram method. It can be seen that the prevision
given by the mean simplified computational model is good enough in the
frequency band [0, 50] Hz. Nevertheless, there are significant differences in
the frequency band [50, 100] Hz induced by model uncertainties. This is
the reason why the model uncertainties are taken into account in order to
extend the domain of validity of the simplified mean computational model in
the frequency band [50, 100] Hz in order to perform a robust identification
of the stochastic loads.
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Figure 3: For point Pobs, power spectral density function (PSD) for (a) the y-
displacement and (b) the z-rotation. Comparison between the experimental
model (thin line) and the simplified mean computational model (thick line).
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5.4 System uncertainties modelling and dispersion pa-

rameter identification.

The non-parametric probabilistic approach of model uncertainties introduced
in Section 3.1 is used for stiffness part of the linear subsystem of the simplified
mean computational model. We then have to identify the dispersion param-
eter δ = (δB

K). Note that the identification procedure which is proposed is
independent of the stochastic loads. The estimation of the probability den-
sity function in Eq. (22) is carried out with 200 realizations for the Monte
Carlo simulation. Figure 4 shows the likelihood function calculated using
Eq. (22) with Cad = [0,

√

22/34]. The maximum is reached for δ
opt = 0.45.

0.1 0.2 0.3 0.4 0.5 0.6
14.4

14.6

14.8

15

15.2

15.4

p
J
(J

re
f ;δ

)

δ

Figure 4: Graph of function δ 7→ pJ(Jexp; δ).

5.5 Case of an unknown stochastic load and its iden-

tification.

In this section, the responses of the experimental model are given (those
constructed in Section 5.3) and the stochastic load F̃(t) is assumed to be un-
known and has to be identified using the uncertain simplified computational
model, that is to say the stochastic simplified computational model for which
the dispersion parameter has been identified in Section 5.4. We begin defining
a model as simple as possible for the stochastic load F̃(t) introduced in Sec-
tion 4.1. We have then chosen to model F̃(t) as {F̃(t) = (T (t), M(t)), t ∈ R}
in which T (t) is a y-force and M(t) is a z-moment applied to the middle
of the beam of the non-linear subsystem (see Fig. 5). This force and this
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Figure 5: Definition of the stochastic load.

moment are independent second-order centred stationary Gaussian stochas-
tic processes. So, they are both completely defined by their power spectral
density functions [ST(ω)] and [SM(ω)]. The matrix-valued spectral density
function of the stochastic process {F̃(t), t ∈ R} is then defined by

[S
F̃
(ω)] =

[

ST(ω) 0
0 SM(ω)

]

, ω ∈ R . (34)

It is assumed that the function ω 7→ [S
F̃
(ω)] is constant in the frequency

band of analysis B and is such that Eq. (27) is verified. The experimental
stochastic process {Zexp

s (t), t ∈ R} defined in Section 4.3 is composed of
µ = 7 stochastic y-displacements. Taking into account Eq. (32), the function
ω 7→ [S

F̃
(ω)] which is a constant diagonal hermitian matrix, can then be

rewritten for all ω in B as

[S
F̃
(ω)] = [S(ω, r)] =

[

r1 0
0 r2

]

, ω ∈ B , r ∈ Cr , (35)

in which the admissible set Cr = {r = (r1, r2); r1 > 0, r2 > 0}. This vec-
tor r is identified using the trial method to solve the optimization problem
defined by Eq. (33). Such a method consists in calculating the cost func-
tion D(r) for 100 values of the vector r. Figure 6 shows the graph of the
function r 7→ log10(D(r)) which allows the optimal value ropt to be deter-
mined. The confidence region associated with a probability level Pc = 0.95
of the reponse of the stochastic simplified computational model on which
the identified stochatic load is applied can then be estimated. The compari-
son between the experimental responses with the responses constructed with
the stochastic simplified computational model is given in Fig. 7. This figure
displays the confidence region of the power spectral density function of the
stochastic y-displacement and the stochastic z-rotation for point Pobs.
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Figure 6: Graph of the cost function (r1, r2) 7→ log10(D(r1, r2)).

6 Conclusions

We have presented a methodology and its validation to perform the iden-
tification of a stochastic loads applied to a complex non-linear dynamical
system for which a few measurements of its responses are available. To carry
out this identification, a simplified computational model of the real system
is introduced. Since such a simplified computational model induces model
uncertainties, a probabilistic model of these uncertainties is introduced in the
simplified computational model. The identification of the stochastic loads is
then performed using this stochastic computational model which takes into
account model uncertainties and consequently, we have validated a method
to perform a robust identification with respect to model uncertainties. It
should be noted that the non-linear dynamical system used for this vali-
dation is representative of real industrial systems and then validates the
methodology proposed.
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Figure 7: For point Pobs, power spectral density function (PSD) for (a) the
stochastic y-displacement and (b) the stochastic z-rotation: upper and lower
envelopes and mean response (mid thin line); experimental model (thick line).
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